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Abstract

We show that when memory is bounded, i.e. memory buckets are finite,
dynamic hash tables that allow insertions and deletions behave significantly
worse than their static counterparts that only allow insertions. This behavior
differs from previous results in which, when memory is unbounded, the two
models behave similarly.

We show the decrease in performance in dynamic hash tables using sev-
eral hash-table schemes. We also provide tight upper and lower bounds on
the achievable overflow fractions in these schemes. Finally, we propose an
architecture with content-addressable memory (CAM), which mitigates this
decrease in performance.

Keywords: High-Speed Networks, Queuing Theory and Analysis, Dynamic
Hash Tables

1. Introduction

1.1. Background

Networking devices often use dynamic hash tables, in which elements keep
being both inserted and deleted as packets arrive and depart. Therefore, they
differ from static ones, which are built only once. However, for simplicity,
device designers typically model the performance of the dynamic hash tables
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using models of the static hash tables. This paper shows that these static
models can lead to a significant under-estimation of the drop rate in the
dynamic case.

This underestimation of the drop rate can potentially affect the perfor-
mance of networking devices. Hash tables form the core building block
of many networking device operations, such as flow counter management,
flow state keeping, elephant traps, virus signature scanning, and IP address
lookup algorithms [1]. If memory is allocated to the dynamic hash tables
according to the static model, more elements might need to be dropped from
the hash tables than initially estimated.

Using the static model seems natural. Dynamic hash tables are known
for being typically harder to model than static ones, sometimes even lacking
any mathematical analysis [1]. Therefore, the static model appears to be a
simpler and more accessible option to the network designer.

More significantly, former studies have also found the same asymptotic
behavior in dynamic and in static hash tables, in at least three cases. These
studies considered both the static case in which n elements are only inserted
into n buckets of infinite size, and a specific dynamic model, in which a fixed
load of n elements is kept by alternating between a randomly chosen element
deletion and a new element insertion:
(a) In case the elements are uniformly hashed into the buckets, the maximum
bucket size is known to be approximately log n/ log log n with high probabil-
ity. The dynamic model yields the same result [2, 3].
(b) Likewise, when inserting each element in the least-loaded of two ran-
dom buckets (d-random algorithm with d = 2), the maximum bucket size is
log log n/ log 2 + O(1) in the static case; and again, the dynamic case yields
the same result [3, 4].
(c) Similarly, using the asymmetric d-left algorithm [5], the static case and the
dynamic case yield again the same bound on the maximum bucket size [6].
Therefore, as illustrated in these three cases, given a large number of el-
ements, it appears that the network designer could use the simpler static
model for the dynamic case.

In this paper, we focus on the realistic scenario in which buckets are finite,
as used in networking devices, contrarily to the infinite-bucket case assumed
above. We show that the dynamic hash table can exhibit a significantly
worse drop rate than its static counterpart. That is, the rate of elements
that cannot be inserted in the hash table is significantly higher.
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(a) d-random with a stash
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(b) Cuckoo hashing with a stash

Figure 1: Average overflow fraction with 2 hash functions and bucket size 1, using both
the static and the dynamic model.
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Figure 2: An example demonstrating the degradation of performance in dynamic hash
tables.

1.2. Performance Degradation

Fig. 1 plots the system average overflow fraction as a function of the load,
i.e. the fraction of elements not placed in the buckets as a function of the
average number of elements (either dropped or not dropped) per bucket 1.
Specifically, it shows the average overflow fraction for both a static system,
where there are only insertions, and a dynamic system, where we alternate
between deletions and insertions, while a fixed load is maintained [4, 7]. To
measure the overflow fraction, it relies on an overflow list, called stash, to
which new elements are moved when they cannot be inserted in the hash ta-

1Since in practice, sizing the buckets is according to the width of a single SRAM or
DRAM memory word [1], we focus in this paper on buckets of small sizes (e.g. 1, 2 or 4).
However, the results in this paper are general and consider any arbitrary bucket size.

3



ble. Fig. 1(a) and 1(b) show the overflow fraction of the d-random algorithm
with a stash [4] (where d = 2), and the cuckoo hashing with a stash [8, 9].
The overflow fractions are obtained in simulations using 2048 buckets, 106

rounds with one random element deletion and one element insertion in each
round (for the dynamic case), and a standard pseudorandom number gener-
ator to obtain hash values2. The overflow fraction in the static case is only
measured at the end of all element insertions, while in the dynamic case it is
measured after each cycle and then averaged over cycles.

Both figures clearly show a non-negligible degradation in the overflow
fraction of the dynamic system. For instance, the cuckoo hashing scheme with
load of 0.6 yields an overflow fraction of 0.62% and 3.02% in the static and
dynamic models, respectively. Moreover, while for cuckoo hashing scheme
with load of 0.5 the overflow fraction in the static model quickly goes to
0 [10], it does so more slowly in the dynamic case. For instance, for m = 1024
we get an overflow fraction in the static and dynamic models of 0.05% and
0.44%, where for m = 16384 we get 0.0012% and 0.0606%, respectively.

In the infinite-bucket case, no overflow list is needed. Thus, to compare
the finite-bucket case with the case where buckets are infinite, we define
the average overflow fraction for the infinite-bucket case as the probability
that an element is not the first one in its bucket. Furthermore, since cuckoo
hashing scheme is not defined for infinite buckets, we compare the overflow
fraction only under the d-random scheme. Our simulations show a similar
overflow fraction in the following three cases: static scheme with buckets
of size one, static scheme with infinite buckets, and dynamic scheme with
infinite buckets (the first two curves completely coincide in Fig. 1(a), so they
appear in the legend as “static”, while the last curve is slightly different
due to the nature of the d-random scheme). On the other hand, there is a
significant increase in the overflow fraction when the scheme is dynamic and
buckets are finite. In the rest of the paper, we will evaluate this performance
degradation and propose methods to mitigate this problem.

1.3. Intuition

The intuition behind this difference in behavior is that if the bucket size
is bounded, once an element is placed in the overflow list it stays there
regardless of whether the corresponding bucket become available later upon

2Simulations with ten times more buckets or rounds yielded nearly identical results.
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deletion. Therefore, the order of the insertion and deletion operations directly
affects the performance. This is typically not the case in the unbounded
bucket case, and the difference can cause a drastic degradation in the scheme
performance.

Fig. 2 illustrates this degradation in performance, using the same scenario
both for the finite and the infinite bucket sizes. For the case of finite buckets,
we assume bucket sizes of 1, an overflow list, and an insertion algorithm that
uses only one hash function. We consider the following scenario: Let t be
the time when a new element x1 is hashed to a full bucket j that already
stores element x0 (step (i) in both Fig. 2(a) and Fig. 2(b)). If a finite bucket
is used, then x1 is moved to the overflow list (step (ii) in Fig. 2(a)), while in
the infinite-bucket case, x1 is simply stored in bucket j (step (ii) in Fig. 2(b)).
Let t′ > t be the time when element x0 is deleted. Assuming that element x1

is not deleted before t′, it stays in the overflow list in the finite-bucket case,
while in the infinite-bucket case it is stored in bucket j (step (iii)).

Therefore, in the dynamic case with finite bucket sizes, element x1 is in
the overflow list, even though its corresponding bucket j is empty. This could
never happen in the static case (elements are stored in the overflow list only
after their corresponding buckets are full, and full buckets cannot become
empty). It could also never happen in the dynamic case with infinite buckets
(there is no overflow list).

1.4. Our Contributions

We start by considering a simplistic dynamic scheme with a single hash
function. We model this hashing scheme analytically using two different
models: a discrete-time Markov chain, and a fluid model with a continuous-
time Markov process. We find that this simplistic dynamic scheme performs
notably worse than its corresponding static scheme.

Then, we obtain a lower bound on the expected overflow fraction in the
dynamic model of any hash-table scheme that uses uniform hash functions.
We prove that when the average number of memory accesses per insertion
a increases, the expected overflow fraction can decrease as slowly as Ω(1/a)
(compared to Ω(e−a) in the static case [11]). This indicates that the poor
performance of dynamic schemes is fundamental, and is hard to solve by
simply using additional memory accesses (or hash functions).

Next, we introduce an online multiple-choice scheme (that is, a scheme
that uses multiple hash functions). We demonstrate that this scheme reaches
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the lower bound and therefore is optimal up to a certain rate of memory
access, which depends on the system parameters.

However, due to the slow decrease of the lower bound, optimality may be
insufficient for certain applications. Therefore, we suggest changing the as-
sumptions and moving back elements from the overflow list when a bucket be-
comes available upon deletion. We propose the M-B (Moving-Back) scheme
that uses a CAM (Content-Addressable Memory) device that stores the ele-
ments along with their hash values. A parallel lookup operation is used once
an element is deleted and its bucket becomes non-full. This operation, sup-
ported by the CAM, finds an element in the overflow list that can be moved
back to the bucket. This scheme is shown to beat the initial lower bound
without a CAM.

Finally, we evaluate all proposed schemes using simulations as well as
experiments with real hash functions applied on real-life traces.

Paper Organization. We start with preliminary definitions in Section 2. Sec-
tion 3 presents and analyzes the single-choice single scheme, while Sections 4
and 5 provide a lower bound on the expected overflow fraction. Then, in Sec-
tion 6 we present and analyze the multiple-choice multiple scheme, and in
Section 7 we present the CAM-based M-B scheme which, upon deletion,
moves back elements from the overflow list. Finally, we evaluate all the
analytical results in Section 8.

For the sake of readability, some proofs are presented in Appendix A.
Appendix B provides additional explanations.

2. Problem Statement

2.1. Terminology and Notations

This paper considers single- and multiple-choice hash schemes with a
stash [12, 11]. Such schemes consist of two data structures: (i) A hash
table of total memory size m ·h, partitioned into m buckets of size h; (ii) An
overflow list, usually stored in a CAM. Note that the overflow list can also
be absent, in which case overflow elements are simply dropped.

Like traditional hash tables, the schemes should support three basic op-
erations: element insertions, element deletions, and lookups. We call the (in-
finitely long) sequence of these operations the input sequence of the scheme.
Consequently, we sometimes refer to an insertion operation as an arrival of
an element, and to a deletion operation as a departure of an element. In

6



this paper, we focus mostly on a specific input sequence, alternating between
departures of a random element (picked uniformly at random) and arrivals
of a new element [4, 7].

Multiple-choice hashing schemes employ up to d probability distributions
over the set of buckets; these distributions are then used to generate a hash-
function set H = {H1, . . . , Hd} of d independent hash functions. For each
element x and each operation, the scheme can consider only the buckets
{H1(x), . . . , Hd(x)} (and the overflow list). In addition, we assume that the
scheme must access a bucket to obtain any information on it.

In some cases we will make use of uniformly-distributed hash functions,
as defined below.

Definition 1. A uniformly-distributed hash function is a hash function that
maps into each bucket with equal probability.

In this paper, we focus on the average case behavior of the system, as
formally defined below.

Definition 2. The expected overflow fraction is the expected fraction of ele-
ments (over time) that are not placed in the buckets, that is, are either placed
in the overflow list or simply dropped in case the overflow list is absent.

Our goal is to minimize the expected overflow fraction of the scheme,
subject to the (total and average) number of memory accesses. We count as
one memory access reading and updating all the elements of a single bucket.
This corresponds to the common practice of sizing the bucket size by the
width of the memory word. We do not count accesses to the overflow list.
We further assume that up to d buckets can be read in parallel before deciding
which one to update, requiring a total of d memory accesses.

Formally, the hashing scheme and the optimization problem are captured
by the following two definitions, where the load c is the ratio of the total
number of elements n by the total memory size mh: c = n

mh
.

Definition 3. When the load is c and the bucket size is h, an 〈a, d, c, h〉
hashing scheme is a scheme with an expected (respectively, maximum) number
of memory accesses per element of at most a (respectively, d).

Definition 4. The optimal dynamic hash table problem is to find an
〈a, d, c, h〉 hashing scheme that minimizes the expected overflow fraction γ as
the number of elements n goes to infinity. Whenever defined, let γopt denote
this optimal expected limit overflow fraction.
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2.2. Input Models

Throughout the paper, we will use two different models for the arrivals
and departures of elements: a discrete finite model with a finite number of
elements; and a fluid model based on differential equations with an infinite
number of elements. Our objective is to model a constant load, i.e. a constant
number of elements in the system, so that departing elements are replaced
by arriving elements.

In both of the models we start at time t = 0 with all the n elements
placed in the overflow list. The description of the differences between the
models is given below.

Discrete Finite Model — In the discrete finite model, we assume that
time is divided into time-slots of unit duration. At the start of each time-slot
t > 0, an element is chosen uniformly at random among all n elements in the
system to depart. Next, at the end of time-slot t, a new element arrives and
is inserted according to the hashing scheme into either a non-full bucket or
the overflow list. Therefore, by the end of each time-slot t, there are always
n elements in the system, either in the hash table or in the overflow list.

Fluid Model — The second model is the fluid model, which attempts
to model the behavior of the continuous system as both the number of ele-
ments n and the number of buckets m go to infinity with a constant limit
ratio ch = limn→∞

n
m
. In the fluid model, we will often analyze the system

using differential equations, and will be mainly interested in their fixed-point
solutions.

In this model, each element stays in the system for an exponentially-
distributed duration of average 1. Therefore, at each infinitesimal time-
interval [t, t+ δt], the probability that a given element departs is n·δt+o(δt).
As such, the departure rate from each bucket is proportional to the bucket
size.

For each element departure, another element is automatically generated
and inserted in the system. Thus, the average arrival rate per bucket is n

m
,

since the arrival rate is n and there are m buckets. Therefore, in the fluid
model, we model a constant average arrival rate per bucket of ch = limn→∞

n
m
.

Consider a finite number of buckets. When arriving elements use a
uniformly-distributed hash function, they hash into each bucket at a rate
equal to the average rate of n

m
. However, since we consider in the fluid model

an infinite number of buckets, the uniformly-distributed hash function trans-
lates to a continuous uniformly-distributed hash function. By extension, and
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for simplicity, we will define such a function as one that enables the same
arrival rate of ch to all buckets.

Furthermore, we will define the average number of memory accesses per
element a such that it is valid at any time t, thus we call it the hashing rate.
We will also assume that the hash values are independent from the bucket
occupancy, i.e. that the hashing rate of a is valid given any bucket size.

Model Alternatives — In general, to model system scaling, we would
be interested in using the discrete finite model, and then in studying how
its solution scales with n. However, given the complex interactions between
the n elements, this model often prove intractable. Therefore, we will use
the fluid model in these cases, and will most often not be able to prove
convergence of the discrete finite model to the fluid model. Likewise, we will
not always prove convergence of the differential equations to the fixed-point
solutions. This is, of course, a limit of our analysis.

On the other hand, for the single-choice hashing scheme (Section 3), we
provide a full analysis with both models, and prove that the limit of the
discrete finite model behaves indeed like in the fluid model. In simulations,
we will also show that the scaled systems converge fast to their fluid model.
We refer to [13] for a more complete discussion of the sufficient conditions
for the convergence to the fluid-limit fixed-point solution.

3. A Single-Choice Hashing Scheme

We start by analyzing a simplistic hashing scheme, which uses only a
single uniformly-distributed hash function H to insert elements in the hash
table. Each element x is stored in bucket H (x), if it is not full, and in the
overflow list otherwise. Since an element uses exactly one hash function, its
average number of memory accesses per element is a = 1. Of course, this
simplistic scheme would probably not be implemented in advanced network-
ing devices. However, it provides a better intuition on the reasons behind
the performance degradation in dynamic hash-table schemes.

Discrete Finite Model — We first develop an analytical model for the
scheme within the discrete framework presented in Section 2. Let pk(t) denote
the expected fraction of buckets that have k elements at the end of time-slot
t, and p(t) = (p0(t), p1(t), . . . , ph(t)). Using the discrete finite model, we
obtain the following result on the limits of p(t) and of the expected overflow
fraction. The full proof appears in Appendix A.1 and is based on a birth-
death Markov chain that models the occupancy of an arbitrary bucket over
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time.

Theorem 1. Let C =
∑h

ℓ=0

(

n

ℓ

)

( 1
m−1

)ℓ. In the discrete finite model, when
t → ∞,
(i) p(t) converges to the Engset distribution πn [14, 15]; that is, for all 0 ≤
k ≤ h, pk(t) converges to πn

k , where

πn
k =

1

C
·

(

n

k

)

·

(

1

m− 1

)k

. (1)

(ii) the expected overflow fraction converges to

1

C
·

(

n

h

)

·

(

1

m− 1

)h

·

(

1−
h

n

)

. (2)

Equation (1) can be rewritten as a truncated binomial expression

πn
k =

(

n

k

)(

1

m

)k (

1−
1

m

)n−k

h
∑

l=0

(

n

l

)(

1

m

)l(

1−
1

m

)n−l
. (3)

Since the proof of Theorem 1 shows that the distribution of a bucket oc-
cupancy also follows πn

k (as p(t) does), the above expression hints at the
following interesting equivalent system: the bucket occupancy is distributed
as if the n elements were assigned uniformly at random among them buckets,
and then the buckets with more than h elements were completely cleared out
and had all their elements put in the overflow list. This is in contrast with
the static system in which only elements exceeding the bucket capacity of h
are placed in the overflow list. Therefore, Equation (3) nicely illustrates the
difference between the static and dynamic cases.

A detailed example of the behavior of the scheme in the dynamic and
static setting appears in Appendix B.1, which shows a simplistic setting
where, as the number of buckets increases (with fixed load), the dynamic
case yields an expected overflow fraction of 50%, while the static case has an
expected overflow fraction of only e−1 ≈ 36.79%.

Fluid Model — We now analyze the infinite system using a fluid
model. In the fluid model, elements stay in the system for an exponentially-
distributed duration of average 1, and therefore the departure rate from each
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bucket is proportional to the bucket size. In addition, when an element de-
parts, a new element is inserted into the hash table (or in the overflow list if
the corresponding bucket is full). As explained in Section 2, the arrival rate
to each bucket is therefore ch = limn→∞

n
m
.

The following theorem, which is based on the M/M/h/h continuous-time
Markov process [15], shows the performance of the scheme under the fluid
model. (The full proof is in Appendix A.2).

Theorem 2. In the fluid model,
(i) p(t) converges to the stationary distribution π∞, where

π∞
k =

(ch)k

k!

/ h
∑

l=0

(ch)l

l!
, k = 0, . . . , h. (4)

(ii) the expected overflow fraction converges to π∞
h and follows the Erlang-B

formula.

We have seen that the discrete finite model with n elements yield a sta-
tionary distribution πn, while the fluid model yields the distribution π∞ (from
the fixed-point equations). We will now show that as expected, when scal-
ing n to infinity, πn converges to π∞, and so does the associated overflow
fraction. (Proof in Appendix A.3.)

Corollary 3. When n → ∞ with n
m

→ ch,
(i) the stationary distribution converges to the fixed-point distribution of the
fluid model: πn → π∞; and
(ii) the expected overflow fraction of the discrete finite model converges to the
overflow fraction of the fluid model.

Finally, we generalize the scheme to deal with probabilistic insertions.
Namely, there exists some α ∈ [0, 1] such that each arriving element is either
hashed into a bucket as before with probability α, or placed directly in the
overflow list with probability 1 − α, yielding an average number of memory
accesses α (or equivalently, a total number of memory accesses αn ≤ n, less
than the number of elements). Using the fluid model for simplicity, we obtain
the following result. While this probabilistic scheme is probably not useful
in practice (since the average memory access rate is seldom less than 1), we
will later demonstrate that it is optimal under specific conditions.
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Theorem 4. In the fluid model, given the single-choice hashing scheme with
an insertion probability α, we obtain a = α ≤ 1, and
(i) p(t) converges to the stationary distribution π∞, where

π∞
k =

(αch)k

k!

/ h
∑

ℓ=0

(αch)ℓ

ℓ!
, k = 0, . . . , h. (5)

(ii) the expected overflow fraction converges to (1− α) + α · π∞
h .

Proof. The differential equations are the same as in the proof of Theo-
rem 2 when replacing ch by αch, since α simply changes the arrival rate.
The distribution results are then immediate. In addition, in the fixed-point
equations, an arriving element either overflows immediately with probability
1−α, or checks with probability α a bucket that can be full with probability
π∞
h , hence the overflow equation follows as well. �

4. Overflow Lower Bound

Our objective is to find a lower bound on the expected overflow fraction
γ of any 〈a, d, c, h〉 hashing scheme, when assuming a fluid model. We will
study the simpler case with uniformly-distributed hash functions, as defined
in Section 2. The more general case with several hash functions using different
subtable-based distributions appears in Section 5.

The proof relies on the following result from [16]. Consider an Erlang
blocking model with N servers, and suppose that the arrival rate depends
on the system. Let X(t) by the number of transmissions in progress at time
t, and λk be the arrival rate when there are k transmissions in progress,
k = 0, 1, . . . , N − 1. Then we have:

Lemma 1 (Theorem 4.2 in [16]). For all increasing mappings f : R → R

and for all t > 0, Ef(X(t)) is concave increasing as a function of λk, for
k = 0, 1, . . . , N − 1.

We use this lemma to prove the lower-bound result.

Theorem 5. In the fluid model, under the assumptions above where only
uniformly-distributed hash functions are used (see Definition 1), the optimal
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expected fixed-point overflow fraction γopt in the optimal dynamic hash

table problem is lower-bounded by

γ∞
lb
(a) = 1− a+ a ·

rh

h!

/ h
∑

l=0

rl

l!
, (6)

where r = ach.

Note again that the Erlang-B formula appears in the lower-bound on the
overflow. This yields the following optimality result:

Theorem 6. In the fluid model, the single-choice hashing scheme is optimal
for every average number of memory accesses a in [0, 1] (and in particular
for a = 1).

Proof. For the single scheme, there is a single hashed bucket per element,
and it is accessed with probability α, therefore a = α. For a ≤ 1, we get

γ∞
lb
(a)

(a)
= (1− α) + α ·

(αch)h

h!

/ h
∑

l=0

(αch)l

l!

(b)
= γ∞

single

where (a) comes from Equation (6), r = ach and a = α, and (b) from Theo-
rem 4. �

Example 1. We illustrate the significance of the lower bound by considering
a simple system with buckets of size h = 1, implying

γ∞
lb
(a) = 1− a+ a ·

c · a

1 + c · a
= 1−

a

1 + c · a

.
In particular, for a load c = 1, corresponding to the scaling case where the
number of buckets is kept equal to the number of elements and therefore
limn→∞

n
m

= 1, we get

γ∞
lb
(a) = 1−

a

1 + a
=

1

1 + a
,

which shows that the lower-bound decreases slowly as Θ(1/a) when the aver-
age number of memory accesses per insertion a increases.
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Figure 3: Expected overflow fraction as a function of the average memory access rate a.

For instance, to get a 1% drop rate we need each element to access an av-
erage of at least a = 99 buckets. Of course, this is impossible to implement
in high-speed networking devices. Thus, this lower bound is essentially an
impossibility result, which shows that it is not easy to obtain efficient hash
tables with deletions.

Fig. 3 compares this drop rate lower-bound with the drop rate lower-
bound in the static case, which is equal to e−a [11]. As a increases, the figure
shows how dynamic hash tables are significantly less efficient than their static
counterparts.

5. Lower Bound with Multiple Hash-Function Distributions

We now consider a setting with a set I of I = |I| subtables, where
subtable i ∈ I uses a fraction αi of all buckets. We will allow for the d hash
functions to use up to d different distributions {fj}1≤j≤d

over the I subtables,

where each distribution fj assigns a probability f i
j to subtable i ∈ I, with

∑

i∈I f
i
j = 1, and then uniformly picks buckets within each subtable (as

defined in Section 2). We also assume that each distribution fj is used by
a fraction κj of the total memory accesses. Therefore, subtable i is accessed

with a total probability of βi =
∑d

j=1 κj ·f
i
j , with

∑

i∈I β
i = 1. The following

result establishes that the lower-bound is reached when the hash table is used
in a uniform way, i.e. the probability βi of accessing a subtable is equal to
its fraction αi in the table, and therefore the lower-bound is the same as
established previously in Theorem 5.

Theorem 7. In the fluid model with multiple distributions as defined above,
the lower-bound γ∞

lb
(a) on the fixed-point overflow fraction is the same as the

one with a unique uniform hash function, and is reached iff for all i ∈ [1, I],
βi = αi, i.e. the weighted average of all distributions is uniform.
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6. A Multiple-Choice Hashing Scheme

We now introduce a natural extension to the single-choice hashing scheme
that uses an ordered set of d hash functions H = {H1, . . . , Hd}, such that all
the hash functions are independent and uniformly-distributed. Upon insert-
ing an element x, the scheme successively reads the buckets H1(x), . . . , Hd(x)
and places x in the first non-full bucket. If all these buckets are full, x is
placed in the overflow list. To keep an average number of memory accesses
per element of at most a, the algorithm attempts to insert x into the hash
table with a probability α, otherwise it is directly placed in the overflow list.
A detailed example appears in Appendix B.2.

We evaluate the performance of this scheme analytically using the fluid
model. (Proof in Appendix A.6).

Theorem 8. Assume the multiple-choice hashing scheme with a hashing
probability α. Using the fluid-model fixed-point distribution π∞,

(i) π∞ satisfies π∞
k (a) =

(ach)k

k!

/ h
∑

l=0

(ach)l

l!
, for each k = 0, . . . , h;

(ii) the average bucket access rate a satisfies the fixed-point equation a =

α ·
1−π∞

h
(a)d

1−π∞

h
(a)

;

(iii) the expected overflow fraction is equal to the lower-bound, and is there-
fore optimal, for a ∈ [0, aco], where aco satisfies the fixed-point equation

aco =
1−π∞

h
(aco)d

1−π∞

h
(aco)

.

The following example illustrates our results.

Example 2. For the case where h = 1, solving the fixed-point equation yields
aco = 2c−1+

√
1+4c2

2c
. Therefore, for a load of one element per bucket, i.e. c =

limn→∞
n
m

= 1, we get aco = 1+
√
5

2
≈ 1.62, and the corresponding expected

overflow fraction is γ∞
lb
(aco) = 1.5 −

√
5
2

≈ 38.2%. Likewise, for a load of

c = 0.1, we get aco = −0.8+
√
1+0.04

0.2
≈ 1.099, with the corresponding expected

overflow fraction γ∞
lb
(aco) ≈ 0.98%.

7. Moving Back Elements

So far, we have found optimal schemes for a range of values of a, the
average number of memory accesses per element. However, although optimal,
the expected overflow fraction may still be too large.
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In the literature, several solutions exist to reduce the drop rate (or colli-
sion probability) in a dynamic system. One such solution uses limited hash
functions in order to be able to rebalance the hash table in case of dele-
tion [17]. However, this approach gives up randomness, and the efficiency
of a similar approach appears limited [7]. Another solution, based on the
second-chance scheme [12], moves elements from one bucket to another by
storing hints at each bucket [7]. These hints help to find another element
stored in another bucket that can be moved upon the deletion. However, we
found in simulations that this solution was less effective than our suggested
scheme presented below for higher loads, while it was more effective for lower
loads. Detailed simulation results are found in Section 8.

To reduce the overflow fraction, we suggest a scheme that allows moving
elements back from the overflow list to the buckets upon a deletion opera-
tion3. This scheme can be combined with any insertion scheme.

7.1. Description

Our scheme, called the moving-back scheme (M-B), relies on a (binary)
CAM. In general, a CAM stores keys in entries. Given some key k, a parallel
lookup is performed over all entries and the index of the first (that is, highest
priority) entry that contains k is returned from the CAM. In many cases,
this index is later used in order to access in regular memory a direct-access
array that contains the value associated with k. CAMs enable constant-time
operations, however they are more expensive and consume more power than
regular memory. It is a common practice to implement the overflow list in
a CAM [12, 11, 1], relying on the fact that the number of elements in the
overflow list is small.

Our scheme uses an auxiliary CAM, besides the primary CAM used to
store the element of the overflow list: For each element x that is stored in the
i-th entry of the primary CAM, we store the values {H1(x), H2(x), . . . , Hd(x)}
in entries d · i, d · i+ 1, . . . , d · i+ (d− 1) of the auxiliary CAM.

When an element is deleted from a bucket j that was previously full, we
need to move an element x from the overflow list to bucket j such that j is
the result of applying at least one of the hash-functions on x. We can locate
such an element in constant time by querying the auxiliary CAM with key

3We also consider a scheme that works upon insertion, however the details are omitted
due to lack of space; moving back elements upon deletion performs better in general.
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j. Suppose the entry returned by the auxiliary CAM is ℓ, then x is located
in entry ⌊ℓ/d⌋ of the primary CAM.

We note that upon moving an element back to the hash table, one should
update the corresponding entries of the primary and auxiliary CAMs. An
efficient way to update is to write the value m + 1 in these entries, such
that when a new element is inserted into the overflow list, one can query the
auxiliary CAM with the value m+1 to decide in which entry (of the primary
CAM) to put the new element.

7.2. Analysis

We first derive the exact expected overflow fraction in the case of the
single scheme, and later provide an approximate model for the multiple

scheme, which is confirmed by simulations.

Theorem 9. Consider the single scheme with M-B for moving back ele-
ments from the TCAM and a symmetric insertion algorithm. The expected
overflow fraction is given by:

γlb (a) = 1−
1

c
+

1

ch
e−ach

h
∑

k=0

(h− k)
(ach)k

k!
,

Proof. Whenever a deletion occurs, the CAM device performs a lookup
operation for any element that can be moved back to the bucket. Since every
element has only one hash value, all elements that correspond to some bucket
can be viewed as its own waiting list. Since the element we choose to delete
follows a random process that is independent of any other random process in
our system, and also the load is fixed, we conclude that the overflow fraction
follows the static case exactly, which is given in [11]. �

Theorem 10. Consider the multiple scheme with M-B for moving back
elements from the CAM and a symmetric insertion algorithm. Let X i

t is the
occupancy of bucket i at step t and P0, . . . , Ph be the equilibrium probabilities
of the occupancy of each buffer. The probabilities can be modeled by the
following Markov chain:

P i
kj = Pr (Xt = j|Xt−1 = k) =







g · 1
m

j = k + 1, k < h
k
n

j = k − 1, h > k > 0
k
n
· e

− γchd

Ph j = k − 1, k = h
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Figure 4: Expected overflow fraction as a function of a with d = 4, h = 4, c = 1.

where g =
∑d

l=1 Ph
l−1 = 1−Ph

d

1−Ph
, and the expected overflow fraction γ is given

by γ = 1− 1
ch

·
∑h

i=0 i · Pi.

Proof. The Markov chain is the same as in the regular multiple scheme,
except when an element is deleted from a full bucket. In this case, it is
possible that one of the overflow elements in the CAM is moved back to the
bucket. It is possible only in this case because all elements in the CAM have
hashes to full buckets.

We now approximate the probability that none of the elements has a
hash value to that bucket: The total number of hashes is γ · n · d, where
all the hashes are to full buckets. The number of full buckets is Ph · m.
The probability that a single hash does not point to the specific bucket is
Ph·m−1
Ph·m

= 1 − 1
Ph·m

. And the probability that none of them points to the
specific bucket is given by

(

1−
1

Ph ·m

)γnd

≈ e
− γnd

Ph·m = e
− γchd

Ph .

Multiplying the above expression by the probability that one of the elements
is picked for deletions in case the bucket is full yields the claimed Markov
chain. �

8. Experimental Results

8.1. Simulations

Fig. 4 compares all the schemes by plotting the expected overflow fraction
γ (Definition 2), as a function of the average number of memory accesses a.
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Figure 5: M-B with multiple scheme, for h = 4, d = 2 and different loads

It was obtained with d = 4 choices, bucket size h = 4, n = 4,096 elements
and m = 1,024 buckets, yielding a load c = 1.

The solid line plots the expected overflow fraction lower-bound γlb (a)
from Theorem 5. Simulations show that the proposed M-B scheme beats
the lower bound with an expected overflow fraction of 4.6%, emphasizing the
strength of this architecture. Of course, the lower bound does not apply to
this case, since it moves back elements from the CAM.

As follows from Theorems 6 and 8, the expected overflow fractions γsingle (a)
and γmultiple (a) of the single-choice (single) and the multiple-choice (mul-
tiple) hashing schemes follow the lower-bound line, respectively until aco

single
=

1 with γsingle = 31.1%, and aco
multiple

= 2.195 with γmultiple = 13.5%. There-
fore, they are clearly optimal up to a certain point.

We also test our models from Section 7.2. Fig. 5 shows the accuracy of our
M-B model. We ran simulations with m = 1024, h = 4, d = 2 and different
loads. The maximum gap is for load c = 1 where our model predicts an
expected overflow fraction of 9.20%, whereas simulations show an expected
overflow fraction of 9.68%. For lower values of c, the model is much more
accurate. For instance, for load c = 0.5, our model predicts an expected
overflow fraction of 0.19% compared to an overflow fraction of 0.18% found
via simulations.

We further evaluate the performance of our proposed M-B scheme. Quite
surprisingly, when using the multiple scheme (of Section 6), the M-B

scheme outperforms the static case of the multiple scheme (see Fig. 6),
and performs similarly to the static d-random scheme (in the static case, d-
random performs better than our multiple-choice scheme, albeit consuming
significantly more energy [11]). This can be explained intuitively as follows:
our moving-back strategy moves back an element to the only corresponding
bucket which is not full; this is equivalent to inserting the element to the
least occupied bucket as in the d-random hashing scheme.
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Figure 6: Expected overflow fraction of the proposed moving-back (M-B) scheme (via
simulations).
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Figure 7: Experiment using real-life traces and hash functions with single and multiple

(d=2).

Finally, we compare the performance of our proposed M-B scheme with
the performance of the hint-based scheme proposed in [7]. Note that our M-

B scheme can be used with any insertion scheme. Thus, for fair comparison,
since the hint-based scheme uses the second-chance scheme [12] for insertions,
we also used the second-chance scheme for our proposed M-B scheme. We
ran simulations withm = 4096, h = 1, d = 4 and different loads. As proposed
in [7], the memory level sizes are exponentially decreasing with factor 2.

Fig. 8 shows that our M-B scheme is more effective than the hints-based
scheme for higher loads, while it is less effective for lower loads. For instance,
for a load of 0.6, the M-B and the hints-based schemes yield expected over-
flow fractions of 1.08% and 0.78%, respectively. For a load of 0.7, they yield
3.88% and 4.59%.

8.2. Experiments Using Real-Life Traces

We have also conducted experiments using real-life traces recorded on a
single direction of an OC192 backbone link [18]. Our goal is to compare the
average overflow fraction retrieved using our models for single and multi-

ple with the corresponding overflow fraction when using a real hash function
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Figure 9: Marginal overflow fraction of 100 on-off flows with m = 500, h = 1 and d = 2

on a real-life trace. We used a 64-bit mix function [19] to implement two
16-bit hash functions. We used m = 10,000 buckets, and set a number of
elements n as corresponding to various values of h and c. To keep a constant
desired load, we alternated 100,000 times between an arrival (insertion) of
a new TCP packet according to the trace, and the departure (deletion) of
a random TCP packet. The hash functions were given the source and des-
tination IP tuple as well as the sequence and acknowledgment numbers of
the TCP packets. Therefore, the hash table stores the latest TCP packets,
and can retrieve any needed packet based on its header. It can be used to
monitor ongoing TCP flows, given a target number n of packets that are
stored at any time. Its objective in our experiments was mainly to test the
correctness of our model.

Fig. 7 shows that the results of our experiments are relatively close to
our model. The maximum gap is for the single scheme with h = 1 and
c = 0.3. Our model predicts an average overflow fraction of 23.08%, while
the experiment yields 25.67%.

8.3. Experiments Using an On-off Arrival Model

We also consider a queueing model where at each step i, bi elements arrive
according to k independent on-off bursty flows of elements [20]; then, after
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the arrival phase, one element is randomly deleted. Therefore, the number
of elements in the system keeps changing, contrarily to the previous models
with a constant load.

Fig. 9 shows the marginal overflow fraction under the above queueing
model with k = 100 on-off flows of elements. Each flow has rate ρ = 0.0095
and average burst size of 10 elements. The figure shows that, given the
number of elements currently in the system, the marginal overflow fraction is
approximately the one we found for the constant-load case, both for single
and multiple.

Moreover, by the distribution of the number of elements in the system
given by the queueing model, we are able to heuristically approximate the
overall expected number of elements in the overflow list. More precisely, we
take the sum-product of the queue size distribution by the distribution of the
overflow fraction as a function of the load. In the case of single this model
gives an expected number of overflow elements of 61.63, while simulations
yield 61.41. Likewise, for multiple, we obtain 40.17 and 40.26, respectively.
Therefore, this heuristic model proves quite accurate.

9. Conclusion

In this paper we demonstrated that, when the memory is bounded, dy-
namic schemes behave significantly worse than their static counterparts. This
decrease in performance is inherent to the problem, as shown by our lower
bounds.

Moreover, we considered two hashing schemes that we proved to be op-
timal: a single-choice hashing scheme that was used to demonstrate our
approach and techniques, and a multiple-choice scheme that inserts the ele-
ments greedily.

However, due to the slow decrease of the lower bound, optimality may
be insufficient for certain applications. Therefore, we suggested moving back
elements from the overflow list as soon as a deletion occurs. We have shown
through simulations that this strategy beats the lower bound of the dynamic
case (where moving back elements is not allowed).

We also conducted an extensive experimental study to verify the accuracy
of our model, the behavior of the models under realistic (rather than fully-
random) hash functions, and under variable-load input models.
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 1

We model the hash table using a discrete-time Markov chain that repre-
sents the occupancy X i

t of an arbitrary bucket i at the end of time-slot t. We
will see that this is possible because the process is memoryless from time-slot
to time-slot, and because when conditioned on the occupancy of bucket i, its
arrival and departure probabilities are independent of the states of the other
buckets or of the overflow list.

At the end of each time-slot t − 1, there are X i
t−1 elements in bucket i.

Then, at the start of time-slot t, the element that departs is chosen uniformly
at random out of the n elements in the system. Therefore, the probability

that it belongs to one of the X i
t−1 elements in bucket i is

Xi
t−1

n
.

The element is then reinserted into the system. The probability that it
is hashed by the uniformly-distributed hash function H into bucket i out of
m buckets is 1

m
.

We can now build the state transition matrix. The bucket occupancy
obviously increases iff there is no departure while there is an arrival, while
it decreases iff there is a departure but no arrival. For 1 ≤ j, k ≤ h, the
transition probability from occupancy j to occupancy k is

P i
jk = Pr

(

X i
t = k|X i

t−1 = j
)

=











1
m
·
(

1− j

n

)

k = j + 1, k ≥ 1,
j

n
·
(

1− 1
m

)

k = j − 1, k ≤ h− 1,
(

1− j

n

) (

1− 1
m

)

+ j

n
1
m

k = j.

The birth-death Markov chain is clearly irreducible, positive, recurrent
and aperiodic. Therefore, it converges to its stationary distribution πn. In
addition, since the state transition matrix does not depend on i, by ergodicity,
p(t) also converges to πn, as detailed in the theorem.

Lastly, bucket i overflows in a given time-slot t when it contains h ele-
ments, no element leaves bucket i, and an element arrives to bucket i. In
addition, the probability that the element arriving at time t is sent to the

25



overflow list is the sum of all individual bucket overflow probabilities. There-
fore, by ergodicity, the total overflow probability at time-slot t converges
to

γn
single

= m ·

(

πn
h ·

(

1−
h

n

)

·
1

m

)

= πn
h ·

(

1−
h

n

)

.

Since the mean time for which an element stays in the overflow list is n,
we immediately get by Little’s Law that the expected number of elements in
the overflow list is (γn

single
· n). �

Appendix A.2. Proof of Theorem 2

In the fluid model, the departures from buckets of size k ≥ 1 cause the
fraction pk(t) to decrease at rate k ·pk(t), since each of the k elements departs
at rate 1, and therefore the k elements depart at a total rate of k. Since the
buckets of size k with a departing element have a new size k−1, the departures
from such buckets increase in turn pk−1(t) at the same rate k · pk(t).

Likewise, the arrivals to buckets of size k < h, which occur at rate ch =
limn→∞

n
m
, cause the fraction pk(t) to decrease at rate ch · pk(t), and the

fraction pk+1(t) to increase at the same rate.
Therefore, we obtain the following differential equation, which character-

izes the birth-death process:

dpk(t)

dt
=



















ch · pk−1(t) + (k + 1)pk+1(t)

−(ch+ k)pk(t) for k ∈ [1, h− 1],

p1(t)− ch · p0(t) for k = 0,

ch · ph−1(t)− hph(t) for k = h,

with
∑h

k=0 pk = 1. Assume the system is initially empty, i.e. pk(0) = 1k=0.
Solving the differential equation above yields the stationary distribution

of an M/M/h/h loss system [15]. In addition, the drop rate in the fluid
model is

γ∞
single

= π∞
h ,

following the well-known Erlang-B formula. Finally, since the differential
equations are exactly those of the ergodicM/M/h/h continuous-time Markov
process, p(t) converges to π∞ [15, 21]. �
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Appendix A.3. Proof of Corollary 3

For each n ∈ N
∗ ∪{∞},

∑h

k=0 π
n
k = 1 and πn

0 > 0, so for k ∈ [0, h], πn
k/π

n
0

is defined and

πn
k =

πn
k/π

n
0

∑h

l=0 π
n
l /π

n
0

.

Therefore, to prove the convergence of {πn}n≥1, which is a sequence of finite
vectors, we only need to prove the point convergence of πn

k/π
n
0 to π∞

k /π∞
0 .

We get

πn
k/π

n
0 =

(

n

k

)(

1

m− 1

)k

=
1

k!
·
( n

m

)k

·
(1) ·

(

1− 1
n

)

· · · · ·
(

1− k−1
n

)

(

1− 1
m

)k

=
1

k!
· (ch)k · (1 + o(1)) = π∞

k /π∞
0 · (1 + o(1)),

which concludes the proof of the convergence of πn to π∞.
Lastly, γ∞

single
= π∞

h and γn
single

= πn
h ·
(

1− h
n

)

. Since
(

1− h
n

)

= 1+ o(1),
the convergence of γn

single
to γ∞

single
follows. �

Appendix A.4. Proof of Theorem 5

For any k ∈ [1, h], let pk(t) denote the fraction of buckets of size k. As
shown with the single-choice hashing scheme (single), in the fluid model,
the departures from buckets of size k ≥ 1 decrease the fraction pk(t) at rate
k · pk(t), and increase the fraction pk−1(t) at the same rate k · pk(t).

Likewise, the element arrival rate before hashing is ch = limn→∞
n
m
, and

the hashing rate per element is a, therefore the hashing rate is ach. Let
r = ach. Since elements can only decide to enter a bucket after hashing into
it, we know that their post-hashing arrival rate to any bucket is bounded
from above by r. Of course, the decision of whether to enter a bucket after
hashing into it might depend on the bucket occupancy. Therefore, let rk(t)
denote the average arrival rate to the fraction of buckets of size k at time
t, with 0 ≤ rk(t) ≤ r. These arrivals cause the fraction pk(t) to decrease at
rate rk(t) · pk(t), and the fraction pk+1(t) to increase at the same rate.
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Combining departures and arrivals, we obtain the following differential
equation characterizing the birth-death process:

dpk(t)

dt
=



















rk−1(t)pk−1(t) + (k + 1)pk+1(t)

−(rk(t) + k)pk(t) for k ∈ [1, h− 1],

p1(t)− r0(t)p0(t) for k = 0,

rh−1(t)ph−1(t)− hph(t) for k = h,

with
∑h

k=0 pk = 1 and pk(0) = 1k=0.
Consider a fixed point π of the birth-death process, i.e. assume that

for any i ∈ [0, h], dπk(t)
dt

= 0. Then the finite vector (π0(t), . . . , πh(t)) is
independent of t, and therefore the arrival rate rk(t) to a bucket of size k
is independent of t as well. Denote this constant arrival rate as rk, where
0 ≤ rk ≤ r. Solving the differential equation above yields the following
balance equations: for each k ∈ [1, h],

rk−1πk−1 = kπk, (A.1)

with
∑h

k=0 πk = 1. Therefore, π satisfies

πk =

∏k−1
j=0 rj

k!
· π0 =

∏k−1
j=0 rj

k!

/ h
∑

l=0

∏l−1
j=0 rj

l!
.

Using Lemma 1, we find that the average bucket occupancy EXπ under
π is upper-bounded by the average bucket occupancy EX π̄ under π̄, where
π̄ is the fixed-point distribution when rk = r. This is because f : X → X is
increasing [21], and rk ≤ r for k ∈ [0, h− 1]. Therefore,

EXπ ≤ EX π̄. (A.2)

Finally, note that without element losses, we would have the average
occupancy equal to the average number of elements per bucket, i.e., ch =
limn→∞

n
m
. Therefore, the average fraction of lost elements is equal to

γ∞ =
ch− EXπ

ch

(a)
= 1− a ·

EXπ

r

(b)

≥ 1− a ·
EX π̄

r

(c)
= 1− a ·

r · (1− π̄h)

r

(d)
= 1− a+ a ·

rh

h!
∑h

l=0
rl

l!

,

where (a) uses r = ach, (b) relies on Equation (A.2), (c) uses a standard
Erlang-B result [14, 15], and (d) comes from Equation (A.2) with rk = r. �
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Appendix A.5. Proof of Theorem 7

As in the proof of Theorem 5, in each subtable i, we focus on the fixed-
point distribution πi, which satisfies

πi
k =

∏k−1
j=0 r

i
j

k!

/ h
∑

l=0

∏l−1
j=0 r

i
j

l!
,

with rij ≤ βi

αi · r. This is because the rate at which the elements check a
bucket in subtable i ∈ I is proportional to the ratio of their probability βi

of picking subtable i by the proportional size αi of subtable i. In addition,
even if the elements check a bucket of size j, they can decide not to enter it.
The rate rij, at which they enter it, depends both on the size j and on the

subtable i, although it needs to be upper-bounded by the rate βi

αi · r at which
they checked it.

From the proof of Theorem 5, in each subtable i ∈ I, we know that the
average occupancy is upper-bounded by the case in which we have equality

rij =
βi

αi
· r.

We now want to find the vector β that maximizes the average occupancy

of the whole system. Let π̄
(

βi

αi r
)

denote the distribution that maximizes

the average occupancy in subtable i ∈ I, and define f : R+ → R
+ with

f(x) = EX π̄(x). Then we want to find

max
∑

i∈I

αi · f

(

βi

αi
r

)

s.t.
∑

i∈I

αi = 1,
∑

i∈I

βi = 1.

f is known to be strictly concave [22, 23, 24] (the concavity also follows
from Lemma 1). Therefore

∑

i∈I

αi · f

(

βi

αi
r

)

(a)

≤ f

(

∑

i∈I

·αi ·
βi

αi
r

)

= f

(

r ·
∑

i∈I

βi

)

(b)
= f(r),

where (a) uses concavity and
∑

i∈I α
i = 1, and (b) uses

∑

i∈I β
i = 1, with

equality iff βi

αi r independent of i, i.e. βi = αi for all i ∈ I, because
∑

i∈I β
i =

∑

i∈I α
i. Finally, as in the proof of Theorem 5, the same upper bound on

the average bucket occupancy corresponds to the same lower bound on the
overflow fraction. �
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Appendix A.6. Proof of Theorem 8

For a given rate a, the differential equations are the same as for the single-
choice hashing scheme (single) and satisfy the same fixed-point distribution
(Theorem 6).

Let us now compute a. Following the definition of the fluid model, there
is an independence in the following sense: Whenever an element arrives, the

probability that it uses its lth hash function Hl, for 1 ≤ l ≤ d, is α · (π∞
h )l−1;

namely, the product of the probability α that it is not directly placed in the
overflow list by the probability that the first l−1 hash functions mapped into

full buckets. Then, the lth trial is successful with probability 1−π∞
h . Finally,

there were d unsuccessful trials with probability α · (π∞
h )d−1. Therefore, the

average number of trials per element is:

a =

(

d−1
∑

l=1

l · α · (π∞
h )l−1 (1− π∞

h )

)

+ d · α · (π∞
h )d−1

Using the general formula

K
∑

k=1

kxk−1 =
1− xK+1 − (1− x) · (K + 1)xK

(1− x)2
,

we get

a = α

[

1− (π∞
h )d − (1− π∞

h ) · d · (π∞
h )d−1

1− π∞
h

+ d · (π∞
h )d−1

]

= α ·
1− (π∞

h )d

1− π∞
h

.

Finally, this can only hold for α ≤ 1; once we reach α = 1, we obtain aco
multiple

.
�

Appendix B. Examples

Appendix B.1. Single-Choice: Dynamic vs. Static

For the case where h = 1 the expected overflow fraction γn
single

reduces to

γn
single

= n−1
m+n−1

. Denoting the load c = n
m
, γn

single
=

c− 1

m

1+c− 1

m

m→∞
−−−→ γsingle =
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Figure B.10: Overflow fraction as a function of the number of buckets m.

c
1+c

, where γsingle is the limit expected overflow fraction as we scale the
system while keeping the load constant to c. For instance, for c = 1, we get

γsingle = 50%. (B.1)

In other words, when scaling the system with the same number of elements
and buckets, we find that we asymptotically lose 50% of the elements.

Note that in such a scaling, we lose a fraction γn
single

=
1− 1

m

2− 1

m

= m−1
2m−1

of

the elements. This fraction corresponds for instance to no losses with m = 1;
to 1/3 of the elements lost with m = 2; and to 40% of the elements lost with
m = 3; the overflow fraction then continuing to increase monotonically and
converge to γsingle.

Now we compare the dynamic overflow fraction γn
single

with the static
overflow fraction, denoted σn

single
, given a bucket size of 1. First, assuming a

load c = 1, the overflow fraction is equal to the fraction of unused buckets,
because the number of elements is equal to the number of buckets, and buck-
ets can contain at most one element. Therefore, since each element chooses
a bucket uniformly at random, we get

σn
single

=

(

1−
1

m

)m
m→∞
−−−→ σsingle = e−1.

Thus, the static system has a clearly lower overflow fraction.
Fig. B.10 illustrates the overflow fraction as a fraction of m in both the

static and dynamic cases. Clearly, the dynamic case always causes a higher
overflow fraction. In addition, both converge fast from below to their limit
values.

More generally, for any arbitrary load c ≤ 1, the limit static overflow
fraction is known [11] to be σsingle = 1 − 1−e−c

c
. Therefore, as c → 0, we

asymptotically get γsingle = c + O(c2), and σsingle = c
2
+ O(c2), so for low
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Figure B.11: Illustration of the multiple scheme

loads, the large dynamic system has about twice the overflow of the large
static one.

Appendix B.2. Illustration of the multiple Scheme

Fig. B.11 illustrates the multiple-choice hashing scheme (multiple) with
m = 12, h = 1, d = 2 and q = 1. We can see that element x1 is initially
mapped by H1 to a full bucket. It is therefore mapped again by H2, and
inserted in an empty bucket. Then, the element in bucket number 6 is deleted.
On the next step, element x2 is directly inserted in an empty bucket, and
therefore does not need a second memory access.
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