
Fishing in the Stream:
Similarity Search over Endless Data

Naama Kraus
Technion IIT
Haifa, Israel

nkraus@campus.technion.ac.il

David Carmel
Yahoo Research
Haifa, Israel

david.carmel@ymail.com

Idit Keidar
Technion IIT and Yahoo Research

Haifa, Israel
idish@ee.technion.ac.il

Abstract—Similarity search is the task of retrieving data
items that are similar to a given query. In this paper, we
introduce the time-sensitive notion of similarity search over
endless data-streams (SSDS), which takes into account data
quality and temporal characteristics in addition to similarity.
SSDS is challenging as it needs to process unbounded data,
while computation resources are bounded. We propose Stream-
LSH, a randomized SSDS algorithm that bounds the index
size by retaining items according to their freshness, quality,
and dynamic popularity attributes. We show that Stream-LSH
increases recall when searching for similar items compared to
alternative approaches using the same space capacity.

Keywords-Similarity search; Stream search; Retention pol-
icy; Locality sensitive hashing; Dynamic popularity

I. INTRODUCTION

Users today are exposed to massive volumes of informa-
tion arriving in endless data streams: hundreds of millions of
content items are generated daily by billions of users through
widespread social media platforms [34, 35, 4]; fresh news
headlines from different sources around the world are aggre-
gated and spread by online news services [28, 17]. In this
era of information explosion it has become crucial to ‘fish in
the stream’, namely, identify stream content that will be of
interest to a given user. Indeed, search and recommendation
services that find such content are ubiquitously offered by
major content providers [17, 18, 28, 14, 16].

A fundamental building block for search and recommen-
dation applications is similarity search, an algorithmic prim-
itive for finding similar content to a queried item [33, 7]. For
example, a user reading a news item or a blog post can be
offered similar items to enrich his reading experience [36].
In the context of streams, many works have observed that
applications ought to take into account temporal metrics in
addition to similarity [18, 28, 27, 23, 29, 35, 21, 32, 34, 31].
Nevertheless, the similarity search primitive has not been
extended to handle endless data-streams. To this end, we
introduce here the problem of similarity search over data
streams (SSDS).

In order to efficiently retrieve such content at runtime, an
SSDS algorithm needs to maintain an index of streamed data.
The challenge, however, is that the stream is unbounded,

whereas physical space capacity cannot grow without bound;
this limitation is particularly acute when the index resides
in RAM for fast retrieval [34, 30]. A key aspect of an
SSDS algorithm is therefore its retention policy, which
continuously determines which data items to retain in the
index and which to forget. The goal is to retain items that
best satisfy the needs of users of stream-based applications.

We present Stream-LSH, an SSDS algorithm based on
Locality Sensitive Hashing (LSH), which is a widely used
randomized similarity search technique for massive high di-
mensional datasets [20]. LSH builds a hash-based index with
some redundancy in order to increase recall, and Stream-
LSH further takes into account quality, age, and dynamic
popularity in determining an item’s level of redundancy.

A straightforward approach for bounding the index size
is to focus on the freshest items. Thus, when indexing an
endless stream, one can bound the index size by eliminating
the oldest items from the index once its size exceeds a certain
threshold. We refer to this retention policy as Threshold.
Although such an approach has been effectively used for
detecting new stories [34] and streaming similarity self-
join [31], it is less ideal for search and recommendations,
where old items are known to be valuable to users [25, 36,
10].

We suggest instead Smooth – a randomized retention
policy which bounds the index size, by gradually eliminating
index entries over time. Since there is redundancy in the
index, items do not disappear from it at once. Instead, an
item’s representation in the index decreases with its age. As
a result, Smooth finds similar items for a longer time period
with a gradually decaying recall; this comes at the cost of
a lower recall compared to Threshold, when searching for
fresh items. We further show that Smooth exploits capacity
resources more efficiently so that the average recall is larger
than with Threshold.

We extend Stream-LSH to consider additional data char-
acteristics beyond age. First, our Stream-LSH algorithm
considers items’ quality. For example, the quality of a social
post may be defined according to the authority of the post’s
author, which can be based on the number of followers of
this author. Stream-LSH adjusts an item’s redundancy in the

index based on its quality. This is in contrast to the standard
LSH, which indexes the same number of copies for all items
regardless of their quality. Second, we present the DynaPop
extension to Stream-LSH, which considers items’ dynamic
popularity. DynaPop gets as input a stream of user interests
in items, such as retweets or clickthrough information, and
re-indexes in Stream-LSH items of interest; thus, it has
Stream-LSH dynamically adjust items’ redundancy to reflect
their popularity.

We evaluate Stream-LSH on several real-world stream
datasets. We extend the recall metric to consider similar-
ity, age, quality, and popularity radii. Our results show
that Smooth increases recall when searching for similar
items compared to Threshold, when using the same space
capacity. We show that our quality-sensitive approach is
appealing for similarity search applications that handle large
amounts of low quality data, such as user-generated social
data [6, 9, 11], since it increases the recall of high-quality
items. Finally, we show that using DynaPop, Stream-LSH
is likely to find popular items that are similar to the query,
while also retrieving similar items that are not highly popular
albeit with lower probability. Retrieving similar items from
the tail of the popularity distribution in addition to the most
popular ones is beneficial for applications such as query
auto-completion [8] and product recommendation [39].

II. SIMILARITY SEARCH OVER DATA-STREAMS

Similarity Search: Similarity search is based on a sim-
ilarity function [15], which measures the similarity between
two vectors u, v ∈ V , where V = (R+

0)
d is some high

d-dimensional vector space. The similarity function returns
a similarity value within the range [0, 1], where 1 denotes
perfect similarity, and 0 denotes no similarity.

Given a (finite) subset of vectors, U ⊆ V , similarity
search [15] finds vectors v ∈ U , which are similar to a
given query vector q ∈ V . A commonly used similarity
function for textual data is angular similarity [34, 32] (which
is closely related to cosine similarity [12, 15]).

Similarity Search over Data-Streams: SSDS considers
an unbounded item stream U ⊆ V arriving over an infinite
time period, divided into discrete ticks. On every time tick,
0 or more new items arrive in the stream, and the age of a
stream item is the number of time units that elapsed since its
arrival. Note that each item in U appears only once at the
time it is created. Each item is associated with a quality
score, which is specified by a given weighting function
qual : V → [0, 1]. For example, according to the authority
of a social post’s author.

An SSDS algorithm’s input consists of a query vector
q ∈ V and a three-dimensional radius, (Rsim, Rage, Rqual),
of similarity, age, and quality radii, respectively. An exact

SSDS algorithm returns a unique ideal result set

Ideal(q,Rsim, Rage, Rqual) ,
{v ∈ U |sim(q, v) ≥ Rsim ∧ age(v) ≤ Rage∧
qual(v) ≥ Rqual}.

An approximate SSDS algorithm A returns
a subset Appx(A, q,Rsim, Rage, Rqual) of q’s ideal result
set.

Definition II.1 (recall at radius). The recall at radius of
algorithm A for query q and radius (Rsim, Rage, Rqual) is

Recall(A,Rsim, Rage, Rqual)(q) ,

|Appx(A, q,Rsim, Rage, Rqual)|
|Ideal(q,Rsim, Rage, Rqual)|

.

The recall at radius Recall(A,Rsim, Rage, Rqual) of A is
the mean recall over the query set Q.

Dynamic popularity: We consider a second unbounded
stream I which consists of items from the item stream U
and arrives in parallel to U . We call I the interest stream.
The arrival of an item at some time tick in I signals interest
in the item at that point in time. Note that an item may
appear multiple times in the interest stream. We capture an
item’s dynamic popularity by a weighted aggregation of the
number of times it appears in the interest stream, where
weights decay exponentially with time [26]: Let t0, . . . , tn
denote time ticks since the starting time t0, and the current
time tn. The indicator ai(x) is 1 if item x appears in the
interest stream at time ti and is 0 otherwise. A parameter
0 < α < 1 denotes the interest decay, which controls the
weight of the interest history and is common to all items.

Definition II.2 (item popularity). The function pop : U →
[0, 1] assigns a popularity score pop(x) to an item x ∈ U :
pop(x) , (1− α)

∑n
i=0 ai(x)α

(n−i).

Given an assignment of popularity scores to items, we
are interested in the retrieval of items within a popularity
radius Rpop ∈ [0, 1], i.e., with a popularity score that is not
lower than Rpop. We define recall similarly to the previous
definitions.

III. STREAM-LSH

A. Background: Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [22, 20] is a widely
used approximate similarity search algorithm for high-
dimensional spaces, with sub-linear search time complexity.
LSH limits the search to vectors that are likely to be similar
to the query vector instead of linearly searching over all the
vectors. LSH defines a family of hash functions G, where
a hash function g ∈ G maps a vector in dimension d into
a lower dimension k << d. In LSH, the hashes of similar
vectors are likely to collide under a random selection of g
from G. Note that the larger k is, the higher the precision.

We use here a hash family for angular similarity [12], in
which g ∈ G hashes a given vector into a binary vector:
g : (R+

0)
d → {0, 1}k. At a pre-processing (index building)

stage, LSH randomly samples a hash function g from G. It
then constructs a hash table and assigns each input vector v
into its corresponding bucket g(v). At runtime, given a query
vector q, LSH computes the query’s hash g(q), and searches
for vectors that are similar to q in the bucket g(q). In order to
improve recall, LSH constructs L hash tables Hi, 1 ≤ i ≤ L,
each correspond to a randomly and independently selected
hash function gi ∈ G, 1 ≤ i ≤ L. Note that each indexed
vector v is now replicated in L hash tables. Given a query
q, LSH searches independently over L buckets gi(q) in L
hash tables.

B. Stream-LSH

We present Stream-LSH in Algorithm 1. Every time tick,
Stream-LSH accepts a set of newly arriving items in the
item stream U , and indexes each item into its LSH buckets.
Stream-LSH selects an item’s initial redundancy according
to its quality: it indexes the item into each bucket with a
probability that equals its quality, independently of other
buckets. In addition, in order to bound the index size, in
each time tick, Stream-LSH eliminates items from the index
according to the retention policy it uses. Note that the two
operations – indexing new items and elimination of old ones
– are independent, and work independently in each bucket.

Algorithm 1 Stream-LSH

1: On every time tick t do:
2: foreach Hi ∈ HashTables do
3: . Indexing new items
4: foreach item ∈ items(t) do
5: . Hash to bucket Bi
6: Bi ← gi(item)
7: . Quality-based indexing
8: with probability qual(item), Bi.ADD(item)

9: . Elimination by retention policy
10: Hi.ELIMINATE()

C. Retention Policies

Threshold: The Threshold retention policy presented
in [34, 31] sets a limit Tsize on table size. Upon a time tick,
Threshold eliminates the oldest items in each table if its size
limit is exceeded. Note that with Threshold, the number of
copies of an item in the index does not vary with age.

Bucket: The Bucket retention policy presented in [32]
sets a limit Bsize on bucket size (rather than on table size).
Upon a time tick, Bucket eliminates the oldest items in
each bucket if its size limit is exceeded. Note that with
Bucket, the number of copies of an item in the index varies
with age, since each bucket is maintained independently.

The probability of an item to be eliminated from a bucket
depends on the data distribution, i.e., on the probability that
newly arriving items will be mapped to that item’s bucket.

Smooth: Smooth accepts as a parameter a retention
factor p, 0 < p < 1. Upon a time tick, Smooth selects
uniformly at random a fraction 1 − p of the items in each
table, and eliminates them. This results in each item copy in
each of the tables being eliminated with probability 1 − p,
independently of its copies in other tables. The number of
buckets an item is indexed into thus exponentially decays
over time. As we show in Section IV, Smooth entails a
bounded index size that is a function of p.

D. Dynamic Popularity

DynaPop extends Stream-LSH indexing procedure to dy-
namically re-index items based on signals of user interests,
as reflected by the interest stream I . Here, an item’s redun-
dancy increases as the interest in it increases. At each time
tick, DynaPop re-indexes an item that arrives in I into each
of its buckets with probability qual(x)u independently of
other buckets; the insertion factor, 0 < u < 1, is a parameter
to the algorithm. Note that in this context, an item’s quality
may also change dynamically over time. At each time tick,
the current quality value is considered.

IV. INDEX SIZE ANALYSIS

We analyze Stream-LSH’s expected index size when using
Smooth with a retention factor p, and show that the index
size is bounded.

We assume that a constant number of new items µ arrive
at each time unit, and that their mean quality is φ. Consider
one hash table, and denote time ticks as t0, . . . , tn. At time
t0, Smooth stores µφ items in the hash table in expectation.
A ratio 1− p of these µφ items are removed at every time
tick, and thus the expected number of items that arrive at
t0 and survive elimination until tn is pnµφ. It follows that
the expected number of items in the table at any given time
during the processing of an infinite stream is

∑∞
i=0 p

iµφ =
µφ
1−p . The retention process is performed independently in
each of the L hash tables, therefore,

Proposition 1. If µ new items with mean quality φ arrive
at each time unit, the expected size of an index with L hash
tables using Smooth with retention factor p is µφ

1−pL.

Next, assume that the arrival rate is not constant, but
the number of new items that arrive at each time unit
is bounded by µ∗, which is a reasonable assumption in
practical systems. Further note that φ is bounded by 1. Thus,
at most µ∗ items are indexed into each hash table at each
time unit. The number of items that arrive at t0 and survive
elimination until tn is therefore bounded by µ∗

1−pL.

V. EMPIRICAL STUDY

A. Methodology

External libraries: We use Apache Lucene 4.3.0 [1]
search library for the indexing and retrieval infrastructure.
For retrieval, we override Lucene’s default similarity func-
tion by implementing angular similarity. For the LSH family
of functions, we use TarsosLSH [3].

Datasets: We use Reuters RCV1 [2] news dataset and
Twitter [38, 31] social dataset. In both datasets, each item
is associated with a timestamp denoting its arrival time.
The Reuters dataset consists of news items from August
1996 to August 1997, and the Twitter dataset consists of
Tweets collected in June 2009. These datasets do not contain
quality information and so we assume qual(x) = 1 for
all items. In order to evaluate quality-sensitivity, we use a
smaller Twitter dataset [5], denoted TwitterNas, consisting
of a stream of Nasdaq related Tweets spanning 97 days from
March 10th to June 15th 2016. TwitterNas contains number
of followers of Tweets authors, which we use for assigning
quality scores to Tweets (see Section V-C). In all datasets,
we represent an item as a (sparse) vector whose dimension
is the number of unique terms in the entire dataset, and
each vector entry corresponds to a unique term, weighted
according to Lucene’s TF-IDF formula.

Train and test: We partition each dataset into (disjoint)
train and test sets. The train set is the prefix of the item
stream up to a tick that we consider to be the current time.
The test set is the remainder of the dataset, which was not
previously seen by the Stream-LSH algorithm. We randomly
sample an evaluation set Q of 3,000 items from the test set
and compute recall over Q according to the given radii. Table
I summarizes the train and test statistics.

Train Test
Time unit Items Ticks Items Ticks

Reuters Day 756,927 343 22,986 10
Twitter 10 Minutes 18,224,293 2,705 42,296 10

TwitterNas Day 275,946 92 18,831 5
Table I: Train and test statistics.

B. Retention Policies

We evaluate the recall of the three retention policies as
a function of age. As the retention aspect of our algorithm
is orthogonal to the quality-sensitive indexing aspect, we
assume here that qual(x) = 1 for all items. In order to
achieve a fair comparison, we use k = 10 and L = 15
for the three retention policies, and configure them to use
approximately the same index size: We set Tsize = 45,000
and Bsize = 45 in Reuters; Tsize = 180,000 and Bsize =
177 in Twitter; p = 0.95 in both datasets.

Figure 1 depicts recall results for Reuters in the top row,
and Twitter in the bottom row. Our goal is to retrieve items
that are similar to the query, hence we focus on Rsim values

0.8, and 0.9. As we are also interested in the retrieval of
items that are not highly fresh, we evaluate recall over
varying age radii values.

When considering Rsim = 0.8 (leftmost column) there is
a tradeoff between Threshold and Smooth: when focusing
on the highly fresh items (Rage < 20), Threshold’s recall is
slightly larger than Smooth’s. Indeed, Threshold is effective
when only the retrieval of the highly fresh items is desired.
However, Smooth outperforms Threshold when the age
radius increases to include also less fresh items. Bucket’s
recall is higher than Threshold’s for ages that exceed 20,
as unlike Threshold, Bucket does not eliminate items at
once. Yet, Smooth outperforms Bucket when increasing the
age radius due to applying an explicit gradual elimination
over all items. When increasing the similarity radius to
Rsim = 0.9 (leftmost column), the advantage of Smooth
over Threshold becomes pronounced.

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Age Radius (R
age

)

R
e
ca

ll
(0

.8
,R

a
g
e)

Threshold
Smooth
Bucket

(a) Reuters: Rsim = 0.8

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Age Radius (R
age

)

R
e
ca

ll
(0

.9
,R

a
g
e
)

(b) Reuters: Rsim = 0.9

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Age Radius (R
age

)

R
e
ca

ll
(0

.8
,R

a
g
e)

Threshold

Smooth

Bucket

(c) Twitter: Rsim = 0.8

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Age Radius (R
age

)

R
e
ca

ll
(0

.9
,R

a
g
e
)

(d) Twitter: Rsim = 0.9

Figure 1: Recall comparison by age radius of the three
retention policies using approximately the same index size.

C. Quality-Sensitivity
We move on to evaluating Stream-LSH’s quality-sensitive

approach. We experiment with the TwitterNas dataset, which
contains for each Tweet x the number of followers of its
author representing its authority, and denoted Tf (x). We
define the following quality scoring function:

qual(x) = log2(1 +min(1, Tf (x)/Nf)),

where Nf is a configurable normalization factor. In our
experiments, we set Nf = 5,000 (15% of the authors
have more than 5,000 followers). Applying qual(x) on
TwitterNas entails an average quality score of 0.33.

We experiment with quality-sensitive and quality-
insensitive variants of Smooth, with k = 10 and L = 15.

In order to conduct a fair comparison, we set retention
factors that entail approximately the same index size for
both variants. More specifically, we set p = 0.9 for the
quality-insensitive variant, which results in an index size
of 636,290 items in our experiment, and p = 0.97 for the
quality-sensitive variant which results in an index size of
590,818 items in our experiment. We fix Rsim = 0.8, and
experiment with Rqual = 0.5, and Rqual = 0.9 over varying
age values. Figure 2 depicts the recall achieved by the two
Smooth variants as a function of the age radius.

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Age Radius (R
age

)

R
e
ca

ll
(0

.8
,R

a
g
e,0

.5
)

Quality−insensitive Smooth

Quality−sensitive Smooth

(a) Rqual = 0.5

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Age Radius (R
age

)

R
e
ca

ll
(0

.8
,R

a
g
e
,0

.9
)

(b) Rqual = 0.9

Figure 2: Recall comparison of quality-insensitive and
quality-sensitive Smooth using approximately the same in-
dex size.

The graphs demonstrate that for both Rqual values,
the quality-sensitive approach significantly outperforms the
quality-insensitive approach when searching for similar
items (Rsim = 0.8) over all age radii values that we
examined. This is since the quality-sensitive approach better
exploits the space resources for high quality items. The
advantage of quality-sensitive indexing increases as the age
of high-quality items increases, which is an advantage when
the retrieval of items that are not necessarily the most fresh
ones is desired. The advantage of the quality-sensitive
approaches is most pronounced when there exists a large
amount of low quality items in the dataset. Indeed, in
our setting, 73% of the items are assigned a quality value
below 0.5. In such cases, using quality-sensitive Stream-
LSH is expected to be appealing for similarity-search stream
applications.

D. Dynamic Popularity

We wrap up by studying Stream-LSH when using Dy-
naPop and the Smooth retention policy. We experiment with
u = 0.95, p = 0.95. As our datasets do not contain temporal
interest information, we simulate an interest stream I by
considering query results as signals of interests in items [13],
as follows: We use the first 75% items in the train set as the
item stream U . We construct a query set Q∗ by randomly
sampling each item from the remaining 25% of the train set
with probability 0.1. For each query q ∈ Q∗, we retrieve
its top 10 most similar items in U and include them in the
interest stream I at q’s timestamp tq , as well as at their
original arrival times in U . Table II summarizes the item and

interest stream statistics. We compute popularity scores at
the current time according to Definition II.2 with α = 0.95.

Item stream Interest stream
Items Ticks Items Ticks

Reuters 540,882 252 226,890 95
Twitter 13,124,853 2,000 4,267,518 1,500

Table II: DynaPop item and interest streams statistics.

Figure 3 depicts recall as a function of Rpop for similarity
radii 0.8 and 0.9. For both datasets and similarity radii, the
recall increases as the popularity radius increases. DynaPop
achieves good recall for popular items that are similar to
the query while also retrieving similar items that are less
popular albeit with lower recall; the latter is beneficial for
applications such as query auto-completion [8] and product
recommendation [39].

0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

Popularity Radius (R
pop

)

R
e
ca

ll
(0

.9
,R

p
o
p)

R
sim

=0.8

R
sim

=0.9

(a) Reuters

0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

Popularity Radius (R
pop

)

R
e
ca

ll
(0

.9
,R

p
o
p
)

(b) Twitter
Figure 3: Recall by popularity radius of Stream-LSH when
using DynaPop with the Smooth retention policy.

VI. RELATED WORK

Previous work on recommendation over streamed con-
tent [19, 17, 28, 24, 27, 29, 11] focused on using temporal
information for increasing the relevance of recommended
items. However, these search and recommendation works
do not tackle the challenge of bounding the capacity of their
underlying indexing data-structures. Rather, they assume an
index of the entire stream with temporal information is
given. Our work is thus complementary to these efforts in
the sense that we offer a retention policy that may be used
within their similarity search building block.

TI [13] and LSII [37] improve realtime indexing of stream
data using a policy that determines which items to index
online and which to defer to a later batch indexing stage.
Both assume unbounded storage and are thus complementary
to our work. In addition, the TI focuses on highly popular
queries, whereas we also address the tail of the popularity
distribution. LSII addresses the tail, however, it assumes
exact search while we focus on approximate search, which
is the common approach in similarity search [20].

A few previous works have addressed bounding the
underlying index size in the context of stream process-
ing [32, 34, 31, 30]. Two papers [32, 34] have focused on
first story detection, which detects new stories that were

not previously seen. Both use LSH as we do. Sundaram
et al. [34] use Threshold, and Petrović et al. [32] use
Bucket. These retention policies are well-suited for first story
detection, however, they are less adequate in our context of
similarity search as we show in our evaluation.

Morales and Gionis propose streaming similarity self-
join (SSSJ) [31], a primitive that finds pairs of similar
items within an unbounded data stream. Similarly to us,
SSSJ needs to bound its underlying search index. Our work
differs however in several aspects: First, we study a different
search primitive, namely, similarity search. Second, SSSJ
only retrieves items that are not older than a given age limit.
It thus bounds the index using a variant of Threshold. In
contrast, we do not assume that an age limit on all queries
is known a priory. Third, we tackle approximate similarity
search whereas SSSJ searches for an exact set of similar
pairs.

Magdy et al. [30] propose a search solution over stream
data with bounded storage, which increases the recall of
tail queries. Their work differs from ours in the retrieval
model, more specifically, they assume the ranking function
is static and query-independent, e.g., ranking items by their
age. Each item’s score is known a priori for all queries,
and can be used to decide at indexing time which items to
retain in the index. This approach is less suitable to similarity
search, where scores are query-dependent and only known
at runtime.

In addition, we note that the aforementioned works on
bounded-index stream processing [32, 34, 31, 30] do not
take into account quality and dynamic popularity as we do.

VII. CONCLUSIONS AND FUTURE WORK

We introduced the problem of similarity search over
endless data-streams, which faces the challenge of index-
ing unbounded data. We proposed Stream-LSH, an SSDS
algorithm that uses a retention policy to bound the index
size. We showed that our Smooth retention policy increases
recall of similar items compared to methods proposed by
prior art. In addition, our Stream-LSH indexing procedure
is quality-sensitive, and is extensible to dynamically retain
items according to their popularity.

While our work focuses on similarity search, our approach
may prove useful in future work, for addressing space con-
straints in other stream-based search and recommendation
primitives.

ACKNOWLEDGMENTS

Naama Kraus is grateful to the Hasso-Plattner-Institut
(HPI) for the scholarship for doctoral studies. We thank
Alexander Spiegelman for helpful insights and suggestions.

REFERENCES
[1] Lucene. http://lucene.apache.org/core/.
[2] Reuters rcv1. http://www.daviddlewis.com/resources/testcollections/rcv1/.
[3] Tarsos-lsh. https://github.com/JorenSix/TarsosLSH.

[4] The top 20 valuable facebook statistics. https://zephoria.com/top-15-valuable-
facebook-statistics/.

[5] Twitter nasdaq. http://followthehashtag.com/datasets/nasdaq-100-companies-
free-twitter-dataset/.

[6] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and G. Mishne. Finding high-
quality content in social media. WSDM ’08, pages 183–194, 2008.

[7] A. Andoni. Nearest Neighbor Search: the Old, the New, and the Impossible.
PhD thesis, Massachusetts Institute of Technology, 2009.

[8] Z. Bar-Yossef and N. Kraus. Context-sensitive query auto-completion. WWW
’11, pages 107–116, 2011.

[9] H. Becker, M. Naaman, and L. Gravano. Selecting quality twitter content for
events. ICWSM11, 2011.

[10] F. R. Bentley, J. J. Kaye, D. A. Shamma, and J. A. Guerra-Gomez. The 32 days
of christmas: Understanding temporal intent in image search queries. CHI ’16,
pages 5710–5714, 2016.

[11] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin. Earlybird:
Real-time search at twitter. ICDE ’12, pages 1360–1369, 2012.

[12] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In
STOC ’02, pages 380–388, 2002.

[13] C. Chen, F. Li, B. C. Ooi, and S. Wu. Ti: An efficient indexing mechanism for
real-time search on tweets. SIGMOD ’11, pages 649–660, 2011.

[14] J. Chen, R. Nairn, and E. Chi. Speak little and well: Recommending conversa-
tions in online social streams. CHI ’11, pages 217–226, 2011.

[15] F. Chierichetti and R. Kumar. LSH-preserving functions and their applications.
In SODA ’12, pages 1078–1094, 2012.

[16] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Grijincu, T. Jackson,
S. Kunnatur, S. Lassen, P. Pronin, S. Sankar, G. Shen, G. Woss, C. Yang, and
N. Zhang. Unicorn: A system for searching the social graph. Proc. VLDB
Endow., pages 1150–1161, 2013.

[17] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization:
Scalable online collaborative filtering. WWW ’07, pages 271–280, 2007.

[18] F. Diaz. Integration of news content into web results. WSDM ’09, pages 182–
191, 2009.

[19] E. Gabrilovich, S. Dumais, and E. Horvitz. Newsjunkie: Providing personalized
newsfeeds via analysis of information novelty. WWW ’04, pages 482–490,
2004.

[20] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In VLDB ’99, pages 518–529, 1999.

[21] I. Guy, T. Steier, M. Barnea, I. Ronen, and T. Daniel. Swimming against the
streamz: Search and analytics over the enterprise activity stream. CIKM ’12,
pages 1587–1591, 2012.

[22] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. STOC ’98, pages 604–613, 1998.

[23] N. Kanhabua, R. Blanco, and K. Nørvåg. Temporal information retrieval.
Foundations and Trends in Information Retrieval, pages 91–208, 2015.

[24] M. Kompan and M. Bielikova. Content-based news recommendation. In E-
Commerce and Web Technologies, pages 61–72. 2010.

[25] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or
a news media? WWW ’10, pages 591–600, 2010.

[26] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets, 2nd
Ed. Cambridge University Press, 2014.

[27] L. Li, D. Wang, T. Li, D. Knox, and B. Padmanabhan. Scene: A scalable two-
stage personalized news recommendation system. SIGIR ’11, pages 125–134,
2011.

[28] J. Liu, P. Dolan, and E. R. Pedersen. Personalized news recommendation based
on click behavior. IUI ’10, pages 31–40, 2010.

[29] M. Lu, Z. Qin, Y. Cao, Z. Liu, and M. Wang. Scalable news recommendation
using multi-dimensional similarity and jaccard-kmeans clustering. J. Syst. Softw.,
pages 242–251, 2014.

[30] A. Magdy, R. Alghamdi, and M. F. Mokbel. On main-memory flushing in
microblogs data management systems. ICDE ’16, pages 445–456, 2016.

[31] G. D. F. Morales and A. Gionis. Streaming similarity self-join. PVLDB,
9(10):792–803, 2016.

[32] S. Petrović, M. Osborne, and V. Lavrenko. Streaming first story detection with
application to twitter. HLT ’10, pages 181–189, 2010.

[33] M. Slaney and M. Casey. Locality-sensitive hashing for finding nearest
neighbors. Signal Processing Magazine, IEEE, pages 128–131, 2008.

[34] N. Sundaram, A. Turmukhametova, N. Satish, T. Mostak, P. Indyk, S. Madden,
and P. Dubey. Streaming similarity search over one billion tweets using parallel
locality-sensitive hashing. Proc. VLDB Endow., 6(14):1930–1941, Sept. 2013.

[35] K. Tao, F. Abel, C. Hauff, and G.-J. Houben. Twinder: A search engine for
twitter streams. ICWE’12, pages 153–168, 2012.

[36] J. Teevan, D. Ramage, and M. R. Morris. #twittersearch: A comparison of
microblog search and web search. WSDM ’11, pages 35–44, 2011.

[37] L. Wu, W. Lin, X. Xiao, and Y. Xu. LSII: an indexing structure for exact
real-time search on microblogs. ICDE ’12, pages 482–493, 2013.

[38] J. Yang and J. Leskovec. Patterns of temporal variation in online media. WSDM
’11, pages 177–186, 2011.

[39] H. Yin, B. Cui, J. Li, J. Yao, and C. Chen. Challenging the long tail
recommendation. Proc. VLDB Endow., pages 896–907, 2012.

