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Abstract
BSP treesandKD treesare fundamentaldatastructuresfor collision detectionin walkthroughenvironments.A
basicissuein the constructionof thesehierarchical data structuresis the choiceof cuttingplanes.Ratherthan
basethesechoicessolelyon thepropertiesof thescene, weproposeusinginformationabouthowthetreeis used
in order to determineits structure. We demonstratehowthis leadsto thecreationof BSP treesthat are small,do
not require much preprocessingtime, andrespondveryefficientlyto sequencesof collisionqueries.

CategoriesandSubjectDescriptors(accordingto ACM CCS): I.3.5[ComputerGraphics]:ComputationalGeometry
andObjectModelingI.3.6 [ComputerGraphics]:Graphicsdatastructuresanddatatypes,Interactiontechniques
I.3.7 [ComputerGraphics]:Virtual reality

Keywords: Binary spacepartitioning, collision detection,ray-shooting, walkthrough,self-organizingdatastruc-
tures,deferreddatastructures.

1. Intr oduction

Ray-shootingandcollision detectionarefundamentalprob-
lemsin computergraphics.Of themany algorithmsanddata
structuresused5 � 7� 11� 12� 14� 15, we chooseto focuson Binary
SpacePartitioning(BSP) trees1� 9� 10� 13� 17� 19� 20� 23� 24� 25, which
representa datastructurewith a recursive searchalgorithm
embeddedin it. WeexploreBSP treesfor collisiondetection
in walkthroughenvironmentsandfor ray shootingin a new
way.

Obviously, there are many possible BSP trees for any
givenscene.Themajorconsiderationin theconstructionof
a BSP tree is the choiceof a “good” cutting plane.Tradi-
tionally, cutting planesarechosenso as to hopefully keep
the BSP treesmall underthe assumptionthat this will help
keeptraversaltimeslow. It is not known, however, how to
find the smallestBSP tree for a given scene.It wasshown
that randomconstructionscanlimit the sizeto quadratic19

andit seemsmuchlessin practice8. In actualapplications,
peopleemploy greedyheuristics18, whichcannotguarantee
smalltrees(nevertheless,oftenproducethem).Moreover, as
is shown in 3, treesizeis not necessarilya significantfactor
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in thetimerequiredto answeraquery, for querytypeswhich
neednotexplorethewholetree.

Theexpectationthatsmalltreeswill keepqueryresponse
times low amountsto attributing equal likelihood to each
query. In otherwords,assuminga uniform distribution on
the queries.However, in “real life”, that is not the case.
Three-dimensionalscenesare not random; nor are ray-
shootingqueriesor navigation pathsin walkthroughsys-
tems. People,and even robots, rarely navigate randomly
throughabuilding in awalkthroughenvironmentwhile aim-
lesslybouncingagainstthewalls.

Our basicpremiseis thatqueriesaretypically dependent
on previous ones.For instance,certainpathsin a museum
walkthrougharemorepopularthanothers.(Think, for ex-
ample,of theroomor hallway whereVenusdeMilo is dis-
played.)Therefore,our underlyingassumptionis that data
structureconstructionshouldnotdependsolelyon thestatic
data set, but rather incorporateinformation about likely
queries.That is, ratherthanbaseBSP treeconstructiononly
on thepropertiesof the scene,asis customary, we propose
gatheringinformationabouthow the treeis usedto service
ray-shootingor collision-detectionqueriesandusethis in-
formationto determinethe BSP tree’s structure.This canbe
doneif treeconstructionis delayeduntil thereis somein-
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formationaboutthe natureof the queriesit will be usedto
service.

Naylor 17 was the first to proposeconstructinga cost
modelfor BSP treesbasedon theprobabilitydistribution of
theinput (i.e., therays)or someestimateof this probability.
In practice,it is assumedin 17 thatthedistributionisuniform,
andthustherelativeareacanbeusedto estimateit.

As noted above, uniform distribution is not necessar-
ily representative. Ar, Chazelle& Tal 3 presentedthe self-
customizedBSPtree, wheretreeconstructionis basedonthe
sametemporalcoherenceprinciple usedin caches:Events
aremorelikely to happenin thefuture,if they have already
happenedin thepast.This is doneby hypothesizingaproba-
bilistic distributionof requestsbasedonalog of recentclient
usage.After this learning stage,that information is used
to configurethe BSP tree to optimize its expectedrequest-
answeringcomplexity. It hasbeendemonstratedthat using
probabilisticcostmodelsto guideBSP treeconstructionre-
sultsin treeswhich outperformotherformsof BSP treesfor
rayshootingqueries.

But, whataboutsituationswherewe do not have any, or
enoughinformationaheadof time to determinethedistribu-
tion? We would still like to be ableto servicequerieseffi-
ciently. This is thetopicof thecurrentpaper.

Thestrategy we explorein thispaper, is to deferfull con-
figurationandusea partially constructedtreeto respondto
queries,while continuinginformationcollection.This leads
us to proposea new BSP tree scheme– a deferred, self-
organizingBSP tree.Thestatisticsaboutthequeriesarerep-
resentedin the structureof the (partial) treeitself. Whenit
is determinedthat enoughadditionalinformationhasbeen
collected,somemore of the tree is constructed,basedon
this information.Thus, the structureof the deferred,self-
organizingBSP treeevolves,reflectingtheway it is expected
to be used,whenansweringfuture queries.Obviously, the
sameschemecanbeappliedto aKD treewhich is a special
caseof a BSP trees.

Our deferred,self-organizing BSP treessuccessfullyat-
tempt to constructtreesthat suit the client’s usage,while
puttinganemphasisonkeepingthetreessmallandsavingon
preprocessingtime. We will show thatour proposedpartial
structuringschemehasseveralobviousadvantages:Conve-
niently, thereis no needfor prior information.Partial tree
constructioncanstart,usingany availableinformationabout
queries,even if that informationis not statisticallysignifi-
cant.Most importantly, in spiteof usingonly partial infor-
mationandin spiteof the datastructurebeingvery simple
whennot fully constructed,the responseto queriesis very
costeffective.In addition,sincethesetreesareonly partially
constructed,they aremuchsmallerthantreesproducedby
otherBSP treeconstructionmethods.

Thoughsmalltreesarenot requiredfor answeringqueries
efficiently 3, there are still many advantagesto reducing

treesize.For example,think of a multi-uservirtual reality
walkthroughenvironment,whereeachuser“walks” along
a uniquepath in the environment.Differentpaths,on their
own,donotrequiremorethanasingleBSP treefor thewhole
system.However, different BSP treescan be beneficialfor
queryprocessingwheneachtreefits theusagepatternsof a
specificuser. Obviously, it wouldbeadvantageousif eachof
thesetreesdid not requiretoomuchspace.

Therestof thispaperis organizedasfollows.In Section2,
we definedeferred, self-organizingBSP treesand describe
how they areconstructed.In Section3, we presentour ex-
perimentsand explain the results.We briefly concludein
Section4.

2. Definitions and TreeConstruction

A BSP treeis a methodfor partitioningn-dimensionalspace
using � n � 1� -dimensionalhyperplanes.Oncea spacehas
beenpartitionedby a hyperplane,it is representedby two
n-dimensionalsub-spaces,oneon eachsideof thepartition-
ing hyperplane.Thesecannow berecursively partitioned.

Our sceneis given asa setS of disjoint polygonsin R3.
Thesearethe scenepolygons. The correspondingBSP tree
is a binarytree,whereeachnodev is associatedwith a par-
titioning planeπv anda closedconvex polyhedronCv. The
root’s polyhedronis a largebox enclosingtheentirescene.
If v is nota leaf, theplaneπv cutsCv into thetwo convex re-
gionsassociatedwith thechildrenof v. Werestrictourselves
to auto-partitioningBSP trees:oneswhereeachcuttingplane
containsascenepolygon.

Thebasicquestionin theconstructionof BSP treesis how
to choosethe cutting planes.We answerthis questionby
proposinga new BSP treescheme– onewhich is both De-
ferredandSelf-Organizing.

Deferreddatastructures,first suggestedby Karp et al. 16,
involve dynamicor querydriven structuring.The ideais to
processthe datasetonly whendoingso is requiredfor an-
sweringa query, that is during the queryprocessingphase.
This contrastswith conventional data structures,that are
fully configuredprior to any queryansweringaccesses.

A self-organizing data structure2� 4� 6� 21� 22 is a conven-
tional datastructurewith rulesor algorithmsfor changing
itself,potentiallyaftereachaccess.Therulesaredesignedto
respondto initially unknown propertiesof theinput request
sequence,andto get thedatastructureinto a statethatwill
take advantageof thesepropertiesandreducethe time per
operation.Unlike deferreddatastructures,self-organizing
datastructuresarefully configuredaheadof time.

Both deferredandself-organizingdatastructuresarede-
signed to addressthe issue of respondingefficiently to
querieswhenthereis notenoughprior informationaboutthe
querydistribution. In what follows, we show how to com-
binethesetwo notionsin thecontext of BSP trees.
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We definea deferred, self-organizingBSP tree as a par-
tially constructedBSP tree.It will havearootnode,andmay
have someof thetreestructurebelow theroot,but not all of
its leaveswill beproperBSP treeleaves.Eachleaf of a par-
tially constructedtreemayhave a list of scenefaces,whose
correspondingplanesarethepotentialcuttingplanesfor that
BSP node.Thesefacelists aremanagedwith a setof rules
for theirpotentialre-organizationwith eachtreeaccess.

Note that the treeis usedto respondto querieseven be-
fore it is fully constructed.To do this, we startat the root
of the treeandrecursedownwards,checkingfor collisions
againstthepolygonsassociatedwith therelevanttreenodes,
in the standardway. Whenwe get to a nodethat doesnot
have a subtreeconfiguredbelow it, we checkfor collision
by performingasequentialsearchthroughthatnode’s list of
potentialcuttingplanes.

TREE CONSTRUCTION

A BSP tree is built incrementallyby inserting cutting
planesoneat a time. At any time during the construction,
i.e., at any “leaf”, a list is kept.This is a list L of thescene
planes(i.e., theplanescoplanarwith polygonsof S) thatare
potentialcuttingplanesfor thatnode.Whenbeginning tree
construction,thesingleleaf-nodeis theroot of thetree,and
all scenepolygonsareon its list. To continueconstruction
of the BSP treeat a given node,oneof thepotentialcutting
planesneedsto be chosen,to “split” that node.The list of
scenefacesat that nodethen needsto be parceledout to
its two childrennodes.A fully constructedtreeis obtained
whenthisprocesscanno longercontinue.

Whenexecutinga sequenceof querieson a BSP tree,the
total accesstime will be small if frequentlyaccesseditems
areneartherootof thetree.Thus,if weexpectpastqueriesto
reflectlikely futureone,wewantcuttingplanesatnodesnear
therootof theBSP treeto beonescorrespondingto polygons
likely to behit. To avoid extensive log-keeping,thecollected
information is representedin the datastructure,bypassing
theneedto createaprobabilisticmodelbasedon theinput.

Given a partially constructedtree,we may, at intervals,
want to configuremoreof the tree.That is, we may want
to “split” moreof the tree nodes.Thereare several issues
regardingsplitting a nodehaving a list of potentialcutting
planes.First,when do we split a node?Second,theclosely
relatedquestionof which nodedowesplit?Third, thereis of
coursethequestionof how to maintainthelists of potential
cuttingplanesatnodesthatmaybesplit,sothatchoosingthe
actualcutting planemay be donequickly. In what follows,
wewill answerthesethreequestions.

NODE SPLITTING

Intuitively, we would like to rendermore structureto a
part of the tree that is useda lot for query processing.If

we have reacheda nodefrequently, andit maybesplit, that
meansuseful informationis sitting in the lists, ratherthan
in BSP treestructure.We would like to put that information
into thetreestructure,by choosingascuttingplaneonethat
will helpreducequeryprocessingtime in thefuture.

When using deferreddatastructures,thereneedsto be
a criterion for decidingwhento continueconfiguration.In
the caseof deferredBSP trees,that meansdecidingwhich
nodes,of thosethat canbe,will be split by a cuttingplane
andwhen,to createmoreof thetreestructure.Obviously, a
nodethatis neveraccessedwill notbeconsideredfor further
splitting. Creatingtreestructurewhich is never usedto re-
spondto queriesis wastedeffort. Conversely, a nodethat is
accessedfrequently, andis onethatmaybefurthersplit, in-
dicatesa likely locationwheremoreBSP treestructurewill
bebeneficialto betterqueryprocessingtimes.

Thus, we count accessesto nodesof the partially con-
structedBSP treeduringtheprocessingof queries.It is time
to split anodewhenthatnodeis accessed,andthecountfor
thatnodehasreachedapre-specifiedthreshold.This thresh-
old maybeof oneof two kinds:constantor relative. A con-
stantthresholdspecifiesthe numberof allowedaccessesto
a nodebeforeit is split to two nodesby a cuttingplane.A
relativethresholdspecifiesthenumberof accessesto anode,
asafractionof totalaccessesto theBSP tree,beforethenode
is split.Below, whenawalkthroughapplicationis discussed,
anotherpossibilitywill bedescribed.

In actualuse,the BSP tree constructionis only started.
That is, the treeis only a root with a list of all scenefaces,
eachcorrespondingto apotentialcuttingplane.Whenanode
is accessedandhasreachedthethresholdfor numberof ac-
cesses,it is split into two nodeswith a cuttingplanechosen
from its list of polygons.If thepolygonlists aremaintained
suchthatthefrequentlyaccessedpolygonsarebroughtclose
to theheadof thelist, choosingthefirst on thelist is agood
choice,and is obviously the quickest.Next we discusslist
maintenancemethods.

MAINTAINING FACE L ISTS

The potentialcutting planesmaintainedat eachBSP tree
node,needto berankedbasedonquerypatterns.Ratherthan
maintainan explicit scorefor eachplane,we would like to
keeptherankinginformationin thestructureof thelists.This
brings us to the list updateproblemof online algorithms,
wherea list is re-organized,potentially after eachaccess,
with the goal of speedingup queryservicetime for future
accesses.

In a partially constructedBSP tree,when the searchfor
collisionreachesanodewith apolygonlist, eachlist element
is examineduntil acollisionis found,or it is determinedthat
thereis none.Everytimeasceneface,orpolygon,is checked
for collisionit isaccessed. Thus,it wouldbeadvantageousto
maintainthepolygonlists soasto keepfrequentlyaccessed
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onescloseto theheadof the list. This will helpkeepquery
processingtimeslow, andwill keepthosepolygonsreadily
availablewhenit is time to chooseacuttingplane.

Thereare somewell-known, deterministiconline algo-
rithms usedfor list update,or re-organization.We experi-
mentedwith themostcommonones,whichwe list below.

� Move To Front: Move eachaccesseditem to thefront of
thelist.� Transpose:Exchangetheaccesseditemwith theoneim-
mediatelybeforeit in thelist.� FrequencyCount: Maintaina frequency countfor each
list item. Whenever an item is accessed,increaseits fre-
quency countby one.Maintain the list so that itemsare
sortedin non-increasingorderof theirfrequency counters.

NotethatMove-To-FrontandTransposedefinememory-
less algorithms,while Frequency-Count is a strategy that
needssomeadditionalmemoryin the datastructure.How-
ever, in eithercase,theself-organizingrulescanbeviewed
asputting the “memory” aboutthe history of pastrequests
into thedatastructure,by re-organizingit.

TREE RE-CONFIGURATION

Therearetimeswhenaccesspatternschangedramatically.
If this situationarisesandlargepartsof thetreearealready
configured,responseto queriesmay not be as efficient as
they couldbe.If usageindicatesthissituation,wechooseto
starttherelevantsub-treeconfigurationfrom scratch.

3. Experimental Results

We have testedour deferredself-organizing BSP treesfor
two applications– ray shootingand collision detectionin
walkthroughenvironments.In this sectionwe summarize
ourfindingsandanalyzethem.

RAY SHOOTING EXPERIMENTATION

Givena ray specifiedby a point p anda direction � , and
asceneSrepresentedby adeferredself-organizingBSP tree,
wecanfind thefirst polygonof Sthattheray hitsby recurs-
ing on thefollowing process.Assumethat theray is known
to crossCv, thepolyhedronassociatedwith atreenodev and
with acuttingplaneπv. If v is a BSP leaf,thenwemaycom-
putetheanswerby exhaustive examinationof all thescene
polygonsthat intersectCv; otherwise,checkif theray hits a
scenepolygonassociatedwith nodev. If it does,we have a
collision. If thereis no collision in v, recursein eitherchild
whosepolyhedronlieson thesamesideof πv asp.

We comparedBSP treesproducedusing deferred,self-
organizingmethodsto two optimized BSP tree types.The
first kind of BSP treewecompareagainstis whatwecall the
standard BSP treewhichis basedontheBSP codepresented
in the GraphicsGems18, andwhich we further optimized.

Thestrategy usedwhenconstructinga standardBSP treeis
to alwayschoosea cuttingplanewhich “cuts” the minimal
numberof scenefaces.In otherwords,this is a greedypro-
cedurewith thegoalof minimizing thenumberof intersec-
tions betweencutting planesand thusminimizing the tree
size.Thesecondkind of BSP treewe compareagainstis the
self-customizedBSP tree3, which basesthe scoringof the
cuttingplaneson thehypothesizedprobabilisticdistribution
of ahistoryof queries.

To comparethe performanceof theseBSP schemes,we
usetwo main measuresfor the traversalcostof a directed
line in a BSP tree.We count the numberof treenodesac-
cessedbeforethefirst collision is found.More importantly,
we count the numberof scenepolygonsthat are checked
for collision with the ray, beforea collision is found, or it
is determinedthat thereis none.In the standardand self-
customizedtrees,theseare the facesdefining the cutting
planesof treenodesencounteredduring the search.In the
deferred,self-organizingtrees,sincethey areonly partially
built, thesemayincludebothfacesthatdefinecuttingplanes
of configuredtreenodesandmayalsoincludelists of faces
correspondingto candidatecuttingplanes,whenthesearch
is atanodethatis notyet“split”. Thesechecksconsumethe
bulk of thecomputationtime.

To benchmarkthe performanceof any given BSP tree,
we producedray shootingqueriesassuminga multivari-
atenormaldistribution.Similardistributionparameterswere
usedto simulatethelearningprocessin theself-customized
BSP trees3.

Figures1–2 presentresultsof our experiments.Next to
eachobject name,we indicate the numberof facescom-
prising it. Every object is associatedwith a table.Eachta-
ble headerlists the total numberof raysandthenumberof
ray classes(of the multi-variatedistribution). Note that the
classesmayhavedifferentsizes.Thetablehasaline for each
of several runs:thestandardBSP treeconstruction,theself-
customizedBSP treeconstruction,andtwo linesfor deferred,
self-organizingtreeconstructionruns,indicatingthethresh-
old typeusedto determinewhento split a node(constantor
relative). The first columnindicatesthe the numberof tree
nodesaccessedbeforethe first collision is found.The sec-
ondcolumnindicatesthenumberof scenepolygonsthatare
checkedfor collision.Thethird columnindicatesthesizeof
theBSP tree.

We show theresultsof only onerun of eachpossiblede-
ferred thresholdkind, althoughwe performedmany more.
Wevariedthethresholdfor eachtype,andweexperimented
with all threemethodsof list maintenance.Our conclusion
is thatfrequency countis themostcosteffective list mainte-
nancemethod.

Our experimentsindicate that deferred,self-organizing
BSP treescanoffer stunningspeedupfactors.For instance,
in the caseof the Dalek with 30	 000 raysof two different
classes,the deferredBSP tree checksfor collision against
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30,000rays,two classes

run type # nodes # faces treesize

Standard 3995683 868538 68407

Self-Customized 780988 246709 86057

Deferred,Constant 67084 48926 247

Deferred,Relative 68270 44841 261

(a)Dalek- 21,814faces

60,000rays,fiveclasses

run type # nodes # faces treesize

Standard 8950467 1580270 1785

Self-Customized 4799768 759976 3139

Deferred,Constant 1166721 237213 169

Deferred,Relative 1130651 248176 127

(b) Ear- 454faces

120,000rays,fiveclasses

run type # nodes # faces treesize

Standard 7473397 1169935 7161

Self-Customized 2854606 716882 15395

Deferred,Constant 1843284 487166 245

Deferred,Relative 1924076 511810 323

(c) HumanHead- 1850faces

Figure1: Rayshootingexperimentalresults

48	 926faces(1 
 63facesperray, onaverage),while theself-
customizedBSP checks246	 709(8 
 22facesperray),andthe
standardBSP checks868538faces(28
 95 facesperray).

Thepreprocessingtimefor thestandardBSP maygetquite
substantialin thecaseof scenesmadeupof many faces.For
instance,in thecasewith theNerd,which has7 	 312 faces,
thepreprocessingtime for thestandardBSP is 510	 326	 810
microseconds.In the samecase,the preprocessingfor the
self-customizedBSP is 76	 606	 230 microseconds.Obvi-
ously, there is virtually no preprocessingtime for a de-
ferred BSP tree.Although time is spentboth building and

re-organizingthe deferredself-organizingtree(this time is
interleaved with query processing),it is done only when
deemedadvantageous,in thatit paysoff in fasterprocessing
for futurequeries.This processis very quick sincetheself-
organizationof the lists meansthat the first faceis always
picked, andno complex computationis needed.Moreover,
this is donevery rarely. At the end of eachrun, very few
nodeshave actuallybeensplit, ascanbeseenwith thefinal
treesbeingverysmall.For instance,in thecaseof theDalek,
thestandardBSP treehas68407nodes,theself-customized
BSP treehas86057nodes,while thedeferredself-organizing
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20,000rays,oneclass

run type # nodes # faces treesize

Standard 8765706 1273440 17941

Self-Customized 3146212 554789 25009

Deferred,Constant 1281526 329239 843

Deferred,Relative 1336004 399571 883

(d) Moraccas- 3251faces

30,000rays,two classes

run type # nodes # faces treesize

Standard 6168995 689758 36199

Self-Customized 1168756 570634 52051

Deferred,Constant 1163687 496080 353

Deferred,Relative 1176089 492143 325

(e)Nerd- 7312faces

45,000rays,threeclasses

run type # nodes # faces treesize

Standard 3181464 973197 9085

Self-Customized 2734468 529039 18069

Deferred,Constant 1713029 428393 897

Deferred,History 1637907 383095 1039

(e)Enterprise- 1989faces

Figure2: Rayshootingexperimentalresults(Cont’)

BSP tree,which is only partially built, hasonly 247 (261)
nodes.

WALKTHROUGH COLLISION EXPERIMENTATION

To achieve the feeling of presencein a walkthroughset-
ting, onemustaddressmany issues,a key oneamongthem
is that of collision detection.The usershouldbe kept from
colliding with walls or other obstacles.In this sectionwe
describeour experimentsusingour deferredself-organizing
BSP treesasour datastructurefor representingwalkthrough
scenes.

Recall that the BSP treeis built incrementally, by insert-
ing onecutting planeat a time. In a walkthroughenviron-
mentthisisdonewhile theuseris “walking” within thegiven
scene.Thefirst walk canthusbeconsideredasa “training”
walk, andsubsequentsimilarwalksusethepartialBSP trees
constructedduringthetrainingwalk (andcanof coursecon-
tinueconstruction).

As before,therearethreequestionswhich needto bean-
swered:Whendo wesplit a node?Which nodedo we split?
How to maintainthelistsof potentialcuttingplanesatnodes
thatmaybesplit?
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In general,ourgoalis to constructa treewhichoptimizes
collision detectionqueriesfor a specificwalk. Obviously,
facesthewalker is morelikely to collide with shouldbese-
lectedas cutting planes.It is a wastedeffort to use faces
which arefar from thewalker. In otherwords,the paththe
walkerusesshoulddeterminethestructureof theBSP tree.

Oneverystepthewalkermakes,weconsidersplitting the
BSP nodethe walker is currentlyin. Of all the faceswhich
belongto this node’s facecandidatelist, we wish to select
the faceclosestto the walker asa cutting plane.However,
if theclosestfaceis still far away from thewalker, it is not
necessaryto grow thetreeatall, andnocuttingplaneshould
bechosen.This is somewhatdifferentfrom theray-shooting
application,wherea nodeis split when somethresholdis
reached.

Tochoosethecuttingplaneefficiently, thecandidatelist at
every nodeshouldbesortedaccordingto thedistancefrom
the walker. Of course,keepingtheseslists updatedat all
timeswould becostly. Instead,we useself-organizinglists.
Initially, all the facesaresortedaccordingto their distance
from thewalker. Sincethestepsthewalkermakesaresmall,
very few changesneedto be doneto the list at every step.
In fact,only a few facesfrom theheadof thelist needto be
checked.Moreover, whenthelist needsto bemodified,one
of thenodesattheheadof thelist shouldmoveforward.This
bringsusto the“move to front” methoddescribedabove.

Obviously, only lists at the relevant nodesshouldbe up-
dated,andothernodes’lists areupdatedonly whenbecom-
ing relevant.At times,awholelist needsto bere-sorted.This
happenseitherwhenmany modificationsaredoneto a list,
or whenthethecurrentlocationof thewalker is far from the
locationduringpreviousre-sorting.

Figure3 demonstratestheconstructionof theBSP tree,as
doneduring a walk in the scene.In Figure3(a), the walk-
throughsceneis shown togetherwith a specificwalk (in a
dashedline). In Figure3(b), the BSP tree,as built for this
walk, is shown. It canbeseenthatthoughthesceneconsists
of 24 possiblecutting planes,the constructedtree is very
small (having only 9 internalnodes).Only relevant planes,
thosethat arecloseto the walk, areusedascuttingplanes.
Otherplanesareleft un-explored.

As the walk begins, plane1 is the closestto the walker,
andthus is chosenasthe first cutting plane,andis associ-
atedwith the root of the tree.On the secondstep,plane15
is chosensinceit is almostas close.As the walker keeps
walking, the treeneednot be further constructed,sinceall
relevantfacesarestill far. Oncethewalkergetscloserto the
first intersection,Plane2 becomessufficiently closeandis
chosenasthenext cuttingplane.Similarly, Plane16 is used
asa cuttingplane.Next, Plane5 becomestheclosestandis
chosenasacuttingplane.Thisis donefirst ontheleft branch
of therootnode,andafterthewalker turnsright, ontheright
branch.As this walker is approachingthenext intersection,
Plane4 is chosenasthenext cuttingline, followedby Plane

3 (onbothbranchesof node5 
 2). Thisendstheconstruction
of the BSP nodefor this specificwalk. It is not necessaryto
explore all the othercutting planeswhich arefar from the
walker.

To testourdatastructure,welet ausermovethroughvari-
ouswalkthroughscenes,usingbothdeferred,selforganizing
BSP treesandstandardBSP trees.(Self-customizedBSP trees
aredesignedfor ray shootingapplications.)During thefirst
walk, thedeferred,self organizingBSP treeis built. During
subsequentsimilarwalks,this treeis used(andconstruction
continueswhennecessary).Recall that the main advantage
of ourschemeis whenit is usedfor thesesubsequentsimilar
walks,sinceeachtreeis optimizedfor aspecificwalk.

Figure4 illustratesour results.Our deferredBSP tree is
comparedto astandardBSP tree.Eachwalkthroughsceneis
describedby a tableand is accompaniedwith an imageof
themodel.Seealsothecolor section.

Thefirst columnof thetableshowsthetreesizes.Though
standardBSP treesoptimizetreesizes,thedeferred,self or-
ganizingBSP treesmaintainonly partial constructedtrees,
hence their significantly smaller sizes. The other three
columnsshow timesin milliseconds.In the“walk” column,
thewalkthroughtimeusingasimilarpathto thetrainingpath
is given.In the“construct”column” theconstructiontime is
given.Sincein deferredBSP treestheconstructiontime in-
terleaveswith thetimeof thefirst walk,wemeasurethecon-
structiontimeplusthewalk timealsofor standardBSP trees.
Finally, in the“track II” columnthetimesto walk througha
differentpaththanthetrainingpathis measured.

It canbeseenthat thedeferredBSP treeoutperformsthe
standardBSP tree.For instance,in thecaseof thecastle(Fig-
ure4(a)),walking throughthe trainingpathtakes30msfor
deferredBSP treesand2273msfor thestandardtrees.More-
over, usinga differentpath(enteringthe castlethroughthe
bridgeratherthanthroughthe lobby) takes271msusinga
deferredBSP tree.Thetrainingwalk throughthecastle,dur-
ing which thetreeis built, takes1793ms.

ANALYSIS

The marked advantageof the deferredBSP treescomes
from several factors.Thefirst factoris theuseof theactual
queriesto “train” the datastructurefor futurequeries.This
trainingprocesssuggestspicking the BSP cutting planesas
the onesthat are expectedto be hit (or close) in the fu-
ture.Note that a similar coherenceprinciple is usedin the
constructionof self-customizedBSP trees.However, in this
casethedatais usedwithin a functionthatestimatestheef-
ficiency of candidatecuttingplanes.In thecaseof deferred
BSP treesthe choiceof a cutting planeis moredirectly de-
pendenton theactualuseof thetree,andthustheadvantage
overself-customizedBSP trees.Thesecondfactoris thatthe
partiallyconstructedtreesaresmall,sosearchesthroughthe
fully configuredpartsof thetreearequick.Finally, theself-
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(a)Thewalkthroughscene (b) Thedeferredself-organizingBSPtree

Figure3: Thedeferredself-organizingBSP asbuilt throughoutthewalk

organizinglists keepsearchesfor collisionsefficient in all
treeparts,in spiteof thelackingtreestructure.

Thoughnot shown in the tables,thereareotherobvious
advantagesto the deferredBSP treesbeing much smaller
than both the standardBSP treesand the self-customized
ones.Obviously, smallertreesmeanlessstoragespace.This
saving can be significant in a walkthrough environment
wherethe sceneis quite large andthereforea fully config-
ured BSP tree is likely to be very big. Small treeslet each
usermaintaina treethatsuitshisor heraccesspatterns.

Moreover, little configurationaheadof usemeansbig sav-
ingsin preprocessingtime.In thestandardBSP trees,prepro-
cessingtimeis spentoncalculatingintersectionsof potential
cuttingplanes.Thebiggerthescenethemoretime spenton
thispreprocessing.In theself-customizedBSP trees,prepro-
cessingtime is spenton classificationof the training data,
laterusedto givescoresto potentialcuttingplanes.Thistime
is independentof the numberof scenepolygons.Deferred,
self-organizingBSP treesdo notneedpre-processingat all.

4. Conclusions

Traditionally, BSP treesareconstructedwithout any consid-
erationto their use,configurationbeingbasedonly on the
scenefor which they arebuilt. In this paperthis approach
hasbeenchallenged.Instead,tree accessinformation has
beenutilized in theconstructionof deferred,self-organizing
BSP trees.

With deferred,self-organizing BSP treesprior informa-
tion is notnecessary. Rather, thetreeis partiallyconstructed
whenever enoughinformationaboutits useis available,and
whenever it is deemedbeneficialto configuremoreof the
tree.Weshow thatwhile thetreesareindeedkeptsmall,due
to beingonly partiallyconstructed,theresponseto queriesis
verycosteffective.

Althoughnotnecessaryfor processingqueriesefficiently,
we show otheradvantagesto keepingthe treessmall,most
notably, savedpreprocessingtimeandsavedstoragespace.

To benchmark the performance of deferred, self-
organizingBSP treeson collision detectionor ray shooting
queries,we comparedthequeryansweringcostsof thede-
ferred,self-organizingBSP treesto thoseof somepublicdo-
mainBSP trees.Onthebasisof ourexperimentalresults,it is
clearthatdeferreddatastructuring,with re-organizationcan
minimizebothpreprocessingtimeandstoragerequirements.
Obviously, themainadvantageis thatthiscanbedonewhile
greatlyimproving queryresponsetime.

Wedeemthecombinationof deferreddatastructureswith
self-organizingdatastructuresworthy of further investiga-
tion,perhapsfor otherdatastructures.Moreover, in thecon-
text of BSP trees,potentialother domainswheredeferred,
self-organizingBSP treesmayprovebeneficialincludepoint
locationandrangesearching.
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BSP type treesize walk (ms) construct(ms) trackII (ms)

Standard 17442 2273 3025 390

Deferred 552 30 1793 271

(a)Castle- 4686faces

BSP type treesize walk (ms) construct(ms) trackII (ms)

Standard 270455 221058 238423 22470

Deferred 811 261 160841 531

(b) Houses- 28995faces

BSP type treesize walk (ms) construct(ms) trackII (ms)

Standard 15165 1312 1883 3925

Deferred 822 20 1502 480

(c) Barcelona- 5338faces

BSP type treesize walk (ms) construct(ms) trackII (ms)

Standard 48374 15132 17335 9436

Deferred 116 40 15803 140

(d) Temple- 28995faces

Figure4: Walkthroughcollisionexperimentalresults
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