
COMPUTER ANIMATION AND VIRTUAL WORLDS

Comp. Anim. Virtual Worlds (in press)

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cav.115
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

A fast triangle to triangle intersection
test for collision detection

Oren Tropp, Ayellet Tal* and Ilan Shimshoni
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

The triangle-to-triangle intersection test is a basic component of all collision detection data

structures and algorithms. This paper presents a fast method for testing whether two

triangles embedded in three dimensions intersect. Our technique solves the basic sets of

linear equations associated with the problem and exploits the strong relations between these

sets to speed up their solution. Moreover, unlike previous techniques, with very little

additional cost, the exact intersection coordinates can be determined. Finally, our technique

uses general principles that can be applied to similar problems such as rectangle-to-rectangle

intersection tests, and generally to problemswhere several equation sets are strongly related.

We show that our algorithm saves about 20% of the mathematical operations used by the

best previous triangle-to-triangle intersection algorithm. Our experiments also show that it

runs 18.9% faster than the fastest previous algorithm on average for typical scenarios of

collision detection (on Pentium 4). Copyright # 2006 John Wiley & Sons, Ltd.

Received: 13 July 2005; Accepted: 16 November 2005

KEY WORDS: triangle to triangle intersection; Collision Detection

Introduction

Collision detection is a fundamental problem in many

disciplines, including computer animation, virtual rea-

lity, robotics, computer simulations, solid modeling,

computational geometry and molecular modeling.1–5

Given two objects, in particular—two meshes, the goal

is to determine whether they intersect or not.

The naive approach of testing all the primitives (i.e.,

triangles) of one model against all the primitives of the

other, requires an immense number of triangle-to-trian-

gle intersection tests. Thus, many algorithms have been

devised to reduce this number by using hierarchical

data structures. See References 6 and 7 for a good

overview.

All these data structures reduce the number of triangle-

to-triangle intersection tests considerably. However, at

the bottom of the hierarchy, triangle-to-triangle collision

tests must still be performed. Moreover, these tests are

usually performed in close proximity or collision. Thus,

performing these tests rapidly is especially important in

worst case scenarios. This paper presents a new algorithm

for determining triangle-to-triangle intersection.

The brute force method for determining whether two

triangles embedded in three dimensions intersect re-

quires the solution of six sets of linear equations, each

corresponding to an intersection of one triangle’s edge

with the surface of the other triangle. A few faster

algorithms, which make use of the line of intersection

between the planes of the two triangles, have been

suggested.8–10 In Reference 8, Möller proposes an algo-

rithm that relies on the scalar projections of the trian-

gle’s vertices on this line. In Reference 9, Held discusses

a technique that first calculates the line segment inter-

section of one triangle with this line and then checks for

intersection between this segment and the other trian-

gle’s edges. Both methods have been further developed

to achieve faster and more reliable variants. The fastest

previous algorithm, which is an improvement of Refer-

ence 8, has recently been published by Guigue and

Devillers.10 Their technique relies solely on evaluating

the sign of orientation predicates (4� 4 determinants)

and does not require any intermediate constructions.

While the above algorithms look at the problem from

a geometric point of view, our viewpoint is algebraic.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2006 John Wiley & Sons, Ltd.

*Correspondence to: A. Tal, Department of Electrical Engineer-
ing, Technion—Israel Institute of Technology, Israel.
E-mail: ayellet@ee.technion.ac.il

Contract/grant sponsors: European FP6 NoE, Israeli Ministry
of Science, and Technion Research Fund; contract/grant num-
bers: 506766 (AIM@SHAPE) and 01–01–01509.



Our method starts from the linear equations used in the

brute force approach. Our key observation is that the set

of equations are strongly related to each other. Thus,

common elements of the different equations can be re-

used to speed up the solution, exploiting the linearity of

the matrix operations involved.

Although our algorithm focuses on triangle-to-trian-

gle collision tests, our technique is general and can be

applied to other problems of similar nature. Specifically,

our technique addresses problems which require the

solution of a group of equation sets of type Ax ¼ b,

where the columns of A and b are linearly dependent in

the different sets. For instance, rectangle-to-rectangle

intersection test can utilize our method as well.

In the case of triangle-to-triangle intersection, we

show that our algorithm performs less arithmetic opera-

tions than other known algorithms. In particular, it

performs only 95–97 additions, multiplications and

comparisons, compared to 114–144 in Reference 10

and 126–148 in the no-division version of Reference 8.

Moreover, our algorithm typically runs 18.9% faster

than the fastest previous method10 for a Pentium 4

and 11% for a Celeron. Finally, our algorithm can find

the exact intersection coordinates with a much lower

cost than previous algorithms.

The rest of the paper is organized as follows. The next

section presents the algorithm and analyzes the number

of operations it performs in comparison to previous

algorithms. The following section describes our experi-

mental results. We conclude in the last section.

Algorithm

Let A and B be two triangles in three dimensions. If A

and B intersect, then edges of one triangle intersect the

surface of the other. Naively, one could determine

intersection by checking separately all possible edge-

triangle intersections. Without loss of generality, let p1

and p2 be edges of triangle B having a common vertex P

and qi (1 � i � 3) be the edges of triangle A emanating

from vertices Qi (Figure 1). To find the intersection point

between the plane defined by p1 and p2 and edge qi, the

following set of equations needs to be solved:

Pþ �1 � p1 þ �2 � p2 ¼ Qi þ �i � qi ð1Þ

In order for the intersection point to reside inside the

triangle, the solution to this equation set should satisfy

the following constraints: 0 � �i � 1, �1; �2 � 0 and

�1 þ �2 � 1.

Obviously, six such intersection tests need to be

performed: three to check triangle A against the edges

of B, and three where the roles of A and B are reversed.

Thus, there are six equation sets.

The key idea of our algorithm is to save arithmetic

operations by reusing common elements and making

use of the linearity of matrix operations. Moreover, this

is done only for three equation sets and the results

obtained are used to complete the intersection test

differently.

The algorithm starts by partially solving the three sets

of equations that determine �i, 1 � i � 3. These sets

correspond to the intersections of the three edges of

triangle A with the plane of triangle B (Equation 1). The

choice of the roles of A and B is arbitrary. However,

these sets are not solved completely as only �i is

required at this stage. The values of �i can lead to a

fast rejection (i.e., no intersection). Otherwise, these �i’s

are used to construct the line segment of intersection

between A and the plane of B ( t
!

in Figure 1). Obviously,

any intersection between the triangles must lie on this

Figure 1. Problem setting.

O. TROPP, A. TAL AND I. SHIMSHONI
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2006 John Wiley & Sons, Ltd. Comp. Anim. Virtual Worlds (in press)



line. The problem is therefore reduced to a planar

intersection test between this segment and triangle B.

More precisely, the algorithm consists of the follow-

ing five stages. We elaborate below on the way each of

these stages is performed.

Stage1

Before we show how to perform the first stage effi-

ciently, let us re-write Equation 1 in its matrix form.

Let ri ¼ Qi � P, then Equation 1 becomes:

ðp1jp2jqiÞ
�1

�2

��i

0
@

1
A ¼ ðriÞ ð2Þ

Notice that the two first columns of the 3� 3 matrix in

Equation 2 are the same for 1 � i � 3. Defining the

matrix AðvÞ ¼ ðp1jp2jvÞ, our equations can be written

in the standard form

AðqiÞxi ¼ ri ð3Þ

where x ¼ ð�1; �2;��iÞ.
In order for the intersection point to reside inside the

edge qi itself, the solution to this equation set should

satisfy 0 � �i � 1. When this condition holds, �i is called

a legal �i.

The equation set is solved using determinants.

(An algorithm using Gaussian elimination is also pos-

sible but is somewhat less elegant.) That is, �i is

computed by �i ¼ � jAðqiÞj
jAðriÞj. We describe later how to

avoid divisions.

The determinants of matrices AðqiÞ and AðriÞ are

calculated through expansion by minors, by eliminating

the third column. In this case, the minors are the same in

all the determinants. This is so because p1 and p2 are the

first two columns in all the matrices. Therefore, the

minors need only be computed once. In addition, for

i ¼ 3,

q3 ¼ q2 � q1

Q3 ¼ Q1 þ q1

r3 ¼ P�Q3 ¼ P� ðQ1 þ q1Þ ¼ r1 þ q1

ð4Þ

Since the process of computing a determinant

through a column is linear, the determinants for i ¼ 3

can be found from:

jAðq3Þj ¼ jAðq2 � q1Þj ¼ jAðq2Þj � jAðq1Þj
jAðr3Þj ¼ jAðr1Þj þ jðAðq1Þj

ð5Þ

Since all the determinants on the right hand side have

been computed for i ¼ 1; 2, very little work is performed

for i ¼ 3.

In summary, in Stage 1 only two sets of equations,

rather than three, are used. Only one variable is com-

puted for each set. The minors are computed only once

and the third equation is solved using trivial linear

combinations.

Stage 2

If no legal �i exists, then all the vertices of triangle A are

on the same side of the plane B and thus, the triangles

are disjoint. This test is equivalent to half of the fast

rejection test of Reference 8–10.

If the determinants of all AðqiÞ are zero, then all the

edges of both triangles lie on the same plane and a

coplanar intersection procedure is called Reference 8.

We continue with the common case of non singular

matrices.

Stage 3

The goal of this stage is to construct the segment of

intersection between triangle A and the plane of B. Since

the segment of intersection lies on the line adjacent to

both triangle planes, the edges of triangle A cut the

plane of B (and the line of intersection) in exactly two

points. These two points are given by two legal �i’s and

lie at Qi þ �i � qi.

Consider the segment of intersection between triangle

A and the plane of B. Denote T the point of intersection

between an edge of triangle A and the plane of B and t
!

the vector connecting T to the second point of intersec-

tion (Figure 1). t
!

and T can be constructed as linear

combinations of the two legal �i’s, qi’s, and Qi’s. For

Algorithm 1 triangle-to-triangle intersection

1. Find the parameters �i, 1 � i � 3 using determinants.

2. If no legal �i’s exist, conclude that there is no

intersection and exit.

3. Construct the segment of intersection between

triangle A and the plane of B.

4. If this segment intersects triangle B, the triangles

intersect.

5. If desired, construct the segment of intersection

between the two triangles as linear combinations of

the parameters found.

TRIANGLE INTERSECTION TEST FOR COLLISION DETECTION
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2006 John Wiley & Sons, Ltd. Comp. Anim. Virtual Worlds (in press)



example, if �1 and �2 are legal, then T and t
!

are given

by:

T ¼ Q1 þ �1q1

t
!¼ �2q2 � �1q1

ð6Þ

Stage 4

There are two possibilities for an intersection between

the two triangles. Either the line segment ðT;T þ t
!Þ

intersects at least one of the three edges of B (Figure 2(a))

or it is completely contained in B (Figure 2(b)). In order

to find the intersections between the line segment and

the edges of triangle B the following three equations sets

need to be solved:

Pþ �1p1 ¼ T þ �1t

Pþ �2p2 ¼ T þ �2t

ðPþ p1Þ þ �3ðp2 � p1Þ ¼ T þ �3t

ð7Þ

The third Equation is for edge p3 ¼ p2 � p1 which

originates from vertex Pþ p1 (Figure 1). Observe that

though the vectors in Equation 7 are 3 � 1, they all lie on

the same plane and thus 2 � 2 equations sets are solved.

Applying determinants to solve the problem and ex-

ploiting the linearity of the determinants, computations

can be saved in a similar fashion to the technique

described in Equation 5.

Solving these sets of equations, it should now be

verified whether the solutions are legal. We first check

whether t
!

intersects one of the edges of B. A solution to

a set of equations finds the point of intersection along the

lines defined by t
!

and pi. The intersection lies within the

edge pi only if the solution satisfies 0 � �i � 1. Moreover,

this intersection lies within the line segment t
!

, only if

0 � �i � 1. Only when both conditions are satisfied, it can

be concluded that t
!

intersects pi. Let us define the point

of intersection between the lines of t
!

and pi as Xi. It

follows that Xi is given by

Xi ¼ Pi þ �ipi ð8Þ

where Pi is the origin vertex of edge pi. For example, in

Figure 2(a) X1 is a valid intersection of t
!

with p1, while

X2, the intersection of t
!

with p2, is illegal because it

occurs outside of the segment ½T;T þ t
!� (�2 > 1).

It remains to check the second case where t
!

is fully

contained within triangle B (Figure 2(b)). This case

occurs when the edges of triangle B intersect the line

defined by t
!

on both sides of T. Hence, it is detected by

checking whether the last stage has found two legal �i’s

having �i’s with different signs. For example, in Figure

2(b), X1 and X2 are on both sides of segment t
!

and the

segment of intersection is fully contained in B.

Figure 2. Intersection configurations.

O. TROPP, A. TAL AND I. SHIMSHONI
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2006 John Wiley & Sons, Ltd. Comp. Anim. Virtual Worlds (in press)



Stage 5

Finally, the optional last stage of the algorithm finds the

exact points of intersection from linear combinations of

the vectors and the parameters that have already been

computed. The end-points of the segment of intersection

between the two triangles lie along the segment defined

by T and t
!

. In Figure 2(b), the points T and T þ t
!

are

themselves the end points of the desired segment of

intersection and in Figure 2(a) X1 and T þ t
!

are the two

desired endpoints. Generally, the two endpoints are a

subset of fT;T þ t
!
;Xig, and can be computed from the

linear combinations described in Equations 6 and 8.

AvoidingDivisions

Divisions are typically considered to be 4–8 times

more expensive than other arithmetic operations.11

We describe below how divisions are avoided in our

algorithm.

The algorithm, as described, obtains �i by �i ¼ � jAðqiÞj
jAðriÞj

where the minus sign results from Equation 2. In order

for the intersection to be within edge qi, �i should satisfy

0 � �i � 1. This condition is mathematically equivalent

to the condition 0 � �i � jAðriÞj2 � jAðriÞj2. Divisions can

be avoided by checking directly whether

0 � �jAðqiÞj � jAðriÞj � jAðriÞj2.

A similar trick of checking the constraint on the

product rather than on the quotient is used when

checking the constraints on �i and �i in Stage 3 of the

algorithm.

�i is used for calculating T and t
!

. If �i is legal, then

edge qi cuts the other triangle’s plane at

T ¼ Qi þ �iqi: ð9Þ

Since �i � jAðriÞj2 is computed, rather than �i, all the

other elements need to be multiplied by the same

scaling factor jAðriÞj2. Thus instead of Equation 9 we get:

jAðriÞj2T ¼ jAðriÞj2Qi þ ðjAðriÞj2�iÞ � qi: ð10Þ

The result is that in the last stage of the algorithm, the

matrices are multiplied by a known constant s. Since

Ax ¼ b and sAx ¼ sb have the same solution, the solu-

tion of this scaled set of equations is a valid solution to

the original set.

If the exact points of intersection are necessary, they

are obtained by linear combinations. In this case two

divisions are necessary to take care of the above scaling

factor.

ArithmeticOperations

Our triangle-to-triangle intersection test algorithm per-

forms 95–97 additions, multiplications and comparisons

and does not perform any division. This is compared to

114–144 operations in Reference 10 and 126–148 in the

no division version of Möller8 (where absolute values

are counted as well). Table 1 summarizes the number of

arithmetic operations performed by our algorithm and

by other state-of-art algorithms.8,9,10,12

It is common to consider the time to compute multi-

plications, additions/subtractions and comparisons as

equal, since today’s computers perform all these opera-

tions in roughly the same time. Divisions, however, are

more expensive and are estimated to take as much as

4–8 times more than the other arithmetic operations.11

Experimental Results

Since branching decisions in the different algorithms

greatly change the number of operations actually used

during run time, Table 1 does not directly predict the

efficiency of the algorithms. It is therefore necessary to

run the different algorithms on typical scenarios and

measure their running times. In this case, not only the

effects of the different branchings in the codes are taken

into account, but also computer-dependent effects such

as pipelining and optimizations.

Typical scenarios mean that triangles should not

be generated randomly. After all, most systems use

Algorithm þ /� MUL CMP DIV ABS ¼

Held9 74/94 35/45 33/50 1 3 51
M˛ller�no div11 54 57 12/28 3/9 69/75
Guigue et al.10 62/76 43/52 9/16 � � 42/62
Ours 26/27 56/57 13 � � 31/35

Table1. Comparison of arithmeticoperations�ASummary

TRIANGLE INTERSECTION TEST FOR COLLISION DETECTION
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2006 John Wiley & Sons, Ltd. Comp. Anim. Virtual Worlds (in press)



triangle-to-triangle intersection tests within hierarchical

data structures. Therefore, our goal is to apply and

compare these tests within a common data structure.

We chose to use OBBTrees4 as our data structure and

RAPID as our software package.13 This is because of the

availability of RAPID and because it is widely used. It is

important to notice that for our own algorithm we

slightly changed the representation of data in RAPID.

While the original version maintains three vertices for

each triangle, our algorithm maintains one vertex and

two edges. The two representations require the same

storage space and are easily interchangeable.

Within RAPID, each time a triangle-to-triangle test

was called, the six triangle vertices were collected into a

file. We then ran the different triangle-to-triangle algo-

rithms on this set of triangles 105 times and running

times were measured.

The models on which we ran our tests are a torus

model moving on a spiky surface (Figure 3) and a pipes

model tumbling within a version of itself enlarged

fifteen times (Figure 4). Both models have been used

before to evaluate collision detection algorithms.4 The

running times were measured for several paths of these

complex and irregular models. Thus, the collection of

positions and orientations used is general and repre-

sents real-life situations.

The experiments were run on two configurations:

Pentium 4, 1.8GHz, Windows 2000 and the Microsoft

compiler and a Celeron 1.2Ghz, Windows XP, and the

Microsoft compiler. Double precision was used for the

variables.

Tables 2 and 3 show the results for path2 for the torus

and path1 for the pipes, both available online and

described in.13 As can be clearly seen from the tables,

the best previous algorithm is [10], which relies on

orientation predicates. Note that our algorithm outper-

forms [10] for all scenarios. For the Pentium 4 processor

the average improvement is 18.9% and for the Celeron

processor 12.6%.

It is interesting to note that our algorithm is faster

both for tests that result in intersections and for tests that

result in separations. However, its advantage is typi-

cally larger for intersections (except for the Torus model

on the Pentium).

This difference between intersection and separation

stems from a fundamental distinction between the algo-

rithms. The algorithm of 10 tries to find a separation and

decides on intersection only if all separation attempts

Figure 3. The Torus model.

Figure 4. The Pipes model.

O. TROPP, A. TAL AND I. SHIMSHONI
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2006 John Wiley & Sons, Ltd. Comp. Anim. Virtual Worlds (in press)



fail, which is the worst-case scenario for this algorithm.

Our algorithm, though, can exit earlier than the worst-

case scenario both for intersection and for separation.

This makes our algorithm more attractive in situations

where there are many intersections.

Degeneracies. Below we evaluate the performance

of the different algorithms for a couple of degenerate

cases: a vertex of one triangle is adjacent to the plane of

the other, and an edge one triangle is adjacent to the

plane of the other. These cases become harder when

there is an intersection or almost an intersection.

In our experiments, we generated 106 triangle pairs

within the unit cube for each degenerate case. We then

added to the coplanar vertices a vector in the direction

of the normal of the plane of the second triangle, multi-

plied by a value distributed uniformly in the range �".

Our choice of " ¼ 10�14 makes sure that all the algo-

rithms still make mistakes for a noise of �", but that the

error rate is significantly below 50%. The sign of "

determined the correct answer. The results are shown

in Table 4.

Our algorithm is slightly less robust than the other

algorithms for the case of coplanar edges. This is due to

Torusmodel

19566 tests 14244misses 5322 intersections
Algorithm Average test time AverageMiss time Average Intersect time

Pentium 4
M˛ller-NoDiv14 0.24ms 0.214ms 0.307ms
Guigue et al.10 0.238ms 0.229ms 0.264ms
Shen et al.12 0.332ms 0.312ms 0.387ms
Ours 0.181ms 0.169ms 0.214ms

Celeron
M˛ller-NoDiv14 0.588ms 0.56ms 0.662ms
Guigue et al.10 0.54ms 0.522ms 0.59ms
Shen et al.12 0.69ms 0.66ms 0.77ms
Ours 0.474ms 0.458ms 0.519ms

Table 2. Comparison of timings fordifferenttriangle-to-triangle collision tests�Torusmodel

Pipesmodel

97873 tests 63124misses 34749 intersections
Algorithm Average test time AverageMiss time Average Intersect time

Pentium 4
M˛ller-NoDiv14 0.414ms 0.392ms 0.453ms
Guigue et al.10 0.281ms 0.268ms 0.304ms
Shen et al.12 0.402ms 0.381ms 0.442ms
Ours 0.242ms 0.236ms 0.252ms

Celeron
M˛ller-NoDiv14 0.749ms 0.724ms 0.795ms
Guigue et al.10 0.603ms 0.579ms 0.647ms
Shen et al.12 0.799ms 0.768ms 0.856ms
Ours 0.567ms 0.559ms 0.582ms

Table 3. Comparison of timings fordifferenttriangle-to-triangle collision tests�Pipesmodel

TRIANGLE INTERSECTION TEST FOR COLLISION DETECTION
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2006 John Wiley & Sons, Ltd. Comp. Anim. Virtual Worlds (in press)



the fact that our algorithm is basically a construction

method. Results from the first stages of the algorithm

are the input to the last stage, so numerical errors

accumulate. However, note that the few percents

difference between the error rates is caused by a noise

of " ¼ 10�14. This level of accuracy is completely suffi-

cient within normal collision detection scenarios.

Conclusion

We have presented a method for determining the inter-

section between two triangles in three-dimensional

space, and if desired, finding the exact segment of

intersection with a minimal additional cost. Unlike

previous algorithms which are based on geometrical

methods, our viewpoint is algebraic.

Through the use of the linearity of the arithmetic

operations on the matrix defining the problem and the

linear relations between the columns of this matrix, the

process of detecting the intersection is greatly acceler-

ated. The principle of accelerating the solution of

strongly related equation sets is novel and can be

applied to other problems in geometry, such as 3D

polygon-polygon intersection test.

Our algorithm performs roughly 20% less arithmetic

operations than the fastest previous algorithm. It also runs

18.9% faster on Pentium 4 and 12.6% faster on Celeron

compared to the fastest previous method. In fact, the

algorithm usually excels in the case of intersection. This

suggests that as hierarchical data structures keep improv-

ing by bounding the geometric primitives more tightly,

our algorithm will become more advantageous, because a

larger percentage of the calls will result in intersection.

This advantage of the algorithm is also its drawback.

For applications other than collision detection, where

the triangles are in general position and not necessarily

in close proximity, it is preferable to use an algorithm

with a fast rejection test. Another drawback of our

algorithm is that it has a higher error rate in degenerate

cases, though the difference is marginal.

ACKNOWLEDGEMENT

This work was partially supported by European FP6 NoE grant

506766 (AIM@SHAPE), by the Israeli Ministry of Science, grant

01–01–01509, and by the Technion Research Fund. We are

grateful to the GAMMA group at UNC for allowing us to use

the RAPID software, the models and the images.

References

1. Barequet G, Chazelle B, Guibas LJ, Mitchell J, Tal A. BOX-
TREE: a hierarchical representation for surfaces in 3D. In
Proceedings of Eurographics, 1996; pp. 387–396.

2. Cohen J, Lin M, Manocha D, Ponamgi K. I-COLLIDE: an
interactive and exact collision detection system for large-
scaled environments. In Proceedings of the 1995 symposium
on Interactive 3D graphics; pp. 189–196.

3. Dobkin DP, Kirkpatrick DG. Fast detection of polyhedral
intersection. Theoretical Computer Science, 1983; 27: 241–253.

4. Gottschalk S, Lin MC, Manocha D. OBBTree: a hierarchical
structure for rapid interference detection. SIGGRAPH’96:
Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques ACM SIGGRAPH 1996; 30: 171–
180.

5. Klosowski JT, Held M, Mitchell JSB. Evaluation of collision
detection methods for virtual reality fly-throughs. The 7th
Canad. Conf. Computat. Geometry 1995; 14: 36–43(2): 205–
210.

6. Gottschalk S, Lin M. Collision detection between geometric
models: a survey. In Proceedings of IMA Conference on
Mathematics of Surfaces 1998; pp. 3–15.

7. Floriani De L, Puppo E, Magillo P. Applications of Computa-
tional Geometry to Geographic Information Systems, chapter 7,
Elsevier Science & Technology: 1999; 333–388.

8. Möller T. A fast triangle-triangle intersection test. Journal of
Graphics Tools, 1997; 2(2): 25–30.

9. Held M. ERIT a collection of efficient and reliable intersec-
tion tests. Journal of Graphics Tools 1997; 2(4): 25–44.

10. Guigue P, Devillers O. Fast and robust triangle-triangle
overlap test using orientation predicates. Journal of Graphics
Tools 2003; 8(1): 25–42.

11. Devillers O, Guigue P. Faster triangle-triangle intersection
tests. Technical Report 4488, INRIA, 2002.

12. Shen H, Heng PA, Tang Z. A fast triangle-triangle overlap
test using signed distances. Journal of Graphics Tools 2003;
8(1): 3–15.

13. http://www.cs.unc.edu/?geom/obb/obbt.html.

Authors’biographies:

Oren Tropp is an MSc student at the department of

Electrical Engineering, Technion. He received the BSc

degree in Electrical Engineering (Summa cum Laude)

from the department of Electrical Engineering, Technion

in 2001.

Algorithm vertexonplane Edge onplane

M˛ller-NoDiv11 26.7% 14.1%
Guigue andDevillers10 24.3% 16.4%
Shen et al.12 26.7% 14.9%
Ours 26.6% 18.8%

Table 4. Degenerate cases errorrate

O. TROPP, A. TAL AND I. SHIMSHONI
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2006 John Wiley & Sons, Ltd. Comp. Anim. Virtual Worlds (in press)



Ayellet Tal is a faculty member at the department of

Electrical Engineering, Technion. She holds a PhD in

Computer Science from Princeton University, an MSc

degree (Summa cum Laude) in Computer Science from

Tel-Aviv University and a BSc degree (Summa cum

Laude) in Mathematics and Computer Science from

Tel-Aviv University.

Ilan Shimshoni is a faculty member of the Department

of Management Information Systems at Haifa Univer-

sity. He holds a PhD in computer science from the

University of Illinois at Urbana Champaign, an MSc in

computer science from the Weizmann Institute of

Science and a BSc in Mathematics and Computer

Science from the Hebrew University in Jerusalem. His

research interests are in the fields of Computer Vision,

Robotics, and Computer Graphics specializing mainly

in applications of statistical methods in these fields.

TRIANGLE INTERSECTION TEST FOR COLLISION DETECTION
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2006 John Wiley & Sons, Ltd. Comp. Anim. Virtual Worlds (in press)


