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Abstract

This papemproposes simpleandfastoperatorthe“Hidden” Point
Remaal operator which determineghe visible pointsin a point
cloud, asviewed from a given viewpoint. Visibility is determined
without reconstructing surfaceor estimatingnormals.It is shavn
that extractingthe pointsthatresideon the corvex hull of a trans-
formedpointcloud,amountgo determininghevisible points. This
operatoiis general- it canbe appliedto point cloudsat variousdi-
mensionspnbothsparsenddensegointclouds,andonviewpoints
internalaswell asexternalto thecloud. It is demonstratethatthe

operatoris usefulin visualizing point clouds,in view-dependent

reconstructiorandin shadaev casting.
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1 Introduction

In thelastdecadean alternatve to meshesin the form of a point-
basedepresentatiofa pointcloud), hasgainedincreasingoopular
ity [Rusinkiewicz andLevoy 2000;Pauly andGross2001;Zwicker
etal. 2002; Alexa et al. 2003; Fleishmanet al. 2003; Alexa et al.
2004; Kobbeltand Botsch2004]. Point cloudsare 3D positions,
possiblyassociatedvith additionalinformation,suchascolorsand
normals,andcanbeconsidered samplingof acontinuoussurface.
This representatiolis extremelysimpleand e xible. Moreover, it
offers the additionaladwantageof avoiding connectity informa-
tion andtopologicalconsisteng.

This paperinvestigatesvisibility of pointclouds.Oneway to com-
putevisibility of apointcloudis to reconstructhe surface [Hoppe
etal. 1992; Bernardiniet al. 1999; CurlessandLevoy 1996; Carr
etal. 2001; Amentaet al. 2001; Amentaet al. 2002; Amentaand
Kil 2004;Fleishmaretal. 2005]anddeterminevisibility onthere-
constructedriangularmesh.Reconstructionhowever, is a dif cult
problem,boththeoreticallyandimplementation-wisewhich often
requiresadditionalinformation, such as normalsand sufciently
densenput.

Thekey questiorthatthis paperattemptgo answeiis how thevisi-
bility informationcanbedirectly extractedfrom a pointcloud. Ev-
idently, pointscannotoccludeoneanother(unlessthey accidentally
fall alongthe sameray from the viewpoint), andthereforeno point
is actuallyhidden. However, oncea surfaceis reconstructedrom
the points, it is certainlypossibleto determinewhich of the points
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Figurel: Inputto the operator— Are the objectslooking forwards
or backwards?

arevisible. This impliesthata point cloudinherentlycontainsin-
formationfrom which it is possibleto extract the visibility of the
points. Thechallengss to skip thefull reconstruction.

Supposehatwe are given a point cloud depictingan object,such
asthestatueof David or thebunry in Figurel. If all the pointsare
drawn, it is dif cult to determinewhethertheseobjectsare look-

ing forwardsor backwards. This paperdescribesan operatorthat
computesghe visibility directly from a point cloud. For instance,
after applyingthe operatoron the point cloudsof Figure1l, it can
be seenin Figure2 thatDavid (/bunry) is looking backwards.The

pointsneednotbeassociateavith normalinformationandneednot

besampleddensely

We shaw thatthe operatomproposedn this paperis simpleandfast.
It canbedescribedn just a handfulof Matlablinesandits asymp-
totic complity is O(nlogn), wheren is the numberof pointsin

the point cloud. Moreover, it cancalculatevisibility for denseas
well assparsepointclouds for whichreconstructioror othermeth-
ods, might bedif cult. In addition,the correctnessf the operator
is proved in the limit andtheoreticalguaranteesire provided for

nite sampling.

Otherbene ts of the operatorare that it doesnot dependon the
screenresolution(sinceit operatesn objectspacg; a changein
camerarotationor eld of view doesnot requirere-calculationof
visibility; it worksin variousdimensionsandtheviewpointcanbe
positionedeitherwithin or outsidethe point cloud.

Calculatingvisibility directly from a point cloud is an interesting
problemin its own right. However, it canbe utilized in a variety
of applications We shaw thatit canbeusedto visualizepoint sets.
Moreover, withoutadditionalcost,it canproduceaview-dependent
“quick-and-dirty” reconstructioronline. Finally, realistic shadev
castingcanbeachievedin objectspacen interactve time.



Figure2: Outputof the operator They areheadingobackwards!

Thecontribution madein this papetis thustwofold: First,thepaper
presentsa general fast,and simple operatorfor determiningvisi-
bility of pointsin variousdimensionsand provessometheoretical
guaranteesSecondthe paperdemonstratethe utility of the oper
atorin visualizingpoint clouds,in view-dependenteconstruction,
andin shadev casting.

The restof the paperis structuredas follows. Section2 brie'y
discusseselatedwork. Section3 describeghe proposedperator
Section4 proves somepropertiesof the operator Section5 dis-
cussesmplementationand demonstrategesultsand applications.
Section6 concludegshe paper

2 Related work

Visibility determinationhas beena basic problemin computer
graphicsfrom its early days[Appel 1968; Sutherlandet al. 1974;
Funkhouseret al. 1992; Greeneet al. 1993; Bittner and Wonka
2003;Cohen-Oretal. 2003;Leyvandetal. 2003]. It is importantin
a variety of applications,jncluding rendering,animationandsim-
ulation, security androbotics. However, while mostof the work
in computergraphicsdetermineghe visibility betweenpolygons,
the purposehereis quite different. Our operatotintendsto nd the
pointsthatwould be visible, if the surfacethey are sampledrom,
existed.

Thoughcomputingthecorrectvisibility is usefulin variousapplica-
tions, in point-basedepresentationd hasbeenaddressednainly
within rendering,whereit is considerech major challenge{Sainz
et al. 2004]. Here, visibility computationis usually performed
during ray tracing [Wald and Seidel2005]. Sinceboth raysand
pointsare singularprimitives, this requiresthe algorithmto either
trace“thick” rays[Schau erandJenser2000]or use* nite-area”

points[Rusinkievicz and Levoy 2000; Dutré et al. 2000; Zwicker
etal. 2001;Wu andKobbelt2004; Guennebauét al. 2004; Guen-
nebaudetal. 2004]. The mostcommonapproachesplatthe points
into a Z-buffer [SainzandPajarola2004;Dachsbachegtal. 2003].

This paperattemptsgto solve the problemof visibility regardlessof
rendering.Moreover, the aim is to avoid the two assumptionshat
are madein mostrenderingpapers— that the points satisfy sam-
pling criteria, suchasthe Nyquistcondition,andthatthe pointsare

associatedvith normals(or thatthe normalscanbe estimated).n
acoupleof recentworks, it becomesvidentthatit is importantto
be ableto handlepoint cloudsthat are not well sampledand are
notinterpretedn ary way (suchasby meshingor estimatingnor
mals)[WimmerandScheiblaueR006;Co 2006]. Finally, we wish
to supportvisibility calculationby rigoroustheoreticaguarantees.

Anotherrelated yetdistinctproblemis surfacereconstructiorirom

point clouds, which hasreceved considerableattention. Differ-

ent approacheiave beenproposed,such as representationdy
implicit functions[Hoppe et al. 1992; Carr et al. 2001; Ohtale
et al. 2003], by Moving LeastSquaregAlexa et al. 2003; Fleish-
manetal. 2005],emplg/ing Voronoi/Delaunayechnique$Amenta
et al. 2002; Amentaet al. 2001; Mederoset al. 2005], and oth-
ers. Someof the methodsare supportedby theoreticalresults,
e.g.[Amentaetal. 2001],while otherssacri ce theoryandinstead,
optimizefor high speedg.g.[Ohtake etal. 2003].

The currentpaperattemptsto determinevisibility, while skipping
thereconstructiophase Neverthelesswe will shav thatouralgo-
rithm canbe usedfor view-dependenteconstructionin this case,
bothspeedandtheoreticakupportcanbeachiesed.

3 The HPR operator

Givenasetof pointsP= fpjl i ng AP, whichis consid-
eredasamplingof a continuoussurfaceS, andaviewpoint(camera
position)C, our goalis to determine8p; 2 P whetherp; is visible

fromC.

Straightforvard solutionsare boundto fail. Calculatingthe line-
of-sightfrom C to pj is not helpful, becauseexceptfor degenerate
casesa pointis alwaysvisible. We thereforeneedto de ne when
apointis consideredisible. Obviously, a sensiblecriterion of vis-
ibility mustrelateto the densityof the sampling.SupposéhatP is
ar-sampleof S i.e., if we surroundeachsamplepoint p; 2 P by
anopenball of radiusr , thesurfaceSwill becompletelycontained
within theunionof theseballs. A simplede nition of visibility then
impliesthat p; is visibleif it doesnotbecomeoccludedby another
pointwhenwe perturbits positionanywherewithin theball. While
this de nition workswell for surfacesthatareperpendiculato the
line of sight, it fails whenthe surfaceis oblique,sincein this case,
a smallperturbationcould make a point occludedby anothermpoint
from the samesurface(e.g.,whenthe surfaceis planar). We could
overcomethis if we knew the normalto the surfaceat eachpoint,
but we wantto avoid estimatingthe normal.

We seekanoperatorthathasthefollowing properties:

1. Correctnessin thelimit, asthedensityr ! 0, apoint p; on
Sshouldbe marked visible by the operatorif andonly if it is
indeedvisible.

2. The operatorshouldhandleoblique surfaces while avoiding
to computethe surfacenormalslocally.

3. The asymptoticcomplity andthe runningtime shouldbe
reasonablegvenin software.

This sectionintroducesan operator denotedas the hidden point

remoal (HPR) operator which satis es the abave requirements
(proved in the next section). The operatorconsistsof two steps:
inversionandcorvex hull constructiongdiscussedbelow.

1. Inversion: Given P andC, we associatevith P a coordinate
systemjn whichtheviewpointC is placedattheorigin. We seeka
functionthatmapsa point p; 2 P alongtheray from C to p; andis
monotonicallydecreasingn jj pijj. (jj jj isanorm.)



Thereare variouswaysto performinversion. Here, we focuson
spherical ipping, whichwas rst presentedh [Katz etal. 2005]in
adifferentcontext. Considera D-dimensionabkpherewith radiusR,
centeredat the origin (C), andconstrainedo includeall the points
in P. Sphericalipping re ects a point p; 2 P with respecto the
sphereby applyingthefollowing equation:

R ¢
= f i) = Pit+ 2 R i - 1
b= f(p)=p+ 2 upm)”piJJ @)
Intuitively, spherical ipping re ects every point p; internalto the

spherealongtheray from C to pj to its imageoutsidethesphereas
illustratedin Figure3.

Figure3: HPR Operator- Left: sphericalipping (in red)of a2D
curwe (in blue)usinga sphergin green)centeredat the view point
(in magenta) Right: backprojectionof the corvex hull. Notethat
thisimageis usedonly for illustration;in practice Ris muchlarget

Notethatthereareotherpossibleinversionfunctions.For instance,

afunctionthatseemso achieve roughlythesameeffect, is givenby

thefollowing expressionwhereg> 1 is aparameteandjj pijj < 1:
pi .

iipiji9

f(p) =

2. Convex hull construction: Denoteby P the transformedpoint
cludof P: P= f = f(pi)jpi 2 Pg. Calculatethe corvex hull of

P~ fCg, i.e., the setthat containsthe transformedpoint cloud and
the centerof the sphere.

Themainresultof the pgperis thatextractingthe pointsthatreside
on the corvex hull of P~ fCg amountsto determiningthe visible
points. (The inclusionof C is importantsince pointson the back
sideof the objectmay otherwiselie on the corvex hull, whenC is
externalto P.) We statethis asa de nition andexplaintheintuition
hereafterIn the next sectionwe prove someproperties.

De nition 3.1 A pointpi 2 Pis marledgisible fromC if its in-
vertedpoint f lies ontheconvex hull of P~ fCqg.

The HPR operatorcan be appliedin ary dimension. However, it
is bestunderstoodn 2D. Considera point p; 2 P. Without lossof
generality p; lies on the X-axis. Using a polar coordinatesystem
(r; q), we canwrite p; = (ri; 0), wherer; is thedistanceof p; from
C, andthe anglewith the X-axisis 0. Considerthe straightline P
that passeghrough py andcreatesan angleb with the X-axis, as
shavn in Figure4.

Wewishto nd thecureL = (r(a);a), whichis the sourceof b,

i.e., the curve thatis transformedo R by sphericalipping. Using
theLaw of Sineswe get:

2R 1 _ 2R r(a).

si(p a b)  sinb 2)

Figure4: L is transformedo R by sphericalipping.

Consequently

(ri 2R)sinb

L=(@)ya)= R+ =gy

a): 3)

L passeshroughboth p; andC. In Cartesiarcoordinated. is ex-
pressedby a quartic polynomialin x andy. Figure5 illustrates
how the shapeof L changesasa function of angleb. Theregion
boundeddy L andthe X-axis getssmallerasb getslarger.

12

Figure5: The shapeof L for differentvaluesof b (in degrees),
wherep; = (10;0), R= 30.

L andthe X-axis de ne theemptyregion associatedvith p;. “How
much” p; is visible, dependon the size of the region. The larger
the size,the “more visible” p; is. Theimportantpropertyof HPR
is thatthis sizeis adaptvely determinedy p;'s neighboringpoints,
asexplainedbelow.

For every given point p;, thereexist two specialpointson either
sideof P, pj andpy 2 P. Theregion boundedbetweerthe curves
inEq.3,Lj= (rj(aj);aj) from p; throughp; andLy = (rk(ax); ax)
from p; throughpy, is thelargestpossibleemptyregion,asdemon-
stratedn Figure6.

From Equation3, it canbe deducedhat the largestregion corre-
sponddo thesmallesth. Thismeanshatb; andby thatcorrespond
tothelargestpossibleemptyregion, arethesmallesipossiblefor p;.
Notethatbj andby canbeextractedfrom Equation 3.

For p; to bevisible, thesumof b; and by shouldsatisfybj + by
cong (i.e.,alargeemptyregionis associatewith p;). In effect, this



Be=(R(a L

(a) pi is visible

B=(x{a) g

(b) pi is hidden

Figure6: Theemptygrayregion betweerl j andLy, asde ned by
thevaluesof bj + by.

conditionde nesathresholdonthesizeof theregion for whichthe
pointis consideredisible.

Settingcond = p meansthat computationallythereis no needto
nd for eachpointtheneighboringpoints pj and py thatmaximize
the emptgregion size. Instead,it sufces to calculatethe convex

hyll of P~ fCg. Thisis sobecausgointfy is ontheconvex hull of
P~ fCgif andonly if all the pointsof P~ f Cg resideto onesideof
the half-spacesle ned by pi; j and fx; . In our case sincethe
region betweerL j andL is empty theregion on thefar sideof ID,

andlf, mustbe empty(thegrayregionsin Figure6).

This obsenation is importantcomputationallyand is the reason
why the HPR operatoris so ef cient. Without the computationof

the convex hull, p; and py would have to be found8p; 2 P, mak-
ing the algorithmquadratic(andin 3D even cubic, althoughit can

potentiallybe spedup by usingfastnearesneighbortechniques).

Insteadall thatneedgo bedoneis to computethe corvex hull and
considera point p; visible if fp is on the corvex hull of B. Thus,
the HPR operatorde nes boththe shapeandthe sizeof the empty
region, 8p; 2 P.

The above explanationcan be extendedto 3D. In this case,the
emptyregionbetweenp; andC is de ned by a3D surfaceenclosing
avolume,ratherthana curve (L [ L) enclosinganarea.Also, in
3D, insteadf usingtwo neighboringooints,atleastthreeneighbor
ing pointsde ne thesurfaceenclosingheemptyvolume.However,
our solutionthatusesthe corvex hull remainsghe same.

It is worth mentioningthateventhoughp is a constanthreshold,
the thresholdfor visibility canbeindirectly modi ed by changing
R, theradiusof the sphere.A largerR relaxesthe visibility condi-
tion andmorepointsareconsideredsisible. Moreover, in the gen-
eral case whendifferentfamilies of inversionfunctionsare used,
the above explanationwill remainthe same while the shapeof L

will change.

4 Properties of the HPR operator

This sectionpresentsaindprovessomepropertieof the operator It
addressethetheoreticalguaranteesf theoperatorthefactorsthat
in uence thechoiceof the parameteR, andthe compleity. While
we focushereon a particularinversionfunction spherical ipping,
similarresultscanbederivedfor other relatedfamiliesof inversion.
The theoremsandlemmasare statedand explainedin the section,
while the proofscanbefoundin the Appendix.

Throughoutthe sectionwe usethe notion of density which is for-
mulatedbelow.

De nition 4.1 sample density (density): A sampleP Sis a
r samplefromsurfaceSif 892 S9p2 Ps.t.jg pj<r.

The rst issueconcernghe correctnes®sf the operatorin the case
that the surfaceitself is given (i.e., P is a O-sampleof 9). It is
shawvn below thatin this case gvery point marked asvisible by the
operator(De nition 3.1),is indeedvisible. Moreover, in the limit,

whenR! ¥, everyvisible pointwill bemarledvisible.

The next issuerelatesR to the local curvaturethat permitsvisibil-
ity. Thisprovidesalocalanalysiof visibility, in whichwe consider
occlusionby (in nitesimally) closepointsonthesurface while dis-
regardingocclusionsy remotepoints. Speci cally, it is shavn that
givenR, all the corvex points,aswell asconcae pointswith suf-
ciently small cunature,may be marked visible by our operator
This implies in particularcorrectnesgor convex surface patches
andfor slantedplanarsurfacesatary valueof R.

Thethird issueregardstheoreticaguaranteeshenthe givensetof
pointsP is a r -sampleof Swith r > 0. Sincein this caseit can
nolongerbetruethatevery pointmarkedby the operatorasvisible
is indeedvisible, a morerealisticvisibility is de ned, denotedas
e visibility.

De nition 4.2 e visible: Apointp2 Pise visibleif 9q2 AP
s.t.jg pj < eandqisvisiblefromC. In otherwords,moving p in
a distanceshorterthane will maleit visible

It is provedthatfor every R, thereexistsan e for which every point
that the operatormarksis e visible. Moreover, with certainre-
strictions,for every e> 0, thereexistsachoiceof R thatguarantees
e visibility.

Finally, the sectiondiscusseshe choiceof R andthecompleity of
theoperator

Correctness when r = 0: Thenext two lemmasassumehatthe
inputto theoperatoiis asurfaceS, aviewpointC, andaradiusR. It
is furtherassumedhatthereexistsagap T betweerthe viewpoint
andtheobject: T = inffk p Ckjp2 Sg> 0. (This assumptioris
essentiabecauseointsthatare very closeto C may occludeex-
tremelylarge sectionsof thespace.LetV  Sbethesetof visible
pointsfromC andHr  Sbethesetof pointsmarkedvisible by the
operator The two lemmasimply thatthe operatoris conserative
andcorvergesto the correctsolutionasR approaches nity .

Lemma4.1 Hr V, i.e, everypoint marked visible by the HPR
opeftor is indeedvisiblefromC.



Lemma4.2 limg 1 y Hr=V,i.e., assumingl > 0, whenR! ¥,
thesetof visiblepointsmarkedby HPRis equalto the setof visible
points.

R and the local curvature: Fora nite valueof R, we canfurther

analyzewhich pointswill be marked visible by the HPR operator

by consideringhein uence of thecurvatureontheresults.\We start

again with the intuition. It is straightforvard to seethat oblique

planarsurfacesare correctly handledby the HPR operator since

spherical ipping mapssuchsurfacesto corvex structures.Han-

dling concae sectionsof a surface,in contrast,is affectedby the

local curvature. Below, we provide a derivation of the permissible
cunatureasafunctionof theradiusR, thedistance from thepoint

p to theviewpointC, andtheorientationof the corvex hull through

b, b (Figure4). Thederiationis generalyeta particularlysimple

expressionis obtainedwhenthetangento a pointis perpendicular
to theline of sightfrom this point.

Lemma 4.3 LetSheanin nitesimal surfacepatch aroundp. Then
p 2 Hr if andonlyif thecurvatuek at p satis es:

4R(2R r)cofb+ 2Rr

o, (r 2R? 32
4ARr 4R-+ “SZb

S

k<

In the casethat b = p=2, which correspondgo the casethat the
tangent to the surfaceat p is perpendicularto the line of sight,

2R.
k< &

Thisimpliesin particularthatcorvex shapesndslantedplanesare
correctlyhandledfor ary choiceof R, andthatpointson concare

section®f asurfacearehandledcorrectlyaslongasthecurvatureis

sufciently low (exceptwhenremotesectionof thesurfacehappen
to fall closeto the line of sight throughthosepoints). Note that
in higherdimensionsall sectionalcunaturesmustnot exceedthe
bound,i.e., this boundis on the maximalcurvature. The casethat
a patchis perpendiculato the line of sightalsodemonstratethat
the permissiblecurvaturegrows with R. Thus,asR increasesmore
pointsbecomevisible, until all (truly visible) pointsbecomevisible

by theHPR operator

Theoretical guarantees r > 0: In the restof the section,it is
assumedhatthe givensetof pointsP is a r -sampleof Swith r >
0. Recallthata pointis e visible, if moving it by e will male it
visible. Usingthisde nition, it is possibleto extendthecorrectness
lemmasstatedabove to the morepracticalcaseof thegivendata.

Assumingthat the sampleis sufciently densewe shav that for
every R, thereexists an e, suchthatevery point marked visible by
the operatoris e visible. Moreover, for sufciently large e, there
exists R, suchthat every point marked visible by the operatoris
e-visible.

LetVe P bethesetof e-visiblepointsfrom C (pointsvisiblein S).
As before,we assumeéhatthe distanceof Sto C is atleastT > 0.

Theorem4.4 Assumehatthesampléds sufciently densethenfor
everyR,ther existse> O sud thatHg ~ Ve.

Theorem4.5 Assumehatthesamplés sufciently densethenfor
sufciently large e> 0, there existsR> OsudthatHgr ~ Ve.

The proofsof thesetheoremsmply thatfor a constanwalueof R,
asr decreases smallervalueof e is obtained.

Choosing R: The proofsof the above theoremsshow the rela-
tion betweerthe densityr , R, ande-visibility. In particular these
factorsareessentiafor choosinga suitableR.

As R increasesimore points passthe thresholdof the convex hull
andhencearemarked visible. For instanceasR! ¥, r; in Eq.3

becomesmegligible, bj; by ! p=2, andall the points are marked
visible. This is so becausehey aretransformedoy spherical ip-
pingto aspherawith anin nite radiusandthusresideontheconvex
hull. ThereforealargeR s suitablefor densepoint clouds,while a
smallRis suitablefor sparseclouds.

Thisis illustratedin Figure 7, wherethe percentof falsepositives
andfalsenegativesare plottedasa function of log(R). With small
R, pointsvisible in Smaybe marked non-visibleby HPR,whereas
with largeR, non-visiblepointsmaybemarkedvisible. Thisis also
illustratedin Figure8. A limitation of the algorithmis that even
whenusingthe optimal R, a few misclassi edpoints, mostly near
the silhouettesand deepconcaities, might remain. However, the
numberof suchpointsdecreasewith r .

—e— All falses
—e— false positive
49y —e— false negative p
p
S
S
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1 L
»
0 * | . .
3 3.2 3.4 3.6 3.8 4
Log(R)

Figure 7: False positves/ngatives and their sum, of a specic
model (Bimba, 70K points). The automaticallycalculatedR is
shown in brown.

Thepermissibleeurvature(Lemmad.3)canbeusedo determinean
upperboundon R. Assumean objectof thicknessd is positioned
at a distancer from C. Considerthe parabolay = r  (d=r 2)x2,
whoseape is at the backof the object,which createsan opening
of 2r (the expecteddistancebetweentwo samplepoints) on the
frontal surfaceof the object. The cunatureat the apex x = 0 is
2d=r 2. Comparingthis to the permissiblecurvature 2R=r2, it is
concludedhatR canbeboundedR< dr2=r 2

In our experimentsR is determinecautomaticallyasfollows. An
additionalviewpoint, oppositeto the currentviewpoint on theline
connectinghe original viewpoint to the object's centerof massis
set. Then,R is determinedby maximizingthe numberof disjoint
pointsthatareconsideredisible by bothviewpoints. Gradientde-
scentoptimizationis used[Forsytheet al. 1977]. The intuition is
thatno point shouldbe visible simultaneouslyto both viewpoints.
Figure7? illustratesthatthecomputedRis very closeto theoptimum
(theminimumvalueof thebluecure).

Comple xity:  Finally, the operatompresenteds very ef cient. Let
n be the numberof pointsin the point cloud. The rst stageof
theoperatorsphericalipping, takesO(n). Thesecondstage con-
vex hull computation,takes O(nlogn) for point setsin 2 and 3-
dimensions.Therefore the asymptoticcomplexity of the operator
is O(nlogn).

5 Implementation and applications

A majoradvantageof theHPRoperatoiis thatit is extremelysimple
to implement.Algorithm 1 shavs the Matlabcodethatimplements
the HPR operator (Matlabitself calls the Qhull algorithm[Barber



Figure 8: Top: The original point cloud (left) andthe resultus-
ing the automaticallycalculatedR (log(R) = 3:77) (right). Bot-
tom: ResultsgeneratedisingsmallerR (log(R) = 3) leadto anin-
creasedumberof falsenegatives(missingpointsbelow the chin),
while resultsgeneratedisinglarger R (log(R) = 4) leadto anin-
creasedhumberof falsepositives(excessie pointsat the bottomof
thechest).

etal. 1996].) The codeis very simpleandshortandworks for D-
dimensionapointclouds.Theonly parametethattheoperatoigets
is usedto computeradiusR. This parametecanbeeithersetby the
user or R canbecomputedautomaticallyasdiscussedh Sectiord.

Algorithm 1 Matlabcodefor HPR

1: functionvisiblePtinds=HPR(p,C,param)
2: dim=size(p,2);
3: numPts=size(p,1);
% Move the pointss.t. C is the origin
4: p=p-repmat(C,[numPts]);
% Calculatgj pjj
5: normp=sqrt(dot(p,p,2));
% Sphereadius
6: R=repmat(max(normp)*(10”param),[numR{g,
%Sphericalipping
7: P=p+2*repmat(R-normp,[dim]).*p./repmat(normp,[Him]);
%corvex hull
8: visiblePtInds=unique(caulln([P;zeros(1,dim)]));
9: visiblePtinds(visiblePtinds==numPts+1)=[];

Determiningthevisibility of pointcloudscanpotentiallybeutilized
in visualization reconstructionshadev casting renderingcamera
placementetc. We illustrate the usefulnesf the HPR operator
in threeapplicationsyvisualizationof point clouds,view-dependent
reconstructionandshadav casting.

5.1 Visualizing point clouds

Visualizingtheraw datais importantduringlong scanningessions,
in CAD, in simulationsof scienti c visualization etc. Figures9-10
shaw severalresultsof the HPR operatoywhich is appliedto well-
known scannedpoint clouds. The point setsare renderecbefore
andafterapplyingthe operator

(a) dragon(437kpoints)

(c) Ilgea(non-uniformsampling,33.6kpoints)

Figure9: Pointcloudvisualizationbefore(left) & after(right) HPR.

Beforeapplyingthe operatorit is hardto distinguishbetweertwo
possiblepositionsthat producevery similar projections— looking
towardsor away from the camera(up to small differencesdueto
perspectie projection). This problemis resoled usingHPR. For
instancewhile theoriginal pointsetof Igeashavs boththescarand
thehairdoandit is hardto saywhetherthe statudooksforwardsor
away, after applyingthe HPR operator only the scarshavs andit
is obviousthatlgeais looking towardsthe camera.

Figure11 shaws theresultof the operatorwhenappliedto sparse
point clouds. This resultdemonstratewell the strengthof the op-

erator wherethe alternatve of fully reconstructinghe surfacefor

determiningvisibility, mightfail. Note,for instancehow only the

visible subsetf eachring of pointson thejet ghter is left when
theHPRIis used.

The operatortakes up to a few secondso run on large models,
on Intel Core2,2.14Ghz,1Gb RAM. The calculationrangesbe-

tween23 millisecondgfor thejet- ghter (2370points),1.3seconds
for David (258K points),and3.65seconddor the oil pump(542k

points).

5.2 View-dependent reconstruction
Surfacereconstructiorfrom point cloudshasrecevedconsiderable

attentionin recentyears. It is describedin a variety of papers,
andgeneratepretty resultsiHoppeetal. 1992; CurlessandLevoy



(a) carter(25k points)

(b) oil pump(542kpoints)

Figure 10: Point cloud visualizationbefore (left) & after (right)
HPR.

(a) sparséblock (2132points)

(a) jet- ghter (2370points)

(b) bottle (5540points)

Figurell: Visualizationof sparsenodelshefore& afterHPR.

1996; Bernardiniet al. 1999; Amentaet al. 2001; Adamsonand
Alexa 2003; Ohtale et al. 2003; Amentaand Kil 2004; Mederos
etal. 2005;Fleishmaretal. 2005;Wald andSeidel2005]. However,
thealgorithmsareoftennotsimpleto implementandboththeirrun-
ning timesandtheir asymptoticcompleities mightbe high.

Insteadof fully reconstructingthe surface, we proposea view-
dependenbn-the- y reconstructionywhich providesa “quick-and-
dirty” visualizationof the surfacefrom which the pointsare sam-
pled,asillustratedin Figures12—13.

Figure 12: “Quick-and-dirty” view-dependenteconstructionof
David (258K points)andthe skeletalhand(327K points).

Figure13: Two differentview-dependenteconstructiorof Bimba.

View-dependenteconstructioris performecby displayingnotonly
the pointsresidingon the corvex hull of P[ C, asdescribedsofar,
but alsothetrianglesthe corvex hull consistof. Long artifacttri-
anglesareeliminatedusingathresholdonthe edgelength,asillus-
tratedin Figure 14. It is importantto notethatthe reconstruction
doesnotincreasahe compleity of thealgorithm,sincethe cornvex
hull is computedanyway.



Figure14: Reconstructiobeforethe removal of the artifacttrian-
gles(with edgedongerthan2.5%of the diameter).Theblue point
is theviewpoint of Figure13(a).

Placingadditionalviewpointsaroundheoriginal viewpointcanim-
prove theresultsaroundthe silhouettes A pointis thenconsidered
visible whenit is visible from eitherof the viewpoints.

Thoughthe resultsare not full reconstructionsthey certainly suf-
ce for quickly perceving the surface the points representand
they areproducedvery ef ciently. For comparisonthe algorithm
of [Mederosetal. 2005]hasO(n?) compleity andtakesa minute
to run on a 180,000 point cloud on a 2.4GHzPC, while our algo-
rithm hasO(nlogn) compleity andtakeslessthana secondo run
the samesizepoint cloudon a2.14Ghzintel Core2. Similarly, ap-
plying MPU interpolation[Ohtake et al. 2003]to the Buddhapoint
cloud (543K) takes 6:53 minuteson a 1.6GHz mobile, while our
operatoitakes4.15seconds.

5.3 Shadow casting

Anotherapplicationof the operatoris shadev casting[Woo et al.
1990;Hasenfratztal. 2003]. UsingHPR, it is possibleto demon-
straterealistic shadev castingfor meshesjn interactve time, in
Matlah The shadav castingis calculatedin object spacerather
thanin screenspace thusit dependseitheron screenresolution
nor onthez-buffer accurag.

Givenamesh shadav castingis computeddy assigninghe center
of thesphereC to the positionof thelight andapplyingHPRto the
meshvertices. A brightnesssalueis assignedo eachmeshvertex
accordingo its calculatedvisibility. A visiblevertexis givenahigh
brightness/alueanda non-visiblevertex is givena low brightness
value. To producesoft shadevs, thesevaluesare smoothedsuch
thatthebrightneswalueis affectedby theneighboringvertices.For
the nal rendering,the brightnessvalue is interpolatedalong the
faces.(Note thoughthat only the verticesare usedfor calculating
thebrightnessralues.)

Figure 15 shavs a coupleof resultsof shadev casting. In these
examples,speculaitighting is turnedoff anda singlelight source
is used. Thereis no limitation, however, on the numberof light
sourceghat canbe used. Note that the methodworks even when
thereareholes,wherethelight penetrateshe holes.

Figure 16 compareghe resultsof shadav casting,asachiezed by

applyingthe HPR operatoyto thosecomputedexactly. In thelatter

case(exact shadavs), the intersectionof a ray from the vertex to

thelight sourceis calculatedfor eachvertex. If theray intersects
thesurface thevertex is shadaved.

Figurel5: Shadaev castingin softwareusingHPR.

6 Conclusion

This paperproposes simpleandfasthiddenpoint removal oper
ator, which determineghe visible pointsfrom a given viewpoint.
The operatoris provably correctin the limit andtheoreticalguar
anteesare given for the nite-sampling case. It canbe appliedto
denseaswell as sparsepoint cloudsin variousdimensions. The
operatorcanbe easilyimplementedisingexisting libraries. It runs
in O(nlogn), wheren is thenumberof pointsin the point cloud.

The paperdemonstratethat without additionalcost, this operator
canbeusednotonly for visualizingpoint clouds but alsofor view-
dependenteconstructiorandfor shadaev casting. We believe that
otherapplicationanayalsobene t from the operator

In the future, we intendto investicatevisibility undermotion. The
goalis to construcdatastructureghatfacilitatethe computatiorof
visibility whenasubsebdf thepointschange®rwhentheviewpoint
changese.qg.,by representingointsaccordingto their distanceto
thecorvex hull. Onepossibledirectionis the useof kinetic corvex
hulls [Abam andde Berg 2005].
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A Proofs of the operator' s properties
This appendixprovidesthe proofsof the propertiesof the operator

Lemma4.1Hgr V, i.e, every point marked visible by the HPR
opeator is indeedvisiblefromC.

Proof: Let p2 Hr. Supposeby way of contradictionthat p 62.
Then, the ray from C to p passeshroughsomepoint p2 S that
hidesp. After inversion,p®will befartheraway thanp from C on
this ray, since ipping is strictly monotonicallydecreasingalong
eachray from C. Thus, p is internalto thecorvex hull. 2

Lemma4.2limr 1 y HrR=V,i.e, assumingdl = inffk p Ckjp2
Sy > 0, whenR! ¥, the setof visible points marked by HPR is
equalto thesetof visible points.

Proof: Onesideof theequalitywasprovedin Lemma4.1. To prove
the otherside,we will shav thatif p2 V, thenp 2 limg 1 ¥ Hr.
Without lossof generalitylet p = (r;0) (in sphericalcoordinates),
i.e.,pliesontheX axis.Recallthatweassumehat8q= (rq;q) 2
Srnrg T.

Then, applying spherical ipping to p andanotherarbitrary point
g2 Swegetf(p)= (2R r,0) andf(g)= (2R rq;q),(g6 0). To
shaw thatp 2 limg 1 y Hgr, we will shav thatthereexists Ry such
that8R > Ry, f(q) is ononesideof aline throughf(p), 82 S
Theline we chooses x= 2R r, whichis parallelto they axis.

Now, the x coordinateof f(q) is gx = (2R rg)cosqg, but since
rq> T, thengy < (2R T)cosg. For sufciently large R this
guantity satises (2R T)cosqg < 2R r. This happenswhen
2R(1 cosg)>r Tcosq,ie.,R> ﬁ%, which holdssince
boththe numeratorandthedenominatoarepositive. 2

Lemma4.3LetSbeanin nitesimal surfacepatdh aroundp. Then
p 2 Hg if andonlyif thecurvatuek at p satis es:
4R(2R r)cofb+ 2Rr

(r 2r? 32
sir’ b

k<

4Rr AR2+

In the casethat b = p=2, which corresponddo the casethat the
tangent to the surfaceat p is perpendicularto the line of sight,
k< 2R=r2:

Proof: Let p= f(p) = (k¥ denotethe sphericaimageof p and
P be theline through p alongthe corvex hull. WLOG, we de ne
acoordinatesystemasfollows (Figure17): ThevantagepointC is
atthe origin; theY-axisis parallelto P: andthe X-axisis directed
perpendiculato the Y-axis. p is givenby (x;y) in Euclideanco-
ordinatesand(r; g) in polarcoordinates Further g = tan (y=x),
thereforeg= b p=2. Finally, we canrelatethesequantitieshy

(xy) = (2Rcosq K 2Rsing ktang):

Figure17: The gure shaws line b parallelto the Y-axis andits
ipped sourcel throughp. Thecurvaturek, of L at p is the maxi-
mal cunaturebeyondwhich p is markedinvisible by HPR.

We areinterestedn cure L, which is the ip sourceof b andits
curvaturek . p will be markedvisible if the curvaturek of Sat p
is smallerthank_ andmarked hiddenotherwise. Varying x andy
alongL, andtakingtheir derivativeswith respecto q yields:

X = 2Rsing;

y = 2Rcosqg m;

X = 2Rcosq;

. . 2ksing
= 2R :

y sing oS q

Usingthe standardormulafor curvature:
G 4Rksig 2Rk
Xy yx o _ 4R+ cossgq cosq .

T (v24 \2)32 4Rk ¥ 132"
(x¢+y?) (4R2 m+co§q)32

ke




Expressinghisin termsof r andb, usingtheidentities

- P, .
b = 2+q,
= rcosq = rsinb;
y = rsing= rcosb;
B = 2Rcosg x= (2R r)sinb;
we obtain
K = 4R(2R r)cofb+ 2Rr
L= —:
o, (r 2R? 32
4Rr ARZ+ Lo

In the specialcasethatb = p=2 thissimpli es tok_= f—?: 2

Theorem 4.4 Assumehat the sampleis sufciently densethenfor
everyR,thereexistse > Osud thatHr V.

Proof: To prove thetheoremwe should nd e> 0 for whichif a
point p 2 Vg, thenp 2 Hg. Denotethe distancefrom pto C by r,
andassumehatthe sampleis sufciently densewith
_I_r
r r
<= = —):
r<3 gt
Assumep 2 V. As illustratedin Figure 18, considerthe two rays
from C whoseanglefrom pCis a with sina = 2r =T:

We rst shov thattheregion betweerthetwo raysandthe(e r)-
circle aroundp containstwo samplepoints, q‘f and qg, on either
sidesof theline pC, andthenprove that p mustlie insidethetrian-

gled (C;dn;dp).

To shaw this, we considertwo otherraysfrom C whoseanglefrom
pCis a=2.Sincep 2V (i.e., pliesin acompletelyhiddencircle),
S mustintersectthesetwo raysat somepointsbetweerC andthe
e-circlearoundp. Thisin turnimpliesthatwe can nd two sample
pointsq‘f andqg within distancer from thetwo intersectiorpoints.

We next shawv that p mustlie insidethetriangle4 (C;(ﬁ”;(ﬁg). De-
note by g; andq; the intersectionpoints of the two raysfrom C
whoseanglefrom pC is a with the(e r)-circle aroundp. It can
bereadilyshavn thatif pliesinside4 (C;dp;dp), thenit mustalso

lie inside4 (C;(ﬁ‘fcﬁg) (by noticing that sincethe circular arc from
g1 to gz is concae, its ipped imagemustbe convex).

Let K bethedistancefrom C to g (i = 1;2). Thedistancefrom C
toqy isthus2R K, andpliesinside4 (C;dp;dp) if

(2R K)cosa>2R
Thisimpliesthat

2 2
1= sirfa+ cofa > ar”, @R N7,

T2 (2R K)?’
from which we obtainthat
0<K<2R g '.
4r2
1 ?

This relationcanbe usedto determinee. We composea from two
segmentswhoselengthis determinedy the Pythagoreamelation:

r r

4r?2
K2(1 ﬁ)+

4r 2K2

(e 1? —

Consequently
r 4r2 2 4r 2K2
(e r)?> r K2(1 ﬁ) M
andthus
v \
b T e
r r
e>r+ r K2(1 ?) 2 2

Figure 18: Geometricsetupfor Theorems4.4 and4.5. The exis-
tenceof samplepointsgf and g) inside the triangle 4 (C; d1; )
guaranteethat p will belongto Hg.

Theorem 4.5 Assumehatthe sampleis sufciently densethenfor
sufciently large e> 0, there existsR> OsudithatHgr ~ Ve.

Proof: The proof is similar to the previous theorem. Denoteby
a the angle,sina = 2r =T. Considerthe raysfrom C that form
anangle a with theline pC. Denoteby K the distancefrom C
to the intersectionof theserayswith the (e  r)-circle aroundp
(g1 andqp). (Notethate mustbesufciently large, or the sample
be sufciently dense,for theseintersectiongo exist.) It is now
possibleto shaw thatif p 2 Ve andwe selectR thatsatis es

(2R K)cosa> 2R
thenp 2 Hg. Therefore,

r Kcosa
R< ——;
2(1 cosa)

. pP—— .
withcosa = 1 4r2=T2. Notealsothatwe requiree to be suf-
ciently largesothatr > K(1 cosa). However, aswe increase
thedensityof the samplewe canusesmallervaluesof e. 2



