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Abstract

Thispaperproposesasimpleandfastoperator, the“Hidden” Point
Removal operator, which determinesthe visible points in a point
cloud,asviewed from a givenviewpoint. Visibility is determined
without reconstructinga surfaceor estimatingnormals.It is shown
thatextractingthepointsthat resideon theconvex hull of a trans-
formedpointcloud,amountsto determiningthevisiblepoints.This
operatoris general– it canbeappliedto point cloudsat variousdi-
mensions,onbothsparseanddensepointclouds,andonviewpoints
internalaswell asexternalto thecloud. It is demonstratedthatthe
operatoris useful in visualizing point clouds, in view-dependent
reconstructionandin shadow casting.
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1 Intr oduction

In thelastdecade,analternative to meshes,in theform of a point-
basedrepresentation(a pointcloud), hasgainedincreasingpopular-
ity [Rusinkiewicz andLevoy 2000;PaulyandGross2001;Zwicker
et al. 2002;Alexa et al. 2003;Fleishmanet al. 2003;Alexa et al.
2004; KobbeltandBotsch2004]. Point cloudsare3D positions,
possiblyassociatedwith additionalinformation,suchascolorsand
normals,andcanbeconsideredasamplingof acontinuoussurface.
This representationis extremelysimpleand�e xible. Moreover, it
offers the additionaladvantageof avoiding connectivity informa-
tion andtopologicalconsistency.

This paperinvestigatesvisibility of point clouds.Oneway to com-
putevisibility of apoint cloudis to reconstructthesurface [Hoppe
et al. 1992;Bernardiniet al. 1999;CurlessandLevoy 1996;Carr
et al. 2001;Amentaet al. 2001;Amentaet al. 2002;Amentaand
Kil 2004;Fleishmanetal. 2005]anddeterminevisibility on there-
constructedtriangularmesh.Reconstruction,however, is adif�cult
problem,both theoreticallyandimplementation-wise,which often
requiresadditional information, suchas normalsand suf�ciently
denseinput.

Thekey questionthatthispaperattemptsto answeris how thevisi-
bility informationcanbedirectlyextractedfrom apoint cloud.Ev-
idently, pointscannotoccludeoneanother(unlessthey accidentally
fall alongthesameray from theviewpoint),andthereforeno point
is actuallyhidden. However, oncea surfaceis reconstructedfrom
thepoints,it is certainlypossibleto determinewhich of thepoints
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Figure1: Input to theoperator– Are theobjectslooking forwards
or backwards?

arevisible. This implies thata point cloud inherentlycontainsin-
formationfrom which it is possibleto extract the visibility of the
points.Thechallengeis to skip thefull reconstruction.

Supposethatwe aregiven a point clouddepictinganobject,such
asthestatueof David or thebunny in Figure1. If all thepointsare
drawn, it is dif�cult to determinewhethertheseobjectsare look-
ing forwardsor backwards. This paperdescribesan operatorthat
computesthe visibility directly from a point cloud. For instance,
after applyingthe operatoron the point cloudsof Figure1, it can
beseenin Figure2 thatDavid (/bunny) is looking backwards.The
pointsneednotbeassociatedwith normalinformationandneednot
besampleddensely.

Weshow thattheoperatorproposedin thispaperis simpleandfast.
It canbedescribedin just a handfulof Matlablinesandits asymp-
totic complexity is O(nlogn), wheren is the numberof points in
the point cloud. Moreover, it cancalculatevisibility for denseas
well assparsepointclouds,for whichreconstructionor othermeth-
ods,might bedif�cult. In addition,thecorrectnessof theoperator
is proved in the limit and theoreticalguaranteesareprovided for
�nite sampling.

Other bene�ts of the operatorare that it doesnot dependon the
screenresolution(sinceit operatesin object space); a changein
camerarotationor �eld of view doesnot requirere-calculationof
visibility; it worksin variousdimensions;andtheviewpointcanbe
positionedeitherwithin or outsidethepoint cloud.

Calculatingvisibility directly from a point cloud is an interesting
problemin its own right. However, it canbe utilized in a variety
of applications.We show thatit canbeusedto visualizepoint sets.
Moreover, withoutadditionalcost,it canproduceaview-dependent
“quick-and-dirty” reconstructiononline. Finally, realisticshadow
castingcanbeachievedin objectspacein interactive time.



Figure2: Outputof theoperator- They areheadingbackwards!

Thecontributionmadein thispaperis thustwofold: First,thepaper
presentsa general,fast,andsimpleoperatorfor determiningvisi-
bility of pointsin variousdimensionsandprovessometheoretical
guarantees.Second,thepaperdemonstratestheutility of theoper-
ator in visualizingpoint clouds,in view-dependentreconstruction,
andin shadow casting.

The rest of the paperis structuredas follows. Section2 brie�y
discussesrelatedwork. Section3 describestheproposedoperator.
Section4 proves somepropertiesof the operator. Section5 dis-
cussesimplementationanddemonstratesresultsandapplications.
Section6 concludesthepaper.

2 Related work

Visibility determinationhas been a basic problem in computer
graphicsfrom its early days[Appel 1968;Sutherlandet al. 1974;
Funkhouseret al. 1992; Greeneet al. 1993; Bittner and Wonka
2003;Cohen-Oretal. 2003;Leyvandetal. 2003]. It is importantin
a variety of applications,including rendering,animationandsim-
ulation, security, androbotics. However, while mostof the work
in computergraphicsdeterminesthe visibility betweenpolygons,
thepurposehereis quitedifferent.Our operatorintendsto �nd the
pointsthatwould bevisible, if thesurfacethey aresampledfrom,
existed.

Thoughcomputingthecorrectvisibility is usefulin variousapplica-
tions, in point-basedrepresentationsit hasbeenaddressedmainly
within rendering,whereit is considereda major challenge[Sainz
et al. 2004]. Here, visibility computationis usually performed
during ray tracing [Wald and Seidel2005]. Sinceboth rays and
pointsaresingularprimitives,this requiresthealgorithmto either
trace“thick” rays[Schau�er andJensen2000]or use“�nite-area”
points[Rusinkiewicz andLevoy 2000;Dutré et al. 2000;Zwicker
et al. 2001;Wu andKobbelt2004;Guennebaudet al. 2004;Guen-
nebaudetal. 2004].Themostcommonapproachessplatthepoints
into aZ-buffer [SainzandPajarola2004;Dachsbacheretal. 2003].

This paperattemptsto solve theproblemof visibility regardlessof
rendering.Moreover, theaim is to avoid the two assumptionsthat
aremadein most renderingpapers– that the pointssatisfysam-
pling criteria,suchastheNyquistcondition,andthatthepointsare

associatedwith normals(or that thenormalscanbeestimated).In
a coupleof recentworks,it becomesevident that it is importantto
be able to handlepoint cloudsthat arenot well sampledandare
not interpretedin any way (suchasby meshingor estimatingnor-
mals)[WimmerandScheiblauer2006;Co 2006]. Finally, we wish
to supportvisibility calculationby rigoroustheoreticalguarantees.

Anotherrelated,yetdistinctproblemis surfacereconstructionfrom
point clouds,which hasreceived considerableattention. Differ-
ent approacheshave beenproposed,such as representationsby
implicit functions [Hoppe et al. 1992; Carr et al. 2001; Ohtake
et al. 2003],by Moving LeastSquares[Alexa et al. 2003;Fleish-
manetal.2005],employing Voronoi/Delaunaytechniques[Amenta
et al. 2002; Amentaet al. 2001; Mederoset al. 2005], and oth-
ers. Someof the methodsare supportedby theoreticalresults,
e.g.[Amentaetal. 2001],while otherssacri�ce theoryandinstead,
optimizefor highspeed,e.g.[Ohtakeetal. 2003].

The currentpaperattemptsto determinevisibility, while skipping
thereconstructionphase.Nevertheless,wewill show thatouralgo-
rithm canbeusedfor view-dependentreconstruction.In this case,
bothspeedandtheoreticalsupportcanbeachieved.

3 The HPR operator

Given a setof pointsP = f pi j1 � i � ng � Â D, which is consid-
eredasamplingof acontinuoussurfaceS, andaviewpoint (camera
position)C, our goal is to determine8pi 2 P whetherpi is visible
from C.

Straightforward solutionsareboundto fail. Calculatingthe line-
of-sightfrom C to pi is not helpful,because,exceptfor degenerate
cases,a point is alwaysvisible. We thereforeneedto de�ne when
a point is consideredvisible. Obviously, a sensiblecriterionof vis-
ibility mustrelateto thedensityof thesampling.SupposethatP is
a r -sampleof S, i.e., if we surroundeachsamplepoint pi 2 P by
anopenball of radiusr , thesurfaceSwill becompletelycontained
within theunionof theseballs.A simplede�nition of visibility then
impliesthat pi is visible if it doesnot becomeoccludedby another
pointwhenweperturbits positionanywherewithin theball. While
this de�nition workswell for surfacesthatareperpendicularto the
line of sight,it fails whenthesurfaceis oblique,sincein this case,
a smallperturbationcouldmake a point occludedby anotherpoint
from thesamesurface(e.g.,whenthesurfaceis planar).We could
overcomethis if we knew the normalto thesurfaceat eachpoint,
but wewantto avoid estimatingthenormal.

Weseekanoperatorthathasthefollowing properties:

1. Correctness:in the limit, asthedensityr ! 0, a point pi on
Sshouldbemarkedvisible by theoperator, if andonly if it is
indeedvisible.

2. Theoperatorshouldhandleobliquesurfaces,while avoiding
to computethesurfacenormalslocally.

3. The asymptoticcomplexity and the running time shouldbe
reasonable,evenin software.

This sectionintroducesan operator, denotedas the hiddenpoint
removal (HPR) operator, which satis�es the above requirements
(proved in the next section). The operatorconsistsof two steps:
inversionandconvex hull construction,discussedbelow.

1. Inversion: Given P andC, we associatewith P a coordinate
system,in which theviewpointC is placedat theorigin. Weseeka
functionthatmapsa point pi 2 P alongtheray from C to pi andis
monotonicallydecreasingin jj pi jj . (jj � jj is anorm.)



Therearevariousways to performinversion. Here,we focuson
spherical�ipping , whichwas�rst presentedin [Katz etal. 2005]in
adifferentcontext. ConsideraD-dimensionalspherewith radiusR,
centeredat theorigin (C), andconstrainedto includeall thepoints
in P. Spherical�ipping re�ects a point pi 2 P with respectto the
sphereby applyingthefollowing equation:

bpi = f (pi) = pi + 2(R� jj pi jj )
pi

jj pi jj
: (1)

Intuitively, spherical�ipping re�ects every point pi internalto the
spherealongtheray fromC to pi to its imageoutsidethesphere,as
illustratedin Figure3.

Figure3: HPROperator– Left: spherical�ipping (in red)of a 2D
curve (in blue)usinga sphere(in green)centeredat theview point
(in magenta).Right: backprojectionof theconvex hull. Notethat
this imageis usedonly for illustration;in practice,Ris muchlarger.

Notethatthereareotherpossibleinversionfunctions.For instance,
afunctionthatseemsto achieveroughlythesameeffect,is givenby
thefollowing expression,whereg > 1 is aparameterandjj pi jj < 1:

f̃ ( pi) =
pi

jj pi jjg
:

2. Convex hull construction: Denoteby bP the transformedpoint
cloudof P: bP = f bpi = f (pi)j pi 2 Pg. Calculatetheconvex hull of
bP

S
f Cg, i.e., thesetthatcontainsthe transformedpoint cloudand

thecenterof thesphere.

Themainresultof thepaperis thatextractingthepointsthatreside
on the convex hull of bP

S
f Cg amountsto determiningthe visible

points. (The inclusionof C is importantsincepointson the back
sideof theobjectmayotherwiselie on theconvex hull, whenC is
externalto P.) Westatethisasade�nition andexplain theintuition
hereafter. In thenext sectionweprovesomeproperties.

De�nition 3.1 A point pi 2 P is marked visible from C if its in-
vertedpoint bpi lieson theconvex hull of bP

S
f Cg.

The HPR operatorcanbe appliedin any dimension. However, it
is bestunderstoodin 2D. Considera point pi 2 P. Without lossof
generality, pi lies on the X-axis. Using a polar coordinatesystem
(r;q), we canwrite pi = (r i ;0), wherer i is thedistanceof pi from
C, andtheanglewith theX-axis is 0. Considerthestraightline bL
that passesthrough bpi andcreatesan angleb with the X-axis, as
shown in Figure4.

We wish to �nd thecurve L = (r(a );a ), which is thesourceof bL,
i.e., thecurve that is transformedto bL by spherical�ipping. Using
theLaw of Sinesweget:

2R� r i

sin(p � a � b)
=

2R� r(a )
sinb

: (2)

Figure4: L is transformedto bL by spherical�ipping.

Consequently,

L = (r(a );a ) = (2R+
(r i � 2R) sinb

sin(a + b)
;a ): (3)

L passesthroughboth pi andC. In CartesiancoordinatesL is ex-
pressedby a quartic polynomial in x and y. Figure 5 illustrates
how the shapeof L changesasa function of angleb. The region
boundedby L andtheX-axisgetssmallerasb getslarger.

0 5 10 15
0

2

4

6

8

10

12

61

67

73

79

84

90
9699

116
133

Figure 5: The shapeof L for different valuesof b (in degrees),
wherepi = (10;0), R= 30.

L andtheX-axisde�ne theemptyregionassociatedwith pi . “How
much” pi is visible, dependson the sizeof the region. The larger
thesize,the “more visible” pi is. The importantpropertyof HPR
is thatthissizeis adaptively determinedby pi 'sneighboringpoints,
asexplainedbelow.

For every given point pi , thereexist two specialpointson either
sideof P, p j and pk 2 P. Theregion boundedbetweenthecurves
in Eq.3,L j = (r j (a j );a j ) from pi throughp j andLk = (rk(ak);ak)
from pi throughpk, is thelargestpossibleemptyregion,asdemon-
stratedin Figure6.

From Equation3, it canbe deducedthat the largestregion corre-
spondsto thesmallestb . Thismeansthatb j andbk thatcorrespond
to thelargestpossibleemptyregion,arethesmallestpossiblefor pi .
Notethatb j andbk canbeextractedfrom Equation 3.

For pi to bevisible, thesumof b j andbk shouldsatisfyb j + bk �
const (i.e.,alargeemptyregionis associatedwith pi). In effect,this



(a) pi is visible

(b) pi is hidden

Figure6: Theemptygrayregion betweenL j andLk, asde�ned by
thevaluesof b j + bk.

conditionde�nesathresholdonthesizeof theregionfor which the
point is consideredvisible.

Settingconst = p meansthat computationallythereis no needto
�nd for eachpoint theneighboringpointsp j andpk thatmaximize
the emptyregion size. Instead,it suf�ces to calculatethe convex
hull of bP

S
f Cg. This is sobecausepoint bpi is on theconvex hull of

bP
S

f Cg if andonly if all thepointsof bP
S

f Cg resideto onesideof
thehalf-spacesde�ned by bpi ; bp j and bpi ; bpk. In our case,sincethe
region betweenL j andLk is empty, theregion on thefar sideof bL j

and bLk mustbeempty(thegrayregionsin Figure6).

This observation is important computationallyand is the reason
why theHPRoperatoris soef�cient. Without thecomputationof
theconvex hull, p j and pk would have to be found8pi 2 P, mak-
ing thealgorithmquadratic(andin 3D evencubic,althoughit can
potentiallybe spedup by usingfastnearestneighbortechniques).
Instead,all thatneedsto bedoneis to computetheconvex hull and
considera point pi visible if bpi is on the convex hull of bP. Thus,
theHPRoperatorde�nesboththeshapeandthesizeof theempty
region,8pi 2 P.

The above explanationcan be extendedto 3D. In this case,the
emptyregionbetweenpi andC is de�nedby a3D surfaceenclosing
a volume,ratherthana curve (L j [ Lk) enclosinganarea.Also, in
3D, insteadof usingtwo neighboringpoints,at leastthreeneighbor-
ing pointsde�ne thesurfaceenclosingtheemptyvolume.However,
oursolutionthatusestheconvex hull remainsthesame.

It is worth mentioningthat even thoughp is a constantthreshold,
the thresholdfor visibility canbe indirectly modi�ed by changing
R, theradiusof thesphere.A largerR relaxesthevisibility condi-
tion andmorepointsareconsideredvisible. Moreover, in thegen-
eral case,whendifferent familiesof inversionfunctionsareused,
the above explanationwill remainthe same,while the shapeof L
will change.

4 Proper ties of the HPR operator

Thissectionpresentsandprovessomepropertiesof theoperator. It
addressesthetheoreticalguaranteesof theoperator, thefactorsthat
in�uence thechoiceof theparameterR, andthecomplexity. While
we focushereon a particularinversionfunctionspherical�ipping,
similarresultscanbederivedfor other, relatedfamiliesof inversion.
The theoremsandlemmasarestatedandexplainedin thesection,
while theproofscanbefoundin theAppendix.

Throughoutthesectionwe usethenotionof density, which is for-
mulatedbelow.

De�nition 4.1 sample density (density): A sampleP � S is a
r � samplefromsurfaceSif 8q 2 S9p 2 P s.t. jq� pj < r .

The �rst issueconcernsthecorrectnessof theoperatorin thecase
that the surface itself is given (i.e., P is a 0-sampleof S). It is
shown below thatin this case,every point markedasvisible by the
operator(De�nition 3.1), is indeedvisible. Moreover, in the limit,
whenR! ¥ , everyvisiblepointwill bemarkedvisible.

Thenext issuerelatesR to the local curvaturethatpermitsvisibil-
ity. Thisprovidesalocalanalysisof visibility, in whichweconsider
occlusionby (in�nitesimally) closepointsonthesurface,while dis-
regardingocclusionsby remotepoints.Speci�cally, it is shown that
givenR, all theconvex points,aswell asconcave pointswith suf-
�ciently small curvature,may be marked visible by our operator.
This implies in particularcorrectnessfor convex surfacepatches
andfor slantedplanarsurfacesatany valueof R.

Thethird issueregardstheoreticalguaranteeswhenthegivensetof
pointsP is a r -sampleof S with r > 0. Sincein this caseit can
no longerbetruethateverypointmarkedby theoperatorasvisible
is indeedvisible, a morerealisticvisibility is de�ned, denotedas
e� visibility.

De�nition 4.2 e� visible: A point p 2 P is e� visible if 9q 2 Â D

s.t.jq� pj < e andq is visiblefromC. In otherwords,moving p in
a distanceshorterthane will make it visible.

It is provedthatfor everyR, thereexistsane for whicheverypoint
that the operatormarksis e� visible. Moreover, with certainre-
strictions,for everye > 0, thereexistsachoiceof Rthatguarantees
e� visibility.

Finally, thesectiondiscussesthechoiceof Randthecomplexity of
theoperator.

Correctness when r = 0: Thenext two lemmasassumethatthe
input to theoperatoris asurfaceS, aviewpointC, andaradiusR. It
is furtherassumedthat thereexistsa gapT betweentheviewpoint
andtheobject: T = inffk p� Ckjp 2 Sg > 0. (This assumptionis
essentialbecausepointsthat arevery closeto C may occludeex-
tremelylargesectionsof thespace.)Let V � Sbethesetof visible
pointsfromC andHR � Sbethesetof pointsmarkedvisibleby the
operator. The two lemmasimply that the operatoris conservative
andconvergesto thecorrectsolutionasRapproachesin�nity .

Lemma 4.1 HR � V, i.e., every point marked visible by the HPR
operator is indeedvisiblefromC.



Lemma 4.2 limR� ! ¥ HR = V, i.e., assumingT > 0, whenR! ¥ ,
thesetof visiblepointsmarkedbyHPRis equalto thesetof visible
points.

R and the local cur vature: For a�nite valueof R, wecanfurther
analyzewhich pointswill bemarkedvisible by theHPRoperator,
by consideringthein�uenceof thecurvatureontheresults.Westart
again with the intuition. It is straightforward to seethat oblique
planarsurfacesarecorrectlyhandledby the HPR operator, since
spherical�ipping mapssuchsurfacesto convex structures.Han-
dling concave sectionsof a surface,in contrast,is affectedby the
local curvature.Below, we provide a derivationof thepermissible
curvatureasafunctionof theradiusR, thedistancer from thepoint
p to theviewpointC, andtheorientationof theconvex hull through
bp, b (Figure4). Thederivationis general,yet a particularlysimple
expressionis obtainedwhenthetangentto a point is perpendicular
to theline of sightfrom thispoint.

Lemma 4.3 LetSbeanin�nitesimal surfacepatch aroundp. Then
p 2 HR if andonly if thecurvaturek at p satis�es:

k <
4R(2R� r) cot2 b + 2Rr

�
4Rr� 4R2 + (r� 2R)2

sin2 b

� 3=2
:

In the casethat b = p=2, which correspondsto the casethat the
tangent to the surfaceat p is perpendicularto the line of sight,
k < 2R

r2 :

This impliesin particularthatconvex shapesandslantedplanesare
correctlyhandledfor any choiceof R, andthat pointson concave
sectionsof asurfacearehandledcorrectlyaslongasthecurvatureis
suf�ciently low (exceptwhenremotesectionsof thesurfacehappen
to fall closeto the line of sight throughthosepoints). Note that
in higherdimensionsall sectionalcurvaturesmustnot exceedthe
bound,i.e., this boundis on themaximalcurvature.Thecasethat
a patchis perpendicularto the line of sightalsodemonstratesthat
thepermissiblecurvaturegrowswith R. Thus,asR increases,more
pointsbecomevisible,until all (truly visible)pointsbecomevisible
by theHPRoperator.

Theoretical guarantees r > 0: In the rest of the section,it is
assumedthatthegivensetof pointsP is a r -sampleof Swith r >
0. Recall that a point is e� visible, if moving it by e will make it
visible. Usingthisde�nition, it is possibleto extendthecorrectness
lemmasstatedabove to themorepracticalcaseof thegivendata.

Assumingthat the sampleis suf�ciently dense,we show that for
every R, thereexistsane, suchthatevery point markedvisible by
theoperatoris e� visible. Moreover, for suf�ciently largee, there
exists R, suchthat every point marked visible by the operatoris
e-visible.

LetVe � P bethesetof e-visiblepointsfromC (pointsvisiblein S).
As before,weassumethatthedistanceof Sto C is at leastT > 0.

Theorem4.4 Assumethat thesampleis suf�ciently dense, thenfor
everyR, thereexistse > 0 such thatHR � Ve.

Theorem4.5 Assumethat thesampleis suf�ciently dense, thenfor
suf�ciently largee > 0, thereexistsR> 0 such thatHR � Ve.

Theproofsof thesetheoremsimply that for a constantvalueof R,
asr decreases,asmallervalueof e is obtained.

Choosing R: The proofsof the above theoremsshow the rela-
tion betweenthedensityr , R, ande-visibility. In particular, these
factorsareessentialfor choosingasuitableR.

As R increases,morepointspassthe thresholdof the convex hull
andhencearemarkedvisible. For instance,asR ! ¥ , r i in Eq. 3

becomesnegligible, b j ;bk ! p=2, andall the pointsaremarked
visible. This is so becausethey aretransformedby spherical�ip-
pingto aspherewith anin�nite radiusandthusresideontheconvex
hull. Therefore,a largeR is suitablefor densepointclouds,while a
smallR is suitablefor sparseclouds.

This is illustratedin Figure7, wherethepercentof falsepositives
andfalsenegativesareplottedasa functionof log(R). With small
R, pointsvisible in Smaybemarkednon-visibleby HPR,whereas
with largeR, non-visiblepointsmaybemarkedvisible. This is also
illustratedin Figure8. A limitation of the algorithmis that even
whenusingtheoptimalR, a few misclassi�edpoints,mostlynear
the silhouettesanddeepconcavities, might remain. However, the
numberof suchpointsdecreaseswith r .
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Figure 7: False positives/negatives and their sum, of a speci�c
model (Bimba, 70K points). The automaticallycalculatedR is
shown in brown.

Thepermissiblecurvature(Lemma4.3)canbeusedto determinean
upperboundon R. Assumean objectof thicknessd is positioned
at a distancer from C. Considerthe parabolay = r � (d=r 2)x2,
whoseapex is at thebackof the object,which createsanopening
of 2r (the expecteddistancebetweentwo samplepoints) on the
frontal surfaceof the object. The curvatureat the apex x = 0 is
2d=r 2. Comparingthis to the permissiblecurvature2R=r2, it is
concludedthatRcanbebounded:R< dr2=r 2:

In our experiments,R is determinedautomaticallyasfollows. An
additionalviewpoint, oppositeto thecurrentviewpoint on the line
connectingtheoriginal viewpoint to theobject's centerof mass,is
set. Then,R is determinedby maximizingthe numberof disjoint
pointsthatareconsideredvisible by bothviewpoints.Gradientde-
scentoptimizationis used[Forsytheet al. 1977]. The intuition is
thatno point shouldbevisible simultaneouslyto bothviewpoints.
Figure7 illustratesthatthecomputedRis verycloseto theoptimum
(theminimumvalueof thebluecurve).

Comple xity: Finally, theoperatorpresentedis very ef�cient. Let
n be the numberof points in the point cloud. The �rst stageof
theoperator, spherical�ipping, takesO(n). Thesecondstage,con-
vex hull computation,takes O(nlogn) for point setsin 2 and 3-
dimensions.Therefore,theasymptoticcomplexity of theoperator
is O(nlogn).

5 Implementation and applications

A majoradvantageof theHPRoperatoris thatit isextremelysimple
to implement.Algorithm 1 showstheMatlabcodethatimplements
theHPRoperator. (Matlab itself calls theQhull algorithm[Barber



Figure 8: Top: The original point cloud (left) and the result us-
ing the automaticallycalculatedR (log(R) = 3:77) (right). Bot-
tom: ResultsgeneratedusingsmallerR (log(R) = 3) leadto anin-
creasednumberof falsenegatives(missingpointsbelow thechin),
while resultsgeneratedusinglarger R (log(R) = 4) leadto an in-
creasednumberof falsepositives(excessivepointsat thebottomof
thechest).

et al. 1996].) Thecodeis very simpleandshortandworks for D-
dimensionalpointclouds.Theonly parameterthattheoperatorgets
is usedto computeradiusR. Thisparametercanbeeithersetby the
user, or Rcanbecomputedautomatically, asdiscussedin Section4.

Algorithm 1 Matlabcodefor HPR
1: functionvisiblePtInds=HPR(p,C,param)
2: dim=size(p,2);
3: numPts=size(p,1);

% Move thepointss.t. C is theorigin
4: p=p-repmat(C,[numPts1]);

% Calculatejjpjj
5: normp=sqrt(dot(p,p,2));

% Sphereradius
6: R=repmat(max(normp)*(10ˆparam),[numPts1]);

%Spherical�ipping
7: P=p+2*repmat(R-normp,[1dim]).*p./repmat(normp,[1dim]);

%convex hull
8: visiblePtInds=unique(convhulln([P;zeros(1,dim)]));
9: visiblePtInds(visiblePtInds==numPts+1)=[];

Determiningthevisibility of pointcloudscanpotentiallybeutilized
in visualization,reconstruction,shadow casting,rendering,camera
placement,etc. We illustrate the usefulnessof the HPR operator
in threeapplications:visualizationof pointclouds,view-dependent
reconstruction,andshadow casting.

5.1 Visualizing point clouds

Visualizingtheraw datais importantduringlongscanningsessions,
in CAD, in simulationsof scienti�c visualization,etc.Figures9–10
show severalresultsof theHPRoperator, which is appliedto well-
known scannedpoint clouds. The point setsare renderedbefore
andafterapplyingtheoperator.

(a)dragon(437kpoints)

(c) Igea(non-uniformsampling,33.6kpoints)

Figure9: Pointcloudvisualizationbefore(left) & after(right)HPR.

Beforeapplyingtheoperator, it is hardto distinguishbetweentwo
possiblepositionsthat producevery similar projections– looking
towardsor away from the camera(up to small differencesdueto
perspective projection). This problemis resolved usingHPR.For
instance,while theoriginalpointsetof Igeashowsboththescarand
thehairdoandit is hardto saywhetherthestatuelooksforwardsor
away, afterapplyingtheHPRoperator, only thescarshows andit
is obviousthatIgeais looking towardsthecamera.

Figure11 shows theresultof theoperator, whenappliedto sparse
point clouds.This resultdemonstrateswell thestrengthof theop-
erator, wherethealternative of fully reconstructingthesurfacefor
determiningvisibility, might fail. Note,for instance,how only the
visible subsetof eachring of pointson the jet �ghter is left when
theHPRis used.

The operatortakes up to a few secondsto run on large models,
on Intel Core2,2.14Ghz,1Gb RAM. The calculationrangesbe-
tween23millisecondsfor thejet-�ghter (2370points),1.3seconds
for David (258K points),and3.65secondsfor theoil pump(542k
points).

5.2 View-dependent reconstruction

Surfacereconstructionfrom pointcloudshasreceivedconsiderable
attentionin recentyears. It is describedin a variety of papers,
andgeneratesprettyresults[Hoppeet al. 1992;CurlessandLevoy



(a) carter(25kpoints)

(b) oil pump(542kpoints)

Figure 10: Point cloud visualizationbefore(left) & after (right)
HPR.

(a) sparseblock (2132points)

(a) jet-�ghter (2370points)

(b) bottle(5540points)

Figure11: Visualizationof sparsemodelsbefore& afterHPR.

1996; Bernardiniet al. 1999; Amentaet al. 2001; Adamsonand
Alexa 2003; Ohtake et al. 2003; AmentaandKil 2004; Mederos
etal.2005;Fleishmanetal.2005;WaldandSeidel2005].However,
thealgorithmsareoftennotsimpleto implementandboththeirrun-
ning timesandtheir asymptoticcomplexitiesmightbehigh.

Insteadof fully reconstructingthe surface, we proposea view-
dependenton-the-�y reconstruction,which providesa “quick-and-
dirty” visualizationof the surfacefrom which the pointsaresam-
pled,asillustratedin Figures12–13.

Figure 12: “Quick-and-dirty” view-dependentreconstructionof
David (258Kpoints)andtheskeletalhand(327Kpoints).

Figure13: Two differentview-dependentreconstructionof Bimba.

View-dependentreconstructionis performedby displayingnotonly
thepointsresidingon theconvex hull of bP[ C, asdescribedsofar,
but alsothetrianglestheconvex hull consistsof. Long artifact tri-
anglesareeliminatedusinga thresholdon theedgelength,asillus-
tratedin Figure14. It is importantto notethat the reconstruction
doesnot increasethecomplexity of thealgorithm,sincetheconvex
hull is computedanyway.



Figure14: Reconstructionbeforethe removal of theartifact trian-
gles(with edgeslongerthan2.5%of thediameter).Thebluepoint
is theviewpointof Figure13(a).

Placingadditionalviewpointsaroundtheoriginalviewpointcanim-
prove theresultsaroundthesilhouettes.A point is thenconsidered
visiblewhenit is visible from eitherof theviewpoints.

Thoughthe resultsarenot full reconstructions,they certainlysuf-
�ce for quickly perceiving the surface the points represent,and
they areproducedvery ef�ciently . For comparison,the algorithm
of [Mederoset al. 2005]hasO(n2) complexity andtakesa minute
to run on a 180;000point cloudon a 2.4GHzPC,while our algo-
rithm hasO(nlogn) complexity andtakeslessthanasecondto run
thesamesizepoint cloudon a 2.14GhzIntel Core2.Similarly, ap-
plying MPU interpolation[Ohtake et al. 2003]to theBuddhapoint
cloud (543K) takes6:53 minuteson a 1.6GHzmobile, while our
operatortakes4.15seconds.

5.3 Shado w casting

Anotherapplicationof the operatoris shadow casting[Woo et al.
1990;Hasenfratzet al. 2003]. UsingHPR,it is possibleto demon-
straterealistic shadow castingfor meshes,in interactive time, in
Matlab. The shadow castingis calculatedin object spacerather
than in screenspace,thus it dependsneitheron screenresolution
noron thez-buffer accuracy.

Givena mesh,shadow castingis computedby assigningthecenter
of thesphereC to thepositionof thelight andapplyingHPRto the
meshvertices.A brightnessvalueis assignedto eachmeshvertex
accordingto its calculatedvisibility. A visiblevertex is givenahigh
brightnessvalueanda non-visiblevertex is givena low brightness
value. To producesoft shadows, thesevaluesaresmoothed,such
thatthebrightnessvalueis affectedby theneighboringvertices.For
the �nal rendering,the brightnessvalue is interpolatedalong the
faces.(Note thoughthatonly theverticesareusedfor calculating
thebrightnessvalues.)

Figure15 shows a coupleof resultsof shadow casting. In these
examples,specularlighting is turnedoff anda singlelight source
is used. Thereis no limitation, however, on the numberof light
sourcesthat canbe used. Note that the methodworks even when
thereareholes,wherethelight penetratestheholes.

Figure16 comparesthe resultsof shadow casting,asachieved by
applyingtheHPRoperator, to thosecomputedexactly. In thelatter
case(exact shadows), the intersectionof a ray from the vertex to
the light sourceis calculated,for eachvertex. If the ray intersects
thesurface,thevertex is shadowed.

Figure15: Shadow castingin softwareusingHPR.

6 Conc lusion

This paperproposesa simpleandfasthiddenpoint removal oper-
ator, which determinesthe visible points from a given viewpoint.
The operatoris provably correctin the limit andtheoreticalguar-
anteesaregiven for the �nite-sampling case. It canbe appliedto
denseaswell assparsepoint cloudsin variousdimensions.The
operatorcanbeeasilyimplementedusingexisting libraries.It runs
in O(nlogn), wheren is thenumberof pointsin thepoint cloud.

The paperdemonstratesthat without additionalcost,this operator
canbeusednotonly for visualizingpointclouds,but alsofor view-
dependentreconstructionandfor shadow casting.We believe that
otherapplicationsmayalsobene�t from theoperator.

In thefuture,we intendto investigatevisibility undermotion. The
goalis to constructdatastructuresthatfacilitatethecomputationof
visibility whenasubsetof thepointschangesor whentheviewpoint
changes,e.g.,by representingpointsaccordingto their distanceto
theconvex hull. Onepossibledirectionis theuseof kinetic convex
hulls [AbamanddeBerg 2005].
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A Proofs of the operator' s proper ties

Thisappendixprovidestheproofsof thepropertiesof theoperator.

Lemma 4.1 HR � V, i.e., every point marked visible by the HPR
operator is indeedvisiblefromC.

Proof: Let p 2 HR. Suppose,by way of contradiction,that p 62V.
Then, the ray from C to p passesthroughsomepoint p02 S that
hidesp. After inversion,p0will be fartheraway thanp from C on
this ray, since�ipping is strictly monotonicallydecreasingalong
eachray from C. Thus,p is internalto theconvex hull. 2

Lemma 4.2 limR� ! ¥ HR = V, i.e., assumingT = inffk p� Ckjp 2
Sg > 0, whenR ! ¥ , the setof visible pointsmarked by HPR is
equalto thesetof visiblepoints.

Proof: Onesideof theequalitywasprovedin Lemma4.1.To prove
the otherside,we will show that if p 2 V, then p 2 limR� ! ¥ HR.
Without lossof generality, let p = (r;0) (in sphericalcoordinates),
i.e., p liesontheX� axis.Recallthatweassumethat8q= (rq;q) 2
S, r; rq � T.

Then,applyingspherical�ipping to p andanotherarbitrarypoint
q2 S, weget f (p) = (2R� r;0) andf (q) = (2R� rq;q), (q 6= 0). To
show that p 2 limR� ! ¥ HR, we will show that thereexistsR0 such
that 8R > R0, f (q) is on onesideof a line through f (p), 8q 2 S.
Theline wechooseis x = 2R� r, which is parallelto they� axis.

Now, the x coordinateof f (q) is qx = (2R� rq) cosq, but since
rq > T, then qx < (2R� T) cosq. For suf�ciently large R this
quantity satis�es (2R� T) cosq < 2R� r. This happenswhen
2R(1� cosq) > r � T cosq, i.e.,R> r� T cosq

2(1� cosq) , which holdssince
boththenumeratorandthedenominatorarepositive.2

Lemma 4.3LetSbean in�nitesimal surfacepatch aroundp. Then
p 2 HR if andonly if thecurvaturek at p satis�es:

k <
4R(2R� r) cot2b + 2Rr

�
4Rr� 4R2 + (r� 2R)2

sin2 b

� 3=2
:

In the casethat b = p=2, which correspondsto the casethat the
tangent to the surfaceat p is perpendicularto the line of sight,
k < 2R=r2:

Proof: Let bp = f (p) = (bx;by) denotethesphericalimageof p and
bL be the line through bp alongthe convex hull. WLOG, we de�ne
a coordinatesystemasfollows (Figure17): ThevantagepointC is
at theorigin; theY-axis is parallelto bL; andtheX-axis is directed
perpendicularto theY-axis. p is given by (x;y) in Euclideanco-
ordinatesand(r;q) in polarcoordinates.Further, q = tan� 1(y=x),
thereforeq = b � p=2. Finally, wecanrelatethesequantitiesby

(x;y) = (2Rcosq � bx;2Rsinq � bxtanq):

Figure17: The �gure shows line bL parallel to the Y-axis and its
�ipped sourceL throughp. ThecurvaturekL of L at p is themaxi-
mal curvaturebeyondwhich p is markedinvisibleby HPR.

We areinterestedin curve L, which is the �ip sourceof bL andits
curvaturekL. p will bemarkedvisible if thecurvaturek of S at p
is smallerthankL andmarked hiddenotherwise.Varying x andy
alongL, andtakingtheir derivativeswith respectto q yields:

�x = � 2Rsinq;

�y = 2Rcosq �
bx

cos2 q
;

ẍ = � 2Rcosq;

ÿ = � 2Rsinq �
2bxsinq
cos3q

:

Usingthestandardformulafor curvature:

kL =
�xÿ� �yẍ

( �x2 + �y2)3=2
=

4R2 + 4Rbxsin2 q
cos3 q � 2Rbx

cosq

(4R2 � 4Rbx
cosq + bx2

cos4 q )3=2
:



Expressingthis in termsof r andb, usingtheidentities

b =
p
2

+ q;

x = r cosq = r sinb;
y = r sinq = � r cosb;
bx = 2Rcosq � x = (2R� r) sinb ;

weobtain

kL =
4R(2R� r) cot2 b + 2Rr

�
4Rr� 4R2 + (r� 2R)2

sin2 b

� 3=2
:

In thespecialcasethatb = p=2 thissimpli�es to kL = 2R
r2 : 2

Theorem 4.4Assumethat thesampleis suf�ciently dense, thenfor
everyR, thereexistse > 0 such thatHR � Ve.

Proof: To prove thetheorem,we should�nd e > 0 for which if a
point p =2 Ve, then p =2 HR. Denotethedistancefrom p to C by r,
andassumethatthesampleis suf�ciently densewith

r <
T
2

r
r
R

(1�
r

4R
):

Assumep =2 Ve. As illustratedin Figure18, considerthe two rays
from C whoseanglefrom pC is � a with sina = 2r =T:

We �rst show thattheregionbetweenthetwo raysandthe(e� r )-
circle aroundp containstwo samplepoints,q0

1 andq0
2, on either

sidesof theline pC, andthenprove that bp mustlie insidethetrian-
gle4 (C; bq1; bq2).

To show this,weconsidertwo otherraysfromC whoseanglefrom
pC is � a =2. Sincep =2 Ve (i.e., p liesin acompletelyhiddencircle),
S mustintersectthesetwo raysat somepointsbetweenC andthe
e-circlearoundp. This in turn impliesthatwecan�nd two sample
pointsq0

1 andq0
2 within distancer from thetwo intersectionpoints.

We next show that bp mustlie insidethetriangle4 (C; bq0
1; bq0

2). De-
noteby q1 andq2 the intersectionpointsof the two rays from C
whoseanglefrom pC is a with the(e � r )-circle aroundp. It can
bereadilyshown thatif bp lies inside4 (C; bq1; bq2), thenit mustalso
lie inside4 (C; bq0

1
bq0
2) (by noticing that sincethe circular arc from

q1 to q2 is concave, its �ipped imagemustbeconvex).

Let K bethedistancefrom C to qi (i = 1;2). Thedistancefrom C
to bqi is thus2R� K, and bp lies inside4 (C; bq1; bq2) if

(2R� K) cosa > 2R� r:

This impliesthat

1 = sin2 a + cos2a >
4r 2

T2 +
(2R� r)2

(2R� K)2 ;

from whichweobtainthat

0 < K < 2R�
2R� r

q
1� 4r 2

T2

:

This relationcanbeusedto determinee. We composer from two
segmentswhoselengthis determinedby thePythagoreanrelation:

r

K2(1�
4r 2

T2 ) +

r

(e� r )2 �
4r 2K2

T2 < r:

Consequently,

(e� r )2 >

 

r �

r

K2(1�
4r 2

T2 )

! 2

+
4r 2K2

T2

andthus

e > r +

vu
u
t

 

r �

r

K2(1�
4r 2

T2 )

! 2

+
4r 2K2

T2 :2

Figure18: Geometricsetupfor Theorems4.4 and4.5. The exis-
tenceof samplepointsq0

1 andq0
2 inside the triangle4 (C;q1;q2)

guaranteesthat p will belongto HR.

Theorem 4.5Assumethat thesampleis suf�ciently dense, thenfor
suf�ciently largee > 0, thereexistsR> 0 such thatHR � Ve.

Proof: The proof is similar to the previous theorem. Denoteby
a the angle,sina = 2r =T. Considerthe rays from C that form
an angle� a with the line pC. Denoteby K the distancefrom C
to the intersectionsof theserayswith the (e � r )-circle aroundp
(q1 andq2). (Note thate mustbesuf�ciently large,or thesample
be suf�ciently dense,for theseintersectionsto exist.) It is now
possibleto show thatif p =2 Ve andweselectR thatsatis�es

(2R� K) cosa > 2R� r;

thenp =2 HR. Therefore,

R<
r � K cosa
2(1� cosa )

;

with cosa =
p

1� 4r 2=T2. Notealsothatwe requiree to besuf-
�ciently large so that r > K(1� cosa ). However, aswe increase
thedensityof thesamplewecanusesmallervaluesof e. 2


