Visual Comput (2005)
DOI 10.1007/s00371-005-0344-9

Sagi Katz
George Leifman
Ayellet Tal

ORIGINAL ARTICLE

Mesh segmentation using feature point and
core extraction®

Published online: 1 September 2005
© Springer-Verlag 2005

S. Katz (0=9) - G. Leifman - A. Tal
Department of Electrical Engineering
Technion — Israel Institute of Technology
{sagikatz@tx, gleifman@tx,
ayellet@ee}.technion.ac.il

* This work was partially supported by
European FP6 NoE grant 506766
(AIM@SHAPE), by the Israeli Ministry of
Science, grant 01-01-01509 and by the
Ollendorff foundation.

Abstract Mesh segmentation has be-
come a necessary ingredient in many
applications in computer graphics.
This paper proposes a novel hierarch-
ical mesh segmentation algorithm,
which is based on new methods for
prominent feature point and core
extraction. The algorithm has several
benefits. First, it is invariant both to
the pose of the model and to different
proportions between the model’s
components. Second, it produces
correct hierarchical segmentations of
meshes, both in the coarse levels of
the hierarchy and in the fine levels,

where tiny segments are extracted.
Finally, the boundaries between the
segments go along the natural seams
of the models.

Keywords Mesh segmentation -
Mesh decomposition - Feature point
extraction

1 Introduction

Cutting up a mesh into simpler sub-meshes benefits many
algorithms in computer graphics, in areas as diverse as
modeling [8], metamorphosis [11,36], compression [14],
simplification [10], 3D shape retrieval [37], collision de-
tection [22], texture mapping [21], and skeleton extrac-
tion [15]. Some of these applications require segmentation
into higher level meaningful components while others re-
quire segmentation into lower level disk-like patches [5,
10, 26, 34].

This paper presents an algorithm for segmenting
amesh into visually meaningful sub-meshes, following
the minima rule [13], which states that the human vision
defines part boundaries along negative minima of princi-
pal curvatures. For instance, in Fig. 1a, the sumo wrestler
is segmented into his limbs, torso and head.

Several approaches to automatic mesh segmentation
into meaningful components have been proposed in the
past. Many methods use clustering techniques, such as

region growing [4,24], iterative clustering [31], spectral
clustering [23], feature point-based clustering [33,35],
and fuzzy clustering with graph cuts [15]. Other tech-
niques include skeleton-based methods [22] and snakes-
based methods [20]. See [29] for a good survey on mesh
segmentation.

The earlier algorithms tend to generate over-segmentat-
ions [4, 24], mostly due to local concavities. Some of latest
algorithms overcome the fundamental problem of over
segmentation and produce meaningful and nice-looking
segmentations [15, 20, 22,23]. However, some problems
still remain. First, the algorithms are sensitive to the pose
of the model. For instance, different segmentations will
be produced for models of humans with folded arms and
humans with straight arms. This is due to the vital role
that curvature (or dihedral angles) plays in these algo-
rithms. Second, clustering algorithms which are based
on (geodesic) distances [15,23] might generate different
segmentations to similar objects having different propor-
tions between their components. Third, the hierarchies,
when they exist, are sometimes incorrect. For instance, at

S. Katz et al.

a b c

Fig. la—c. Pose-invariant segmentations: Two sumo wrestlers in
different poses are segmented separately (top and bottom). The seg-
mentations are similar in all levels of the hierarchy (the wrestler’s
hair, facial features, nails, and mawashi (belt) originally belong to
different connected components). a First level b Third level ¢ Sixth
level

a certain hierarchical level, the legs are extracted but the
arms are not. Fourth, the extraction of very small features,
like parts of the fingers of a human, might still be diffi-
cult. Finally, in some of these algorithms the cuts between
segments do not always go along the natural boundaries
between components.

The algorithm proposed here produces hierarchical
segmentations into meaningful components of orientable
meshes, and overcomes the above problems. In particular,
Fig. 1 illustrates pose invariance. The two sumo wrestlers,
who are differently posed, were segmented separately,
yet they have similar segmentations. Invariance to pose
and proportions is important in modeling (where similar
parts replace existing parts of a model), in metamorpho-
sis (where similar parts are transformed from one to the
other), and in 3D shape retrieval. In addition, the ability
to construct the right hierarchy, to extract small features
and to compute exact boundaries is vital to skeletoniza-
tion.

Our approach is based on three key ideas. First, the
mesh vertices are transformed into a pose-invariant repre-
sentation, based on the theory of multi-dimensional scal-
ing (MDS) [6,19]. Second, this representation facilitates
the robust extraction of prominent feature points. Intu-
itively, points on the tips of components, such as the tail,
the legs and the head of an animal, are prominent feature
points. Third, this representation also aids in the extraction
of the core component of the mesh. The core component,

together with the feature points, provide sufficient infor-
mation for generating a segmentation.
The paper makes the following contributions:

1. A novel hierarchical pose-invariant mesh segmentation
algorithm is presented.

2. Arobust feature points extraction algorithm is de-
scribed. This algorithm does not require any parame-
ters. It is based on the observation that feature points
can be characterized by local as well as global condi-
tions, in terms of their geodesic distances. These fea-
ture points can be utilized in matching, metamorphosis
and animation.

3. A novel core extraction algorithm is introduced. It is
based on a new operation on meshes — spherical mir-
roring.

The rest of the paper is structured as follows. Section 2
gives an overview of the algorithm. Sections 3—6 discuss
different parts of the algorithm. Section Sect. 7 presents
some results. Section Sect. 8 concludes and discusses fu-
ture directions.

2 Overview

Given an orientable mesh S, the goal is to hierarchically
segment S into meaningful, face-wise disjoint, connected
sub-meshes whose union gives S.

The algorithm proceeds from coarse to fine. Each node
in the hierarchy tree is associated with a sub-mesh and the
root is associated with the whole input mesh. For each
node in the hierarchy tree, the algorithm consists of the
following stages.

1. Mesh coarsening: Mesh coarsening is applied as a pre-
processing step [9]. It assists not only in accelerating
the algorithm when executed on large meshes, but also
in decreasing the sensitivity of the algorithm to the
presence of noise.

2. Pose-invariant representation: Multi-dimensional scal-
ing is used to transform the mesh § into a canonical
mesh Sy/ps, as shown in Fig. 2a. Euclidean distances
between points on Syps are similar to the geodesic
distances between their corresponding points on S.
This property makes the representation pose-invariant,
because folded organs (i.e., arms) are “straightened”
up by the transformation. It is important to note that
since only the mesh vertices are used, Sy/ps might be
self-intersecting without having any effect on the sub-
sequent steps of the algorithm.

3. Feature point detection: A few points, the prominent
feature points, are computed on Sysps, and mapped
back to their corresponding points on S, as illustrated
in Fig. 2b.

4. Core component extraction: The core component is
extracted using a new spherical mirroring operation
(Fig. 2¢).

Mesh segmentation using feature point and core extraction

d

Fig. 2a—d. Algorithm outline a MDS transform and its convex hull b Feature points ¢ Core d Segmentation & Cut refinement

5. Mesh segmentation: The algorithm computes the other
segments, each representing at least one feature point,
as illustrated in Fig. 2d.

6. Cut refinement: The boundaries between the segments,
which were found in the previous stage, are refined.
The goal is to find the boundaries that go along the
“natural” seams of the mesh.

7. Mesh refinement: After the segmentation of the coarse-
resolution mesh (Step 1) is computed, it is mapped to
the input, fine-resolution mesh, and the cut is refined
again, similarly to Step 6.

The hierarchical segmentation continues as long as the
current segment S; has feature points and the ratio be-
tween the number of vertices contained in the convex hulls
of both §; and §;,,,; and the total number of vertices is
low (typically, 0.5). These conditions prevent situations
in which objects without prominent components (i.e., al-
most convex objects), get further segmented. For instance,
a cube, a sphere, or a cone are not segmented, since they
are each perceptually a single part.

The following sections elaborate on each of the key
ideas of the algorithm, presented in Steps 2—6.

3 Pose-invariant representation

Multi-dimensional scaling (MDS) is used to transform the
vertices of the mesh into a pose-invariant representation.
MDS uncovers the geometric structure of a set of data
items from (dis)similarity information about them, by rep-
resenting dissimilarities as distances in an m —dimensional
Euclidean space. The more dissimilar two items are, the
larger the distance between them in this space. For more
details and an historical perspective on MDS, see [6, 18,
19,30].

In our solution, we define the dissimilarity between
points on the mesh as the geodesic distance between them,
i.e., the distance along the surface on which the points
reside. The reason for using the geodesic MDS represen-
tation of a mesh is its invariance to pose. Bending has only
a minor influence on the geodesic distances [7]. This prop-
erty is demonstrated in Fig. 3, where the tail of the monkey
is “unfolded” and the arms are “straightened”.

Fig.3a,b. Transformation to MDS space a The monkey (seg-
mented) b The monkey in MDS space

Given a set of vertices of a mesh {v;|1 <i <n}, the dis-
similarities matrix is defined as {§;; = GeodDist(v;, vj)},
1 <i, j <n. The geodesic distances can be efficiently
computed by the fast marching method [28].

There are two major types of MDS methods: met-
ric MDS and non-metric MDS. Metric MDS attempts to
preserve the intervals and the ratios between the dissimi-
larities. Non-metric MDS preserves only the order of the
dissimilarities, rather than the exact intervals and ratios.

Our empirical studies have discovered that metric
MBDS is too restrictive. Better results, both visually and in
terms of the error function (described below) are achieved
when a non-metric MDS is used. This is therefore our
method of choice.

Stress functions are used to measure the degree of cor-
respondence of the distances between vertices. Let §;; be
the geodesic distance between v; and v; on § and d;; be the
Euclidean distance between their corresponding points in
the MDS space. We use the following stress function:

X @) — dy)?
A Zi<j dz%

The MDS algorithm attempts to optimize this stress
function by minimizing the sum of distances between the
optimally scaled data f(8;;) and d;;, where f is an optimal
monotonic function of the dissimilarities.

This optimization proceeds as follows. In an initializa-
tion stage, the algorithm finds an initial configuration of
the points in the m—dimensional MDS space. This can
be done either by random sampling from a normal distri-

)]

S. Katz et al.

bution or by using the solution to the metric MDS. We
use the second option, which is derived by an eigenvalue
decomposition [3].

Then, the MDS algorithm iterates on the following
steps, until the stress is sufficiently small. First, the Eu-
clidean distances d;; between the points in the MDS space
are computed. Next, using the pool adjacent violators al-
gorithm [2], the optimal monotonic function of the dissim-
ilarities, f, is found, in order to obtain optimally scaled
similarities. Finally, each vertex is re-mapped to a point in
the MDS space, by minimizing Eq. 1. These points are the
input to the next iteration.

The MDS algorithm can map the vertices to any m-
dimensional Euclidean space. In our case, we aim at
“straightening” the object’s components, while keeping
the general shape. Mapping the vertices onto the ori-
ginal dimension (m = 3), manages to achieve this goal.
Conversely, mapping onto R? causes loss of information,
while in R™, m > 3, too many mapped vertices are po-
sitioned on the convex hull, thus changing the general
shape.

4 Feature point detection

This section defines prominent feature points and de-
scribes an algorithm for finding them. The algorithm
proposed requires neither prior knowledge regarding the
number of feature points nor any user parameters.

Intuitively, feature points should reside on tips of
prominent components of a given model. For instance, in
Fig. 4, feature points are found on the tips of the horns, the
ears, the mouth, and the beard. Moreover, feature points
should be invariant to the pose of the model.

Feature points are useful in many applications, includ-
ing metamorphosis [1], deformation transfer [32], mesh
retrieval [37], cross-parameterization [16,25,27], texture
mapping [17,33], and segmentation [33, 35].

In this paper, feature points are used both for estab-
lishing the position of the segments and for determining
whether the segmentation process should terminate.

Fig.4a,b. Feature points and segmentation a Feature points b
Derived segmentation

In [33,35], the local extrema of the average geodesic
distance function [12] define the critical points. Filtering
is necessary in the presence of many small features on
the mesh, thus requiring a user-defined threshold. In our
proposed method, user parameters are avoided by using
a global condition, in addition to a local one.

To formally define the vertices on the tips, we re-
quire that these vertices satisfy the conditions described
below.

Yv € S, let N, be the set of neighboring vertices of
vertex v. Let GeodDist(v;, vj) be the geodesic distance
between vertices v; and v; of mesh S. The local condition
that a feature point should satisfy is that Vv, € N,

Z GeodDist(v, v;) > Z GeodDist(vy, v;) .)

v;eS v, €S

In other words, a vertex resides on a tip of a component if
it is a local maximum of the sum of the geodesic distance
functional.

Although this condition manages to extract a set of
points that contains the prominent feature points, it may
contain also many additional points that are not prominent
feature points, due to small noise. Therefore, a global con-
dition that automatically filters this set of points, is added.
We note that on Syps, tip vertices tend to be extreme
in some direction. This is so because MDS “unfolds”
folded components of a model. This observation leads to
the second condition: A feature point should reside on the
convex-hull of Sy/ps.

Definition 1. Feature point: A mesh vertex is a feature
point if it satisfies Eq. 2 and it resides on the convex-hull
of Smps-

This definition embeds in it an algorithm for comput-
ing the feature points of meshes. Given a mesh § and its
transformed mesh Sysps, the algorithm first computes the
convex hull of Sy;ps and then finds the vertices of the
convex hull that satisfy Eq. 2. Finally, these vertices are
mapped to their corresponding vertices on S.

5 Core extraction and mesh segmentation

Once the feature points are found, they are used to guide
the segmentation. The mesh is segmented into its core
component and its prominent components. Each promi-
nent component is defined by one or more of the feature
points.

The segmentation algorithm consists of three steps:

1. Spherical mirroring of Syps,
2. Extraction of the core component of S,
3. Extraction of the other segments of S.

We elaborate on each step below.

Mesh segmentation using feature point and core extraction

d

Fig. Sa—d. Core extraction steps: a A shape in MDS space (Syps)-
b Spherical mirroring. The red circle is the bounding sphere. The
blue curve is the mirrored shape. ¢ Convex hull of the mirrored
shape in green and orange. The green curves are the parts of the
mirrored image that lie on the convex hull and the cyan curve is the
core. d The core, mapped to S, in cyan. Colors represent connected
component created when subtracting the core

Spherical mirroring. As observed, prominent feature
points on Syps tend to be extreme in some direction,
while vertices of the core component tend to be closer to
the center of Spyps (Fig. 2a). Note that this is the case
both when the features reside on convex regions on the ori-
ginal mesh § (the toes in Fig. 11¢) and when they reside on
concave regions on S (the eyes in Fig. 11a,b).

Spherical mirroring aims at reversing the situation, so
that vertices of the core become external and can be eas-
ily extracted. To do it, a bounding sphere is computed and
the vertices of mesh Sy/ps are “mirrored”, such that ver-
tices of the core component reside on the convex hull of
the mirrored vertices, and feature points become internal
to the hull.

Let C and R (defined below) be the center and radius
of this bounding sphere (which needs not be the minimal
bounding sphere). Treating this sphere as a mirror, each
vertex v of Sypgs is transformed to its image outside the
sphere according to the following equation:

(v—0)
Umirror =V+2(R—||v=C||) ——— .
llv—Cl|

This way, the image of the vertices of the core reside on
the convex-hull, while vertices of the features become in-
ternal.

This procedure is illustrated in 2D in Fig. 5. The mir-
rored limbs and head are closer to the center while the
mirrored core of the object lies on the convex hull.

It remains to explain how to compute C and R. There
are many ways to compute a center. In our implementa-
tion, C is approximated in the first level of hierarchy by
the center of mass of a subset of the vertices of Syps,

which comply with a couple of properties. First, each ver-
tex in this subset should be far from all the feature points.
Second, the ratio between the maximal distance to a fea-
ture point and the minimal distance to a feature point is
small. Though not a requirement, our experiments show
that the center computed in this way is almost always in-
ternal to the core component of Sysps. In the fine levels of
the hierarchy, C is the center of the cut between the sub-
mesh being segmented and the core of the parent node.

The radius R of the bounding sphere is computed by
measuring the maximum distance from the vertices of
Sups to the center C: R = max, ||[v— C]||.

Figure 6 illustrates the results of spherical mirroring on
several 3D meshes.

Fig. 6a—c. Spherical mirroring in 3D a (a) Sumo b Dino-pet ¢ Dog

Core component extraction. The convex hull of the mir-
rored vertices is computed. The vertices that reside on the
convex hull, along with the faces they define on S, are
considered the initial core component. In most cases, the
initial core separates the features (Fig. 5). When this is not
the case, the core component is extended.

Core extension is an iterative process of adding the
neighboring faces of the current core, until one of two con-
ditions is satisfied. The first condition is that the current
core separates all the feature points, thus creating discon-
nected components that define the segments, as demon-
strated in Fig. 4 (the core is the blue segment).

The second condition occurs when the extension re-
duces the distance from the core to the closest feature
point by more than a constant factor (0.5). This case hap-
pens when a few feature points are close to each other and
thus cannot (and should not) be separated by the core, as
illustrated in Fig. 2, where each leg contains a couple of
feature points.

In this case, the algorithm backtracks to the state where
the last feature point separation occurred and the core ex-
tension process stops. This backtracking has the effect of
clustering feature points that correspond to small features.
These features are not considered prominent at the cur-
rent level of hierarchy. Obviously, they will be extracted
at a finer level of the hierarchy. For example, in the first
level of hierarchy, the arm of the sumo wrester contains
a few feature points, one on each finger. Nevertheless, the
backtracking results in the extraction of the whole arm
as a single component. The fingers are extracted at a finer
level of the hierarchy, as shown in Fig. 1.

S. Katz et al.

Extraction of the other segments. Once the core compon-
ent is found, the other segments of the mesh are ex-
tracted by “subtracting” the core component from the
mesh (Fig. 5d). This subtraction, performed by breadth
first search (BFS) that starts from the feature points, seg-
ments the mesh into connected components.

A connected component that contains at least one fea-
ture point, is considered a segment of the mesh. A con-
nected component that does not contain any feature point,
joins the core component.

6 Cut refinement

The previous stage resulted with a segmentation that
might have coarse boundaries between segments. The cur-
rent stage aims at smoothing these boundaries.

Cut refinement has been done by finding a minimum
cut [15], by computing a constrained least cost path [8], or
by using snakes [20]. Our algorithm uses minimum cuts,
since it guarantees separation between the given compo-
nents and it is simple to implement.

For each coarse boundary between segments (found
during the previous step), a flow graph needs to be con-
structed. To do it, it is necessary to define a search region
and a capacity function on the arcs of the flow graph. The
dual graph of the search region, along with new source and
target nodes, define the flow graph. Our minimum-cut im-
plementation differs from that of [15] in both definitions.

The search region is defined to contain all the faces
whose shortest distance to the boundary is smaller than
a factor of the distance to the nearest feature point. This
factor is a user-defined parameter.

The capacity function is defined as follows. Let v;
and v; be vertices of the flow graph, whose dual faces
on the mesh, f; and f;, are adjacent. Let 6;; be the di-
hedral angle between f; and f;, edge;; be the length of
the edge common to f; and f; and angW;; = (1 — (1 —
| cos(Bij)]) *convexityFac)z. The variable convexityFac
is small for concave dihedral angles and 1 for convex an-
gles. Let AVG .4, be the average of edge;; and AVG 4w
be the average of angW;;. The capacity of the arc between
v; and vj is defined as:

angWi;;

(edge;j
Wjj =0 ————
AVGangw

l—o)——,
) 1w
where o is a user parameter.

Since the minimum cut tends to pass through arcs with
small capacities, the boundary will pass through concave
short edges.

Recall that the boundaries are found for the coarse-
resolution model (Step 6 in Sect.2). To compute the
boundaries between segments of the input, fine-resolution,
model (Step 7), the coarse cuts are mapped to the original

model, search regions are defined, and the minimum cuts
are calculated in a similar fashion.

7 Results

Figures 7 and 9 show some hierarchical segmentations.
Figure 10 shows the first hierarchical level of additional
objects. It can be seen that similar segmentations are com-
puted for similar objects. For instance, the first hierarch-
ical level of the four-legged animals consists of the ani-
mals’ torso, head, tail and legs; humans are segmented into
their torso, head, legs, and arms, etc. Moreover, very fine
features, such as toes and facial features, are extracted in
finer levels of hierarchy, as demonstrated in Fig. 11. These
features are often difficult to extract with current segmen-
tation algorithms.

Figure 8 shows a mesh that is difficult to segment,
since it has many concave dihedral angles. Some algo-
rithms that rely on curvatures might segment the mesh in
each of its links. Since the algorithm is guided by promi-
nent feature point and core extraction, it manages to seg-
ment the mesh into reasonable components. In particular,
notice the blue core component that is extracted as a single
component, despite the deep concavity it contains.

Figures 12 and 13 demonstrate invariances. Similar
segmentations are produced for models in different poses
or models having similar components with different pro-
portions. The pose invariance is due to the use of MDS,
while the invariance to different proportions is due to
the feature point and core extraction. Even when the

A A
. \ “\
™~

Fig. 7. Hierarchical segmentation of a finch

Fig. 8. Segmentation of a scanned dinosaur (258 048 faces) that has
many concavities

Mesh segmentation using feature point and core extraction

Fig. 9. Hierarchical segmentations of an eagle, a dog, a cheetah, and the dino-pet

S

b d

Fig. 10a—e. First hierarchical level segmentations of several meshes a Baby b Man ¢ Dove d Duck e Rhino

a Cc

b - c

a

Fig. 11a—c. Zoom into the fine features a Cheetah head (Fig. 9) b Eagle head (Fig. 9) ¢ Sumo foot (Fig. 1)

S. Katz et al.

Fig. 12a,b. Pose-invariance: each model was segmented separately (the eye, eyeball, and eyelid originally belong to different connected
components). a Pose-invariance — first hierarchical level b Pose-invariance — third hierarchical level

Fig. 13. Invariance to different proportions: each model was seg-
mented separately

components grow or shrink, the core keeps separating
them.

The only parameters that the user provided to seg-
ment these models, are related to the cut refinement stage
and to the stopping condition. We view this as a desirable
attribute of our algorithm, since almost no tuning is neces-
sary. Moreover, the major parts of the algorithm — feature
point extraction and meaningful component computation
— are completely automatic.

The algorithm was implemented in MATLAB 7 and
run on a 3.0 Ghz Pentium 4 laptop with 512 Mb RAM.
The running times of sample objects are as follows: seg-
menting the dino-pet, consisting of 4000 faces, took 28
seconds, out of which MDS took 26 seconds. Segment-
ing the sumo wrestler, consisting of 26792 faces, took
30 seconds, out of which MDS took 14 seconds and
computing the flow network graph of the fine model
and the minimum cut took 14 seconds (the coarse sumo
has less faces than the coarse dino-pet, hence the reduc-
tion in MDS time). Segmenting the dinosaur, which con-
sists of 258048 faces, took 430 seconds, out of which
constructing the flow graph of the fine model and the
minimum cut took 370 seconds, MDS took 46 seconds
and simplification took 12 seconds. Generally, on the
coarse model, the time is dominated by the computation
of the MDS. For very large models, the time is domi-
nated by the computation of the minimum cut of the fine

models. However, this time can be significantly shortened
if the algorithm is implemented in C rather than MAT-
LAB.

Let n be the number of faces in the original model,
N be the number of faces in the coarse model (typic-
ally up to 1000 faces), m be the number of faces in the
search region of the fine model, and M be the number
of faces in the search region of the coarse model. Step
1: mesh coarsening, takes O(nlogn). Step 2: MDS, is
bounded by O(N2 X no_iterations), where no_iterations
is usually 30-50. Step 3: feature point extraction, takes
O(N log N) to compute the convex hull plus O(N) per
vertex on the convex hull to compute Eq.2. Step 4:
core extraction, costs O(N log N). Step 5: mesh seg-
mentation, costs O(N). Steps 6 and 7: cut refinement,
are bounded by O(M?log M) and O(m?logm), respec-
tively. Thus, the overall time complexity is O(nlogn +
N? x no_iterations +m?logm 4+ M>log M) = O(N?* x
no_iterations+m210gm).

We compare our results to those presented in [15],
which also proposes an algorithm for hierarchical segmen-
tation. Figure 14 compares the results of the first level
of hierarchy. As can be seen, the current algorithm man-
ages to extract the meaningful components already at this
level, compared to the extraction of only three components
in [15] (the other components are extracted in [15] in the
next levels of hierarchy).

(1) [Katz and Tal 2003]

(2) The current algorithm

Fig. 14. Comparison — correctness of the first level of hierarchy

Mesh segmentation using feature point and core extraction

At =

—

(1) [Katz and Tal 2003]
Second level of hierarchy

(2) The current algorithm
First level of hierarchy

Fig. 15. Comparison — boundaries

Fig. 16. Segmentation of a genus-2 mesh

Figure 15 shows that the components are better sepa-
rated by our algorithm — the tail does not join the back.
This is due to the extraction of the core component per-
formed by the current algorithm.

Figure 16 demonstrates a limitation of our algorithm.
Though the correct segments were found, the bound-
ary between the back leg and the tail is misplaced. This
can be explained by fact that the tail forms a closed
loop which our algorithm found to be a component. An-
other limitation occurs for CAD models. Since concav-
ities, which are vital for these models, might be lost
in the MDS representation, these models should not

be transformed to MDS space prior to the segmenta-
tion.

8 Conclusion

We have presented an algorithm for hierarchical segmen-
tation of meshes. The algorithm produces correct hier-
archies and manages to extract even tiny features. It is
invariant both to pose and to different proportions of com-
ponents. Finally, the algorithm avoids jagged boundaries
as well as over-segmentation.

The segmentation approach is based on three key
ideas: a pose-invariant representation of meshes based on
MDS, feature point extraction, and core component ex-
traction.

To make this approach viable, a robust algorithm for
prominent feature points extraction, as well as a novel al-
gorithm for core component computation, are proposed.
These algorithms can be utilized not only in mesh segmen-
tation, as done here, but also in metamorphosis, matching,
and texture mapping.

Our major future direction is designing an algorithm
for compatible segmentation: given a couple of meshes,
the goal is to segment them in a similar manner. As can
be seen in the examples, our algorithm already segments
the meshes very similarly. For instance, all four-legged an-
imals are segmented into a core, a tail, a head, and four
legs. All humans are segmented into their torso (core),
head, two legs, and two arms. We believe that the current
algorithm has the potential to be useful in compatible seg-
mentation algorithms.

Acknowledgement We are grateful to Stanford Computer Graphics
Laboratory for allowing us to use their models.

References
1. Alexa, M.: Merging polyhedral shapes with 6.

Cox, M., Cox, T.: Multidimensional 11.

Gregory, A., State, A., Lin, M., Manocha,

scattered features. Visual Comput. 16,
26-37 (2000)

. Barlow, R., Bartholomew, D., Bremner, J.,
Brunk, H.: Statistical Inference Under
Order Restrictions. Wiley, New York
(1972)

. Borg, L., Groenen, P.: Modern
Multi-dimensional Scaling: Theory and
Applications. Springer, Berlin Heidelberg
New York (1977)

. Chazelle, B., Dobkin, D., Shourhura, N.,
Tal, A.: Strategies for polyhedral surface
decomposition: an experimental study.
Comput. Geom. Theory Appl. 7(4-5),
327-342 (1997)

. Cohen-Steiner, D., Alliez, P., Desbrun, M.:
Variational shape approximation. ACM
Trans. Graph. (SIGGRAPH) 23(3),
905-914 (2004)

10.

Scaling. Chapman and Hall, London (1994)

. Elad, A., Kimmel, R.: On bending invariant

signatures for surfaces. IEEE Trans. Pattern
Anal. Mach. Intell. 25(10), 1285-1295
(2003)

. Funkhouser, T., Kazhdan, M., Shilane, P.,

Min, P., Kiefer, W., Tal, A., Rusinkiewicz,
S., Dobkin, D.: Modeling by example.
ACM Trans. Graph. (SIGGRAPH) 23(3),
652-663 (2004)

. Garland, M., Heckbert, P.: Surface

simplification using quadric error metrics.
In: Proceedings of SIGGRAPH 1997, pp.
209-216 (1997)

Garland, M., Willmott, A., Heckbert, P.:
Hierarchical face clustering on polygonal
surfaces. In: Proceedings of ACM
Symposium on Interactive 3D Graphics, pp.
49-58 (2001)

12.

13.

14.

15.

D., Livingston, M.: Interactive surface
decomposition for polyhedral morphing.
Visual Comput. 15, 453-470

(1999)

Hilaga, M., Shinagawa, Y., Kohmura, T.,
Kunii, T.: Topology matching for fully
automatic similarity estimation of 3D
shapes. In: SIGGRAPH 2001, pp. 203-212
(2001)

Hoffman, D., Richards, W.: Parts of
recognition. In: Pinker, S. (ed.) Visual
Cognition, pp. 65-96. MIT Press, London
(1985)

Karni, Z., Gotsman, C.: Spectral
compression of mesh geometry. In:
Proceedings of SIGGRAPH 2000, pp.
279-286 (2000)

Katz, S., Tal, A.: Hierarchical mesh
decomposition using fuzzy clustering and

S. Katz et al.

cuts. ACM Trans. Graph. (SIGGRAPH)
22(3), 954-961 (2003)

16. Kraevoy, V., Sheffer, A.:
Cross-parameterization and compatible
remeshing of 3D models. ACM Trans.
Graph. 23(3), 861-869 (2004)

17. Kraevoy, V., Sheffer, A., Gotsman, C.:
Matchmaker: constructing constrained
texture maps. ACM Trans. Graph. 22(3),
326-333 (2003)

18. Kruskal, J.: Multidimensional scaling by
optimizing goodness of fit to a non-metric
hypothesis. Psychometrika 29 (1964)

19. Kruskal, J., Wish, M.: Multidimensional
Scaling. SAGE Publications, Thousand
Oaks, CA (1978)

20. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D.,
Seidel, H.P.: Intelligent mesh scissoring
using 3D snakes. In: Pacific Conference on
Computer Graphics and Applications, pp.
279-287 (2004)

21. Levy, B., Petitjean, S., Ray, N., Maillot, J.:
Least squares conformal maps for
automatic texture atlas generation. In:
Proceedings of SIGGRAPH 2002, pp.
362-371 (2002)

22. Li, X., Toon, T., Tan, T., Huang, Z.:
Decomposing polygon meshes for
interactive applications. In: Proceedings of

the 2001 symposium on Interactive 3D
graphics, pp. 35-42 (2001)

23. Liu, R., Zhang, H.: Segmentation of 3D
meshes through spectral clustering. In:
Pacific Conference on Computer Graphics
and Applications, pp. 298-305 (2004)

24. Mangan, A., Whitaker, R.: Partitioning 3D
surface meshes using watershed
segmentation. IEEE Trans. Visual. Comput.
Graph. 5(4), 308-321 (1999)

25. Praun, E., Sweldens, W., Schroder, P.:
Consistent mesh parameterizations. In:
SIGGRAPH ’01, pp. 179-184. ACM Press,
New York (2001)

26. Sander, P., Snyder, J., Gortler, S., Hoppe,
H.: Texture mapping progressive meshes.
In: SIGGRAPH 01, pp. 409-416. ACM
Press, New York (2001)

27. Schreiner, J., Asirvatham, A., Praun, E.,
Hoppe, H.: Inter-surface mapping. ACM
Trans. Graph. 23(3), 870-877 (2004)

28. Sethian, J., Kimmel, R.: Computing
geodesic paths on manifolds. Proc. of Natl.
Acad. Sci. 95(15), 8431-8435 (1998)

29. Shamir, A.: A formalization of boundary
mesh segmentation. In: Proceedings of the
2nd International Symposium on 3DPVT
(2004)

30. Shepard, R.: The analysis of proximities:
multi-dimensional scaling with an unknown
distance function. Psychometrika 27 (1962)

31. Shlafman, S., Tal, A., Katz, S.:
Metamorphosis of polyhedral surfaces
using decomposition. In: Proceedings of
Eurographics, pp. 219-228 (2002)

32. Sumner, R., Popovic, J.: Deformation
transfer for triangle meshes. ACM Trans.
Graph. 23(3), 399405 (2004)

33. Zhang, E., Mischaikow, K., Turk, G.:
Feature-based surface parameterization and
texture mapping. ACM Trans. Graph.
24(1), 1-27 (2005)

34. Zhou, K., Synder, J., Guo, B., Shum, H.Y.:
Iso-charts: Stretch-driven mesh
parameterization using spectral analysis. In:
Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing, pp.
45-54 (2004)

35. Zhou, Y., Huang, Z.: Decomposing polygon
meshes by means of critical points. In:
MMM, pp. 187-195 (2004)

36. Zockler, M., Stalling, D., Hege, H.C.: Fast
and intuitive generation of geometric shape
transitions. Visual Comput. 16(5), 241-253
(2000)

37. Zuckerberger, E., Tal, A., Shlafman, S.:
Polyhedral surface decomposition with
applications. Comput. Graph. 26(5),
733-743 (2002)

SAGI KATZ is currently a Ph.D. student at the
department of Electrical Engineering, Technion.
He received a B.Sc. (cum laude) and M.Sc (cum
laude) degrees in Electrical Engineering from
the Technion in 2001 and 2003.

GEORGE LEIFMAN received the B.Sc. degree
(Summa cum Laude) in Computer Engineering
from the

Technion in 2001, and the M.Sc. degree in
Electrical Engineering from the Technion in
2003. Currently he is a research assistant at the

department of Electrical Engineering, Technion.

AYELLET TAL is a faculty member at the de-
partment of Electrical Engineering, Technion.
She holds a Ph.D. in Computer Science from
Princeton University, an M.Sc. degree (Summa
cum Laude) in Computer Science from
Tel-Aviv University and a B.Sc degree
(Summa cum Laude) in Mathematics and
Computer Science from Tel-Aviv University.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

