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Figure 1: Document enhancement: Combining visibility detection with state-of-the-art algorithms for document processing,
improves performance. (a) Producing a binary image of a document, given a gray-level stained one, reveals the text behind
the stain. (b) Removing shadows from a color image recovers the original colors.

Abstract

This paper re-visits classical problems in document en-
hancement. Rather than proposing a new algorithm for a
specific problem, we introduce a novel general approach.
The key idea is to modify any state-of-the-art algorithm, by
providing it with new information (input), improving its own
results. Interestingly, this information is based on a solu-
tion to a seemingly unrelated problem of visibility detection
in R3. We show that a simple representation of an image as
a 3D point cloud, gives visibility detection on this cloud a
new interpretation. What does it mean for a point to be vis-
ible? Although this question has been widely studied within
computer vision, it has always been assumed that the point
set is a sampling of a real scene. We show that the answer
to this question in our context reveals unique and useful in-
formation about the image. We demonstrate the benefit of
this idea for document binarization and for unshadowing.

1. Introduction

Images of documents such as books, articles, and fliers
frequently show up in our everyday lives. Many of these
images are damaged, often for one of two reasons. The

first is that the documents might contain artifacts such as
stains, ink spills or simple degradations that happen over
time [4, 13, 19, 20, 29] (Figure 1(a)). The second is that
documents, when captured using cellphone cameras, be-
come highly susceptible to non-uniform lighting caused by
multiple light sources or by shadows, resulting from oc-
clusion of the light sources [1, 22] (Figure 1(b)). Though
these problems are inherently different and are thus tradi-
tionally handled by specialized algorithms, we propose a
unified modification approach, applicable to both problems,
which can be combined ”on-top” of existing algorithms.

The key idea of our algorithm is that if we choose a suit-
able representation of pixels as points in R3 and then detect
the subset of the points that are visible from a viewpoint
(and/or occluding it), hidden information about the image
is revealed. This information is used to create a new image,
which when given as input to an existing algorithm, will im-
prove its own results, while leaving the algorithm’s general
structure as usual.

Visibility has been defined in various dimensions and for
different types of objects [3, 5, 6, 7, 8, 17, 18]. This pa-
per focuses on a specific variant of it: Given a point set in
R3 and a viewpoint, the goal is to determine the subset of
points visible from the viewpoint. Since points cannot oc-
clude each other (unless they accidentally fall on the same
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Figure 2: Algorithm outline: The intensity image (a) is transformed to a 3D point set on a ”globe”, where the distance of
a point from the globe’s center (in green) is determined according to the intensity (b). Visibility detection operators detect
which pixels have been transformed to visible/occluding points from/to the viewpoint (the globe’s center). Visible/occluding
pixels are marked red in (c). Notice that the letters hardly have any red points, whereas the background and the stain have
many. This implies a strong visibility–foreground correlation. Using the information of (c), a visibility-based image is
created (d). It maintains the text of (a), while making stains disappear. This image is used to alter existing algorithms.

ray from the viewpoint), the more precise goal is to deter-
mine the subset of points that would be visible, if the surface
from which the points were sampled, was known.

Why does visibility information assist us? Take for in-
stance Figure 1(a). The representation we propose will as-
sign text pixels, which are dark on white background, to
points in deep valleys. The background, which is constant
and of high intensity, will turn to elevated plateaus. Stains
on text, which have no distinct intensity characteristics, will
be represented as structure-less, resembling ”volcanic” ter-
rains. Stains on background, which are darker local regions,
will outcome in craters or shallow valleys upon the elevated
plateaus. It turns out (and later rigorously explained why)
that visibility detection operators manage to distinguish be-
tween deep valleys and ”volcanic” terrains (text) to elevated
plateaus, craters and shallow valleys (background).

We demonstrate the benefits of this idea in two tasks, as
illustrated in Figure 1:

1. Text image binarization: Extracting text out of dis-
torted or degraded documents, creating a binary image.

2. Document unshadowing: Readjusting the lighting of
an image to produce an unshadowed image.

To summarize, the main contributions of this paper are:
(1) a novel idea of introducing visibility detection into doc-
ument processing. In this sense, this paper combines two
fundamental and widely-explored problems in computer vi-
sion, which are seemingly unrelated; (2) creating a generic
framework that realizes the above idea; (3) providing state-
of-the-art results for two applications.

2. Algorithm
Given an image of a document (Figure 2(a)), which can

be stained, shadowed or otherwise distorted, our goal is to
produce another image (Figure 2(d)), which better distin-
guishes the foreground from the background. This image
will benefit any algorithm that should process the document.

The key idea of our algorithm is to transform the given im-
age into a set of points in 3D. The classification into visible
(/occluding) and invisible (/non-occluding) points guides us
of the background and foreground pixels. Our algorithm
could be encapsulated into four stages:
Stage 1: Transform each pixel to a 3D point. To acquire
initial intuition to this stage, one could imagine the image
as if it was pasted onto a portion of the world globe. This
is performed such that valleys and craters on the surface are
created from pixels of low intensity relatively to their vicin-
ity; ridges and mountains are created from high intensity
pixels relatively to their vicinity; plateaus are created from
areas of pixels with low varying intensity.

To realize it, the pixel’s (x, y) coordinates are used to
spread the points over a 3D sphere, and then low-intensity
pixels are transformed closer to the sphere’s center than
high intensity pixels. Figure 2(b) shows both the full point
cloud representing the whole image, as well as the transfor-
mation of a single (orange) curve through the image. Sec-
tion 2.1 elaborates on this stage.
Stage 2: Detect the visible/occluding points from (/ to) the
globe’s center. As illustrated in Figure 2(c), red (occluding)
dots exist on the background, including the stain, but not
on the foreground letters. This is the key to the success of
our approach. Section 2.2 explains how the globe analysis
is related to a point being visible or occluding.
Stage 3: Create a visibility-based image by using the in-
formation of Stage 2 above, as shown in Figure 2(d).
Stage 4: Apply an existing algorithm, using the visibility-
based image rather than the input image.

The computational complexity of our approach is
O(n log n), for n points. Steps 1&3 are linear, whereas Step
2 is O(n log n) due to convex hull construction it applies.

We elaborate on Stages 1–2 in the following sub-
sections. Stages 3–4 are task dependent and their details
will be described in Sections 3– 4.



2.1. Image to point-set transformation (Stage 1)

Let pi be a pixel within the image at location (xi, yi) and
intensity level Ii ∈ [0, 1]. For color images the luminance
channel of the L∗a∗b∗ colorspace is regarded as the pixel’s
intensity. The transformation first spreads the image onto
a portion of the unit sphere’s surface and then brings the
pixels closer or further away according to their intensity.

In spreading, pi is first translated to a scaled coordinate
system relatively to the image coordinate system, having its
origin located in the center of the image s.t.:

x′i =
xi − width

2

M
, y′i =

yi − height
2

M
, (1)

where M is the maximum image dimension. This guaran-
tees that (x′i, y

′
i) ∈ ([−0.5, 0.5]× [−0.5, 0.5]).

To set the height of a point on the globe, an initial height
is defined for all pixels and pi is then represented in polar
coordinates (ri, θi, φi). Then, each pixel is transformed to
the unit sphere at (1, θi, φi). Finally, ri is set relatively to
pi’s intensity using a linear transformation to Ii s.t.:

ri = a1 · Ii + a0. (2)

In our earth analogy, the choice of a1 and a0 effects the
nature of the terrain. When a0 is high, even the deepest
valleys (or areas of low intensity) remain far from the view-
point. When setting a1 to high values, the transformation
will result in significant valleys and ridges even when the
pixels that created them had similar intensity values. The
choice of a1 and a0 differs between applications, but con-
stant across all images of a dataset. Their values will be
specified when elaborating on each of the applications.

2.2. Detecting visible/occluding points (Stage 2)

We start with some intuition, considering Figure 2(b).
A text character is composed of pixels with low intensity,
within a vicinity of many high intensity and slowly variating
pixels—a typical background for text images. Our image
transformation will cause the points that originated from
this character to reside within a narrow valley. Meanwhile,
the vertical crease creates a shallower and wider valley than
the text pixels. Finally, the surrounding points, which orig-
inated from the background, will reside on plateaus.

We are basically looking for an operator that distin-
guishes between narrow valleys (characters) and all other
cases. While this can be performed in various ways for
surfaces, the problem is much more difficult for point sets.
However, interestingly enough, operators that detect visi-
ble/occluding points can perform the task, with a little twist.

We first provide a short introduction to the problem and
to these operators. Given a point set P ⊂ R3 and a view-
pointC, the goal is to find the subset of visible points. What
does it mean for a point to be visible? If P is sampled from

(a) HPR: from-point visibility (b) TPO: to-point occlusion

Figure 3: Visibility in 2D: Blue points will be detected vis-
ible (/occluding) by the HPR (/TPO) operator, while green
points will not. The red point is the viewpoint.

a surface S, then a point is considered visible if it would be
visible to C on S (where visibility is well-defined).

The Hidden Point Removal (HPR) operator of [15, 16]
determines the subset of visible points of P directly, sparing
surface reconstruction. The operator consists of two steps
(w.l.g, assume that C is at the origin):

1. Point Transformation: A function Fγ : RD → RD
maps all pi ∈ P s.t.:

p̂i = Fγ(pi) =
pi
‖pi‖

· ‖pi‖γ . (3)

Thus, Fγ moves pi along the ray from the origin,
where the exact distance depends on the parameter γ.

2. Convex hull Construction: The convex hull of P̂
⋃
C

is calculated, where P̂ = {p̂i | p̂i = Fγ (pi) , pi ∈ P}.
The main result of [15, 16] is that the points that reside
on the above convex hull are the pre-images of the visible
points.

A dual operator, the Target Point Occluding (TPO) [14],
finds the subset of P that occludesC from outside observers
positioned at ∞ (at all directions). In Equation 3, HPR
requires γ < 0 whereas TPO requires γ > 0. Figure 3
presents the results of these operators for a point set in 2D.

Why are these operators relevant to our goal? To answer
this, we note a limitation of the HPR (/TPO) operator [14,
15]. The key idea of our algorithm is to use this limitation
to our benefit, as explained below.

The HPR operator will detect a visible point as such
(/TPO & an occluding point), only if the curvature κ of the
visible point is below (/above) a threshold:

κ <
γ(1− γ) sin(β)(cos2(β)− γsin2(β))

d(γ2sin2(β) + cos2(β))
3
2

. (4)

Here, γ is the parameter from Equation 3, β is the angle
between the surface normal and the line of sight, and d is
the distance between the surface and the viewpoint.



Input Howe [13] Alg.2 Howe [13] Alg.3 Su et. al [29]

Binarization Alg. [13] Alg.2 ours [13] Alg.3 ours [29] ours
Pf-measure 67.94% 75.32% 65.72% 75.58% 75.79% 85.16%

Figure 4: Comparison: The results of leading binarization algorithms are compared to their own results when replacing the
input by our lowlights map, on an image from [2]. Thanks to our improved input, the text is better maintained in all the cases
and the image borders are treated better. In the case of [29], this comes at the cost of an added stain.

In our globe analogy, the HPR operator will correctly
detect visible points as long as they are in valleys or craters
(the local surface is concave) or they are on non-steep ridges
(convex with small curvature). Similarly, the TPO will de-
tect occluding points as such as long as they are on ridges
(local surface is convex) or when they are in a shallow val-
leys (concave with small absolute curvature). Note that in
the original papers discussing the HPR and the TPO oper-
ators [14, 15], convexity and concavity are discussed from
the viewpoint, whereas we address them with respect to the
globe’s surface, hence they are opposite.

This information is invaluable in image analysis. For in-
stance, in the domain of text images, our image transforma-
tion causes the points that originated from a character to re-
side within a deep valley; accordingly, they are less likely to
be detected as occluding by the TPO operator. Conversely,
points that originated from the background are more likely
to be detected as occluding. Both these observations could
be noticed in Figure 2(c). The density of red (occluding)
points within the characters is substantially lower than the
background’s red point density. The vertical crease, how-
ever, creates a shallower and wider valley than the text pix-
els. Hence, the TPO operator does detect the occluding
points within it, which results in a ”cleaner” image (d).

The next sections show the adaptation of our general ap-
proach to two text processing applications.

3. Application: Text Image Binarization
Given an image consisting of hand-written or printed

text, the goal is to classify each pixel either as text (fore-
ground) or as background. Thus, the output is a binary map
that separates foreground and background pixels, as illus-
trated in Figure 1(a). This task is challenging due to arti-
facts in the image, such as stains, ink spills, creases, loss of
text contrast etc.

Although the existing algorithms differ from each other,
those considered state-of-the-art today share a general

framework. Each pixel is first assigned some score, based
on global and local cues, acquired from the intensity map.
Later, it is ”fine tuned” and manipulated using different
assumptions regarding text images. The final stage is
choosing a threshold, local or global, which separates be-
tween foreground and background pixels according to their
scores [4, 19, 20, 29]. Alternatively, some algorithms mini-
mize an energy function according to statistics representing
text images, in order to separate the text pixels class from
the background pixels class [13].

We propose to alter this framework by replacing the in-
tensity map with our visibility-based Lowlights Map as in-
put to the algorithm. We will show that the values of text
pixels are closer to one another and are separated better
from those of non-text pixels, making our lowlights map
a more discriminate input. Therefore, even when the rest
of the binarization algorithm is left untouched, its perfor-
mance will improve. This holds regardless of the specific
binarization algorithm we choose to alter; see Figure 4.

Figure 5 outlines our approach, which implements the
framework presented in Section 2 for binarization. Sim-
ilarly to the analysis done for Figure 2, given an inten-
sity map, the point set transformation (Stage 1) causes text
characters to create deep valleys, while the background and
stains create ridges or shallow valleys and large plateau
within the transformed point set. Thus, it suffices to use
only the TPO operator for Stage 2, as the TPO operator is
liable to misdetect points within deep valleys. Therefore,
background pixels are detected by the TPO operator as oc-
cluding, whereas text pixels are not. Indeed, in Figure 5(b)
the text characters contain almost no red points, differently
from the background, the stain, and noisy pixels.

To process this information (Stage 3), a smoothed im-
age is created using only the intensity values of the pixels
that generated the occluding points. For the rest of the pix-
els, we apply the natural-neighbor interpolation [28], using
only the occluding pixels. Hence, their values are approxi-



Figure 5: Outline—text image binarization: The input
(a) (from [24]) is replaced by our lowlights map (d), creat-
ing a much better result (f) than (e) [13]. To acquire (d),
the occluding pixels are first detected (marked red in (b))
and a smoothed image (c) is created using only the inten-
sity values of these pixels. Since text pixels are not likely to
be detected as occluding, (c) contains only background and
stains. Thus, subtracting (c) from (a) zeros out the intensity
of the background, increasing the text-background contrast.

mated by their neighboring occluding (background) pixels.
In Figure 5(c), the smoothed image contains the background
of the input image, even if it is stained. Text characters, on
the other hand, are not apparent.

Next, the smoothed image of Figure 5(c) is subtracted
pixel-wise from the input image and subsequently normal-
ized to the range of [0, 1], resulting in a visibility-based
lowlights map. Since the value of a background pixel in
the original image and in the smoothed image are equal,
its value in the lowlights map will be 1, as desired. Even
if it is not detected occluding, the fact that it resides on a
plateau or a ridge, means that its vicinity contains points
that originated from pixels with similar intensity values.
Consequently, the pixel will end up with a value approach-
ing 1. On the other hand, if the pixel is a text pixel, then
its 3D point will end up within a valley. This point, as well

(a) Intensity image (b) Lowlights map

Figure 6: Histograms of intensity and lowlights maps:
Foreground pixels (blue) and Background pixels (orange)
histograms are better separated in our lowlights map (b)
than in the input intensity image (a). This makes the low-
lights map more attractive for any binarization algorithm.

as points around it, are unlikely to be marked occluding.
Thus, its interpolated value in the smoothed image will be
much greater than its true intensity. Upon creation of the
lowlights map, its value will be close to 0. This implies a
stronger background-value correlation in Figure 5(d) than
in 5(a), less noise in the background, and text strokes that
contain lower internal intensity variance.

Figure 6 demonstrates the discriminative power of our
approach. Using the ground truth, we plot the histograms
of the background pixels (in orange) and the text pixels (in
blue) both for the intensity map and for our lowlights map.
The overlapping between the histograms of the two pixel
types is much smaller in the lowlights map than that in the
intensity map, and the separation is evident. Thus, the low-
lights map is a better starting point for any foreground ex-
traction algorithm.

Therefore, at Stage 4 of Section 2’s framework, the in-
tensity image is simply replaced by our lowlights map, as
input to any text binarization algorithm. The improvement
achieved is presented in Figure 5(e)+(f) and in Figure 4 for
a variety of algorithms.

Results: Text image binarization has standard quanti-
tative and qualitative visual evaluation, together with an
agreed and widely-used set of benchmarks. We tested our
approach on algorithms that performed best in the latest
Document Image Binarization Contests [21, 27]. We mea-
sured their performance on the three common datasets in
the field: (1) the hand written documents of Dibco 2009-
2016 [10, 21, 23, 24, 25, 26, 27] (2) the printed documents
of Dibco 2009, 2011, 2013 [10, 24, 26], and (3) the Bishop
Bickley’s Diary dataset [2]. The comparison was performed
using the F-measure and the pseudo-FMeasure [21].

The average results for each of the datasets are pre-



Figure 7: Binarization evaluation: Performance evalua-
tion of leading algorithms on benchmark datasets: average
performance for DIBCO’09-DIBCO’16 ([10, 23, 24, 25, 26,
21, 27]) handwritten (top) & printed (middle) documents
and Bickley Diary Dataset [2] (bottom). The best perform-
ing algorithm for each dataset is in bold font. With all mea-
sures on all datasets, our processing improves the results.

sented in Figure 7. Our results outperform the original re-
sults for all algorithms. In fact, it won the first place in
the ICFHR2016 Handwritten Document Image Binariza-
tion Competition [27]. We note that for most of the images
within the Dibco datasets, previous methods reach almost
perfect scores. For such cases, visibility detection produces
little improvement. Yet, visibility does matter when the in-
put is challenging. Therefore, the improvement rates for the
more difficult Bickley Dataset are more profound.

Figure 8 shows a couple of additional examples out
of [24], where the results of the original best performing
algorithms are improved. Note how the vertical crease (top)
is detected as background and how the noisy region on the
right-hand side of the bottom image is better treated.
Parameters: We used fixed parameters, as follows. In Eq. 2
we set a1 = 1, a0 = 0.05. In Eq. 3, we set γ = 0.01 for
the Dibco hand-written dataset, γ = 0.005 for the Dibco
printed dataset and γ = 0.001 for the Bickley dataset.

4. Document Unshadowing
Images of documents such as letters, articles, and manu-

als are commonplace in our lives. Many of these images are
captured using cellphone cameras, under sub-optimal con-
ditions, such as multiple light sources and objects occluding
light sources. The unshadowing task aims to ”recover” a
fully detailed document, as if the image was taken in a prop-
erly (uniform) lit setting, as demonstrated in Figure 1(b).
Note that while binarization is a classification problem, un-
shadowing is a restoration problem [11, 31].

State-of-the-art algorithms [1, 22] perform this task in
two stages. First, a shadow mask of the image is cre-
ated, using global and local lighting properties of the image.
Next, the mask is combined with the input image, to create
the output. The differences between the algorithms occur
mostly in the creation of the shadow mask. We propose to
use our visibility-based shadow mask, leaving the general
structure of the algorithms untouched.

(a) Input (b) SOTA output (c) Our output

Figure 8: Binarization results: (a): Images out of [24].
The best-performing algorithm’s output in (b) is improved
by using our lowlights maps in (c). Top: [13] Alg. 3 is
improved from 92.06% to 93.61%. Our algorithm manages
to detect the vertical crease as background. Bottom: [29] is
improved from 76.18% to 90.18%. Our algorithm enables
better treatment of the noisy region on the right-hand side
of the image. Scores are in PF-measure.

Before going into detail, we explain the intuition behind
the shadow mask we create. Since our input is an image
of a document, we may assume that the background should
be locally nearly constant. Therefore, any small group of
neighboring pixels with high intensity variation is likely to
contain foreground pixels. We aim to detect pixels that are
unlikely to be in highly-variating regions. This ensures that
only background pixels are detected.

We take advantage of the visibility properties, which tell
us how unique a small group of pixels is within a larger
region. When transforming the image to a point set (Stage 1,
Section 2), regions of absolute high curvature are created
from pixels of high varying intensity. Conversely, points
that are detected both visible (HPR) and occluding (TPO)
are guaranteed to reside within regions of small curvature.
Consequently, they are likely to be background pixels.

Unlike the previous application, the input here is a color
image. We use the L*a*b* color space and process only
the L* channel, normalized to [0, 1]. To detect the back-
ground pixels, we transform the image into a point set, ap-
ply both the HPR and the TPO operators and select pixels
detected by both. Using only these pixels, we create our
visibility-based shadow mask, which evaluates the lighting
(L*) (or shadows) of the image, disregarding the data (char-
acters). The intensity values of the detected pixels are set
to their original intensity, which is purely the document’s
global lighting. For the rest of the pixels, we use natural-



(a) Input

(b) [1]’s shadow map (left) vs. ours (right)

(c) [1]’s output (left) vs. ours (right)

Figure 9: Shadow masks & unshadowing: Visible pixels
are used to interpolate a shadow mask (b), given an input
color image (a). Our mask contains only lighting informa-
tion, differently from [1]’s. Using the mask, an unshad-
owed image is produced (c). Because our shadow mask
better separates the data from the shadow, the colors and
the background lighting are better preserved than in [1].

neighbor interpolation [28], similarly to what was done for
binarization. As can be seen in Figure 9(b), our mask is
”clean”, containing only the lighting / shadowing compo-
nent, and no meaningful information is lost.

After our shadow mask is created, the rest of the algo-
rithm follows [1], creating the unshadowed image. Briefly,
the input intensity map is divided by the shadow mask pixel-
wise, turning the value of ”visible” (background) pixels
to 1 (having the same value in the input and in the shadow
mask). As 1 represents full lightness, this results in an over-
lit image. It is readjusted by multiplying all intensity values
in the over-lit image by a global factor, which is determined
by the color of the background. As a final step, a Median
filter is applied, to handle artifacts created throughout the
unshadowing process, as well as in the input itself.

As the input is a color image, so should the output be.
Thus, our intensity map is combined with the original a*
and b* channels, and white balancing is applied [9] to re-
gions that were detected as shadowed. As shown in Fig-
ure 9(c), the background and the character colors are better
preserved and the original colors are recovered.

Results: We evaluated the algorithm on a new and diverse
benchmark of 381 artificially-shadowed images from four
categories: handwritten documents, printed documents,
posters, and fonts. Each category consists of 7-10 docu-

(a) Input (b) [1]’s output (c) Our output

Figure 10: Unshadowing results: Details are better pre-
served using our approach, thanks to more accurate shadow
masks. The images represent the 4 categories of the dataset.

ments and each document is captured with 8-12 variations
of shadow intensity, shape and location. It includes the
dataset of [1], which contains 81 images created from 11
documents, all having small fonts, little color variance and
gentle shadowing (i.e. input is similar to ground truth).

Figure 10 shows qualitative comparisons of typical im-
ages from the four categories. The most prominent differ-
ence is the color we are able to preserve, restoring a richer
and more detailed unshadowed images.

To quantitatively evaluate the performance, it is mea-
sured in terms of Structure Similarity Index Measure
(SSIM) [30], which is considered to be correlated with the
quality perception of the human visual system [12], as well
as with Mean Squared Error (MSE) and Peak Signal-to-
Noise measure (PSNR) [12]. Table 11 presents the average
results for each of the categories. High similarity between
an unshadowed image to the ground truth document would
result in high SSIM (approaching 1) and PSNR (approach-
ing infinity), while MSE would approach 0. Scores of the
input images are shown for reference.

In terms of SSIM and MSE, our results outperform [1]
for all four categories. In terms of PSNR, our results are
better for two categories and slightly worse than [1]’s for
two. This can be explained by the good performance of [1]
for mildly-shadowed images, resulting in high PSNR val-
ues. Due to the exponential nature of PSNR, successful un-



Figure 11: Quantitative evaluation: Comparison with [1]
on a dataset comprised of 381 images indicates that for
most measures and document classes our results outperform
those of [1]’s. Input scores appear as a baseline.

shadowing causes the average score over the whole dataset
to approach significantly higher values.

Figure 12 provides visual qualitative comparisons for
real-world images obtained from the Internet (hence, there
is no ground-truth to compare against). It can be seen that
even for highly challenging images—both in shadowing and
in color—our results are more eye-pleasing.
Parameters: We set γ values in Eq. 3 so as to create a
detection rate of ˜10% for the TPO and 3̃% for the HPR. For
Eq. 2, the point set transformation, we set a0 = 1, a1 = 1.
For filtering, we used window = 3 for the median filter.
Limitation: Figure 13 is an example where the result of [1]
is more similar to the ground truth than ours, since [1] is
better tuned to small fonts and little color variance.

5. Conclusion
This paper has proposed a general approach for process-

ing documents of various types. The idea is rather simple.
Instead of measuring properties of pixels, such as unique-
ness, varying intensity or relativity, we determine the visi-
bility and/or occlusion of their representative 3D points. We
show that simple and efficient (O(n log n)) operators reveal
properties of the image that are otherwise hidden.

We applied our framework for text image binarization
and document unshadowing. We have demonstrated how
visibility information helps create a cleaner and clearer in-
put to existing algorithms and improve their own results.
Since our modification can be applied to any algorithm, it
will likely benefit future developments in the domain.

We intend to study the use of our concept for other prob-

(a) Input (b) [1]’s output (c) Our output

Figure 12: Uncontrolled-experiment results: For real-
world challenging images, which are rich in color detail and
have multiple shadowing intensities, our method better pre-
serves the color and the artifacts are less eminent.

(a) Input (b) [1]’s output (c) Our output

Figure 13: Unshadowing limitation: The result of [1] bet-
ter matches the ground truth than ours for this example.

lems, both within image processing and for other applica-
tions in computer vision. It may prove advantageous even
when the feature points are embedded in higher dimensions.
Acknowledgments: This research was funded by the Bi-
national Science Foundation (BSF) & by the Israel Science
Foundation (ISF).
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