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Figure 1: Given a 3D model (a), the user scribbles on it using the desired colors (b). Our algorithm completes the colorization
and generates the model shown in (c).

Abstract
This paper proposes a novel algorithm for colorization of meshes. This is important for applications in which the
model needs to be colored by just a handful of colors or when no relevant image exists for texturing the model. For
instance, archaeologists argue that the great Roman or Greek statues were full of color in the days of their creation,
and traces of the original colors can be found. In this case, our system lets the user scribble some desired colors
in various regions of the mesh. Colorization is then formulated as a constrained quadratic optimization problem,
which can be readily solved. Special care is taken to avoid color bleeding between regions, through the definition
of a new direction field on meshes.

1. Introduction

Colorization was introduced by Markle in 1970 to de-
scribe the computer-assisted process for adding color to
black-and-white movies or TV programs [Bur]. The term is
now used generically to describe any technique for adding
color to monochrome stills and footage and was exten-
sively investigated in computer graphics and computer vi-
sion [LLW04, LWCO∗07, QWH06]. For 3D models, col-
orization has hardly been explored. Instead, models are usu-
ally textured by images, which manage to “cover” the model
by a rich set of textures.

There are, however, applications that do not need rich tex-
tures, but rather require colorization by just a handful of col-
ors. For such applications, texture mapping is not only an
overkill, but it might also produce incorrect output. More im-
portantly, it requires an image that is similar to the model and
contains the “right” texture—an image that does not neces-
sarily exist. In such cases, if the user could easily and quickly
colorize the mesh with a few brush strokes, traditional tex-
turing would be avoided. This paper proposes such a col-
orization algorithm; see Figure 1.

An interesting application of colorization algorithms is
in the field of archaeology. This domain has been re-
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Figure 2: Head of Caligula. Left: Original, Roman, A.D.39-
41, marble. Right: Manual color reconstruction (Photo
courtesy of Ny Carlsberg Glyptotek, Copenhagen).

cently considered quite extensively in computer graphics
[Rus05, KTN∗06, KST08, TFBW∗10]. The common per-
ception of the great statues and buildings of ancient Greece
and Rome is that they were all pure unpainted stone or green
tarnished bronze. However, lately researchers have been ar-
guing that this may not be what these classic monuments re-
ally looked like back in the era of their creation. In fact, it is
believed that these statues were quite alive, vibrant, and full
of color [BM08], as illustrated in Figure 2. The colors were
created using mineral and other organic materials. Unfortu-
nately, after centuries of deterioration any trace of pigment
leftover when discovered, would have been taken off during
the cleaning processes. Researchers argue that the number
of colors and hues used by the artists was limited. In addi-
tion, chemical analysis can often estimate the original color.
In this case, colorization algorithms will be able to restore
the look of the scanned statues.

We propose a novel mesh colorization algorithm. It does
not require mesh segmentation, which often fails to cor-
rectly identify complex region boundaries. Our algorithm is
inspired by the image colorization algorithm of [LLW04].
There, the user can scribble some desired colors in the in-
teriors of various regions of the image. Colorization is then
formulated as a constrained quadratic optimization problem,
where the basic assumption is that adjacent pixels having
similar intensities should have similar colors.

The extension to meshes is not straightforward, due to
three issues. First, a fundamental assumption in images is
that the work is performed in the YUV color space, and
that the intensity Y is given. Y is the monochromatic lumi-
nance channel (intensity), whereas U and V are the chromi-
nance channels that encode the color. To determine whether
two neighboring pixels should be colorized using the same
color, their intensities are compared. In the case of meshes,
the “intensity channel” does not exist. Therefore, a differ-
ent technique is needed for determining whether neighbor-
ing points should be colorized similarly. Second, a limitation
of [LLW04] is that colors may bleed into each other. This is
fixed in subsequent papers [HTC∗05], by applying edge de-
tection that bounds the regions. On meshes, however, exist-

ing edge detection algorithms often generate broken curves,
through which colors can bleed. Finally, in images, the al-
gorithms estimate the two color channels U and V, whereas
Y is maintained. This makes the result look natural, as col-
ors have nuances. In meshes, there is no such input intensity
channel that can be retained.

In this paper we propose an algorithm that handles the
first two challenges. We present a vertex similarity measure
that can be used to determine whether two vertices should
get the same color. Based on this similarity, we formulate an
optimization problem that can be solved efficiently. More-
over, we introduce a new direction field on meshes. We show
how the optimization problem can be modified using our di-
rection field, so as to prevent bleeding despite the fact that
surface edges are broken. The third issue is solved naturally.
Originally, the different hues in a region of an image were
created due to lighting effects. In three dimensions, the light-
ing of the scene produces natural results.

The contribution of this paper is twofold. First, we pro-
pose a novel interactive mesh colorization method (Sec-
tions 3–4). It lets the user colorize 3D models by simply
providing a few scribbles on the mesh. The system is based
on our similarity measure and our novel vector field. Sec-
ond, we apply our method to paint reconstruction of ancient
sculptures (Section 5).

2. Related work

This section briefly discusses four related issues: image col-
orization, texture mapping, sketch-based mesh segmentation
and mesh colorization.

Image colorization: Early systems, such as [MH87], re-
quired manual outlining of the different regions. More re-
cently, [WAM02] proposed a semi-automatic technique for
colorizing a gray-scale images by transferring color from a
reference color image. Later, [LLW04] proposed a simple,
yet effective, user-guided colorization method. The user can
scribble the desired colors in the interiors of various regions
and the system spreads the colors to the rest of the image.
Other algorithms that are based on color scribbles have sub-
sequently been presented by [Sap05, YS06], where impres-
sive results were produced from a small number of scrib-
bles. The focus of [HTC∗05] was on preventing color bleed-
ing over object boundaries, by using adaptive edge detection.
The methods mentioned above require intensive user inter-
vention when the image contains complex textures. To ad-
dress this issue, [QWH06] proposed a colorization technique
for Manga images that preserves mainly pattern continuity,
rather than intensity continuity. [LWCO∗07] employed tex-
ture continuity to colorize pattern-intensive natural images.

Mesh texture mapping: Texture mapping is used to
add color information to meshes. The two common ap-
proaches for texture mapping are constrained parameter-
ization [Lév01, ZWT∗05, HLS07, TBTS08] and the pho-
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togrammetric approach [WD97, TT09]. In the first ap-
proach, the model–image correspondence is calculated by
unwrapping the manifold onto the image, constraining the
parameterization by user-defined features. The alternative
approach takes into account the 3D geometry of the pho-
tographed image. The missing camera parameters are esti-
mated and the recovered camera is used to re-project the
model onto the source image, implicitly defining the model–
image mapping. Rather than maintaining a map from texture
to geometric space, in [YKH10] it is proposed to associate
colors with mesh geometry.

Differently, we assume that no image exists, which can be
mapped to the mesh. Instead, the user knows which colors
should be used in the different regions and thus, can easily
specify them with a few brush strokes.

Sketch-based mesh segmentation: Several works on
sketch-based mesh segmentation have been recently pro-
posed [JLCW06, LHMR08, LHMR08, ZWC∗10, ZT10].
An excellent comparative survey is presented in [MFL11].
The goal is to segment the mesh into semantic parts through
a series of user interactions. The user simply draws freehand
sketches on the mesh surface to specify the foreground and
the background, and the algorithm updates the segmentation
using this information. By iteratively providing more
interactions, the user can refine the segmentation.

Similarly to images, colorization and segmentation re-
late to each other, yet differ. In particular, as observed
in [LLW04], segmentation algorithms often fail to correctly
identify fuzzy or complex region boundaries, such as the
boundary between a subject’s hair and her face.

Mesh colorization: We are not aware of any related work
that proposes an effective colorization method for 3D
meshes. There are, however, some commercial tools, such
as Adobe Illustrator, CorelDRAW, 3ds Max, and 3D-Brush,
which allow the user to paint vertices/faces of 3D meshes.
All these tools require high-level expertise, and even for ex-
perts the colorization is still a time-consuming task.

3. The basic algorithm

To colorize a model, the user scribbles the desired colors
on the mesh (Figure 1(b)). For each face the scribble passes
through, the closest vertex is colorized with the color of
the scribble. These colored vertices are considered the user-
defined constraints. The algorithm then automatically prop-
agates the colors to the remaining vertices of the mesh.

Our underlying assumption is that nearby vertices, whose
geometry is similar, should have the same color. This as-
sumption leads to an optimization problem that can be
solved efficiently using standard techniques. Intuitively, the
colors are propagated via mesh edges, where the likelihood
of propagation via a specific edge is proportional to the sim-
ilarity of the vertices adjacent to the edge.

Our basic algorithm proceeds in two steps. First, a similar-
ity measure between neighboring vertices is computed and
assigned to the corresponding edges. Then, given the scrib-
bles and the above similarities, the colors are propagated to
the whole mesh. We further elaborate on each of these steps
below. The output is a mesh in which every vertex has a
designated color. While this basic algorithm produces a col-
orized mesh, some color bleeding might occur. This topic is
addressed in Section 4.

3.1. Vertex similarity

To measure the similarity between given vertices, we first
discuss a descriptor that characterizes the geometry of a ver-
tex and then present an effective similarity measure for these
descriptors.

Vertex descriptor: We seek a descriptor that robustly char-
acterizes the local geometry of the vertex. We propose to
use a variation of spin images [JH99], described hereafter.
Spin images are 2D histograms, which are constructed by
spinning small windows, termed the support regions, around
each vertex. The support region at vertex v is a cylinder cen-
tered at v, where the axis is aligned with the surface nor-
mal at v. The support region is divided linearly into j seg-
ments radially and k segments vertically, forming a set of
j×k rings. The spin image of v is computed by counting the
vertices that fall within each ring and assigning this sum to
its associated bin, forming a 2D histogram.

Counting the vertices directly, as done in the original def-
inition of the spin image descriptor, might be sensitive to
sampling, i.e., remeshing changes the descriptor. We propose
a modification to the spin image descriptor that not only re-
duces this sensitivity, but also improves the descriptor’s abil-
ity to detect subtle changes in the mesh geometry. The new
descriptor of vertex v is computed by summing the differ-
ences between the mean curvatures of v and that of each of
the vertices that fall in each ring. This sum is stored in the
bin associated with the ring.

In our implementation, the geometric width of the bin is
set to the median of the edge lengths. Since we are inter-
ested in a description of the local geometry of a single ver-
tex (rather than a patch), we use a relatively small support
region, by setting j = k = 8.

We considered alternative local descriptors. We will show
in Section 5 that they are less suitable for our purposes.

Similarity measure: We look for a similarity measure be-
tween vertex descriptors, which is robust to small changes
in the mesh, such as noise or different triangulations. We
use the diffusion distance for this purpose [LO06]. This ap-
proach models the difference between two histograms as a
temperature field and considers the diffusion process on the
field. Then, the integration of a norm on the diffusion field
over time is used as a dissimilarity measure between the his-
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tograms. For computational efficiency, a Gaussian pyramid
is used to discretize the continuous diffusion process.

This distance is shown to be robust to deformation and to
noise in histogram-based local descriptors. It is a cross-bin
distance, which allows comparison between bins at different
locations. Moreover, it is quick to compute since it runs in
linear time.

Specifically, given 2-dimensional histograms hi and h j
(spin images), the diffusion distance D(hi,h j) is defined as:

D(hi,h j) =
L

∑
l=0

k(|di j
l |), (1)

where di j
0 = hi−h j

di j
l = [di j

l−1 ·φ(σ)] ↓2, l = 1, ...,L

are different layers of the pyramid. The notation ↓2 denotes
half size down-sampling. L is the number of pyramid layers
and σ is a constant standard deviation for the Gaussian filter
φ (we use L = 3 and σ = 0.5). In our implementation k(.) is
the L1 norm, making the diffusion distance a true metric.

There are other well-known distances used in the litera-
ture. We experimented with L2, χ

2, Jeffrey distance [Jef46],
and the Earth Mover’s Distance (EMD). We found that the
first three are more prone to noise than the diffusion distance,
since they are not cross-bin distances, whereas EMD, which
is cross-bin, is computationally more expensive.

Edge assignment: Finally, we are given two vertices vi and
v j and their corresponding descriptors hi and h j. We use the
diffusion distance D between the descriptors to calculate the
similarity between the vertices si j and assign it to the edge
between vi and v j. Specifically,

si j =
MaxD−D(hi,h j)

MaxD
, (2)

where MaxD is the maximal diffusion distance between all
the pairs of neighboring vertices of the mesh. Intuitively, si j
can be viewed either as the color conductivity of the edge or
as the likelihood of color propagation through the edge. This
is so since it indicates the “amount of color” that can flow
between vi and v j.

3.2. Color propagation:

We wish to impose the constraint that two neighboring ver-
tices should have similar colors if their geometry is simi-
lar. Therefore, for all the vertices of mesh M, we attempt to
minimize the difference between the color at vertex vi and
the weighted average of the colors at neighboring vertices
v j ∈ N(vi). To achieve this, for each color channel C in the
YUV color space, we minimize the following cost function:

Ω(C) = ∑
vi∈M

(
C(vi)− ∑

v j∈N(vi)

ki jC(v j)

)2

. (3)

(a) User’s scribbles (b) Colorized mesh

Figure 3: David and Goliath. A good colorization is ob-
tained by the basic algorithm described in Section 3.

In this equation, ki j is a weight function, which is large when
the descriptor of vi is similar to that of v j and small other-
wise, and for which ∑v j∈N(vi) ki j = 1. We define it as

ki j ∝ es2
i j/2σ

2
i , (4)

where si j is the similarity of vi and v j, as defined in Equa-
tion (2) and σi is the standard deviation of the similarity val-
ues between each of the vertices in N(vi) and vi.

In many cases, the above scheme produces satisfactory
results, as illustrated in Figure 3. However, sometimes the
resulting colorization might include color bleeding near the
boundaries between the regions. This is evident when look-
ing at the hand holding a book in Figure 4(b), which is a
magnification of Figure 9. In the next section we show how
to handle color bleeding by adjusting the similarities calcu-
lated in Equation (2).

4. Feature line field

To handle color bleeding, we wish to decrease the similarity
between vertices that belong to different regions. An indica-
tion that vertices reside in different regions is that they are
located on opposite sides of a feature line, such as a valley.
A straightforward solution is to use the feature lines directly,
by setting the distance between neighboring vertices in ac-
cordance with their relative position to the feature lines. This
solution will fail, since algorithms that compute feature lines
usually produce broken lines. As a result, colors can bleed
through the gaps in the lines. Figure 4(c) illustrates the val-
leys detected by [OBS04], where the gaps are noticeable.

We propose to cope with this situation by using a new vec-
tor field on meshes, which is defined in accordance with the
feature lines. We term this vector field as the feature line
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(a) Input scribbles (b) Result of the basic algorithm (c) Valleys (d) Our field (e) Result with our field

Figure 4: Handling color bleeding (zooming into Figure 9). This example shows how the bleeding effects disappear when the
similarity measure of Equation (2) is modified according to the penalties defined using our vector field (Equation (8)).

field. The key idea is to direct the vectors in such a way
that vertices residing on the two different sides of a feature
line (i.e., in different regions) will get opposite orientations.
These directions can then be used to penalize the similarity
measure of neighboring vertices, when need be.

Below, we first define our vector field for any type of fea-
ture lines. In our implementation, however, we focus on val-
leys, since for most examples they are likely to separate the
different regions, as demonstrated in Figure 4(c). We then
explain how to compute the field on a triangular mesh. Fi-
nally, we discuss its use for adjusting the similarity measure
between vertices, which was defined in Equation (2).

4.1. Feature line field definition

A vector field F for a manifold surface S is a smooth
vector-valued function that associates every point p ∈
S with a vector F(p). Vector fields on surfaces have
been used in various graphics applications, such as tex-
ture synthesis [Tur01, XCOJ∗09], non photo-realistic ren-
dering [ZMT06], and shape deformation [vFTS06]. There
exist many papers on editing, generating, manipulating, and
filtering vector fields [ZMT06, FSDH07, XCOJ∗09].

We seek a vector field that satisfies the following two re-
quirements for every point: (1) For neighboring points that
belong to different regions, the directions of the associated
vectors should be opposite. (2) For neighboring points that
belong to the same color region, the directions of the as-
sociated vectors should have similar orientations. Note that
though we require that the directions conform with the re-
gions, we never compute segmentation to regions.

We construct the field in two steps. First, to satisfy Re-
quirement (1), we define the vectors for points in the neigh-
borhood of the feature lines to be directed perpendicularly
to the feature line, pointing outwards. Then, to satisfy Re-
quirement (2), we extend the above definition to the whole
surface, by searching for a smoothest direction field that re-
spects the values in the neighborhood of the feature lines.

Utilizing the Laplacian as the smoothness measure, we de-
fine the field as the solution to Poisson’s equation. The val-
ues of the field near the feature lines serve as boundary con-
ditions for the equation.

4.2. Feature line field computation

In practice, our surface is given as a triangular mesh. We
need to compute a vector F(v) for every vertex v of the mesh.
The entire set of vectors constitutes the field. We describe the
computation for the case of valleys; similar schemes can be
developed for other feature lines, such as ridges [OBS04],
demarcating curves [KST08], etc.

Intuitively, valleys are similar to their geographical coun-
terparts, as they indicate sharp changes in the surface orien-
tation. Mathematically, valleys are the loci of the minimum
principal curvature along the principal direction.

We start by computing the field values near the val-
leys. This is done as follows. First, the principal curva-
tures are computed for every vertex of the mesh. These val-
ues are used to find the faces through which the valleys
pass [OBS04]. These faces are the gray triangles in Figure 5.
Next, we mark all the vertices that belong to the valley faces,
shown in red, black, and blue in Figure 5. The faces adjacent
to exactly two marked vertices are called the surrounding
faces (the green triangles).

If a marked vertex belongs to a single surrounding face
(the blue vertices), its feature line field direction lies on the
line perpendicular to the edge adjacent to it (and to its neigh-
boring marked vertex) on the plane the triangle resides on.
The direction is oriented towards the unmarked vertex of this
surrounding triangle. If a marked vertex belongs to multiple
surrounding faces (the red vertices), we first compute its di-
rection for each face individually, as explained above. Then,
we set its feature line field direction to the average of all the
field vectors computed for each face independently. In Fig-
ure 5, the feature line field directions are the arrows.

To compute the field for the other vertices, we use a linear
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Figure 5: Computation of the field near a feature line. The
feature line passes through the gray triangles and the green
triangles are their surrounding faces. The arrows are the di-
rection vectors, pointing away from the feature line.

approximation of the Laplacian. Let v be a vertex of the mesh
and N(v) be its set of neighbors. Let wi = cot(αi)+ cot(βi)
be the sum of cotangents of the angles opposite the edge
(v,vi) in the triangles sharing this edge. The Laplacian of
a scalar function f on the mesh is calculated, similarly
to [BPR∗06], as:

∆ f (v) = ∑
i∈N(v)

wi( f (v)− f (vi)). (5)

Finally, we solve the Laplace’s equation ∆ f (v) = 0 for
each of the field’s components (scalars x,y,z). This system
of linear equations, whose unknowns are the components of
the field, is solved efficiently using a standard sparse linear
equation solver (we use sparse Cholesky factorization).

Since our field is a direction field, we normalize the result-
ing vectors. Note that when approximating the field compo-
nents independently and then normalizing them, the Lapla-
cian is not guaranteed to remain minimal. In practice, how-
ever, the difference between the resulting approximation and
the sought-after solution is very small.

Our vector field differs from other vector fields both
in definition and in computation. While the vectors of
[ZMT06, FSDH07, XCOJ∗09] follow the direction of the
features, we aim at directing them perpendicularly to the fea-
tures (Requirement (1)). Computationally, while the method
of [ZMT06] takes special care to handle singularities, which
is essential for texture mapping, we tolerate singularities,
as will be evident next. Unlike [ZMT06, FSDH07], our
method is not interactive. Similarly to other methods, such
as [XCOJ∗09], we use a discrete Laplace operator for
smoothing. However, the vectors generated by our algorithm
need not necessarily lie on the surface. As explained in Sec-
tion 4.3, this additional degree of freedom is beneficial, since
the angle between the directions of neighboring vertices is
indicative of their similarity. Moreover, the computation of
the field becomes simpler.

4.3. Similarity measure adjustment

Recall that the main purpose of our vector field is to adjust
the similarities of Equation (2), so as to prevent color bleed-

(a) within a region (b) in different regions

Figure 6: Possible field directions of neighboring vertices.
In (a), the directions are either similar or directed towards
each other (the latter may happen in the center of a region).
In these cases δi j ≤ 0 and therefore Pi j = 0 and the similarity
values of Equation (2) are unchanged. In (b), the neighbor-
ing vertices are on opposite sides of a valley. These cases
should be penalized and indeed, δi j > 0, 0 < Pi j ≤ 1, and
Equation (2) is modified.

ing. Moreover, we defined our vector field so that the vectors
of neighboring vertices that lie on different sides of a fea-
ture line are directed away from each other. Therefore, the
similarity value of such vertices should be penalized (i.e.,
decreased). Conversely, there is no need to penalize pairs of
neighboring vertices whose field vectors are either similar or
facing each other. The former may be similar either due to
our direction assignment or due to the smoothness require-
ment. They may be directed towards each other in the inter-
nal parts of a region, as a result of applying the Laplacian.
Figure 6 illustrates the two scenarios.

To determine the cases in which the similarity values
should be penalized, we proceed as follows. Given a pair
of neighboring vertices vi and v j, we translate each vertex
along its field vector by ε (ε is set to half of the shortest
edge of the mesh). If the distance between these translated
vertices is larger than the distance between the original ver-
tices, it means that the vectors are directed away from each
other. Therefore, the similarity values between these vertices
should be penalized. On the other hand, if the distance de-
creases or does not change, the vectors are oriented towards
each other or to the same direction.

Equation (6) performs this computationally and distin-
guishes between the cases. Given two vertices vi and v j, it
computes δi j, where a positive δi j indicates the first case and
a non-positive δi j indicates the second. δi j is defined as:

δi j = ‖((vi + εF(vi))− (vj + εF(v j)))‖−‖vi−vj‖, (6)

where v denotes the coordinates of vertex v and F(v) is the
field vector associated with v. The translation by a small ε is
essential for handling the case where the vertices are close
to each other and directed towards each other.

We can now proceed and define the penalty Pi j of the sim-
ilarity between vertices vi and v j, in accordance with δi j.
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Obviously, if δi j ≤ 0, Pi j = 0. Otherwise, let θi j be the an-
gle between vectors F(vi) and F(v j). The penalty should de-
pend on the angle between the vectors. If θi j is close to 180◦,
the vectors are almost in opposite directions and the penalty
should be large, whereas if θi j is close to 0◦, the penalty
should be smaller. It is defined as:

Pi j =

{
0, δi j ≤ 0

sin( θi j
2 ), δi j > 0

(7)

Finally, we adjust the similarities si j of Equation (2). They
are defined as follows and substituted into Equation (4):

ŝi j = si j · (1−Pi j). (8)

Figure 4 illustrates how color bleeding is prevented us-
ing our modified similarities. In this example, the basic col-
orization algorithm, described in Section 3, results in some
undesirable color bleeding effects between the cloth and the
hand, the book and the hand, and the cyan book cover and
the book. Adjusting the similarities in accordance with our
field directions solves the problem, as shown in Figure 4(e).

5. System and results

In a typical colorization session, the user starts by scrib-
bling a few color strokes on the mesh and then fine-tunes
the colorization by adding more scribbles. Usually, most of
the scribbles are loosely placed. Only during the final fine-
tuning stage, a couple of scribbles may need to be added
closer to the boundaries. Figure 7 demonstrates a possible
session, which took a couple of minutes altogether.

The number of scribbles and the interaction time depend
on the complexity of the model. For instance, in Figures 3,7
very few scribbles (∼10) were used and the colorization was
very fast (see the accompanying movie). Figure 1 was the
most complex, requiring around 50 strokes and 10 minutes.

Results: Figure 8 shows additional examples, where con-
vincing results are generated by our algorithm, given a small
number of color scribbles. Note how our algorithm manages
to distinguish between the individual fingers and the cloth
or the other hand-held objects. Moreover, despite the multi-
ple folds of the cloth, it is easily colored using only a few
scribbles that cross it.

Figure 9 demonstrates another capability of the system—
colorizing a region in different colors despite the fact that
geometrically it is a single region. In this example, the eyes
are colorized in blue, white (the sclera), and black (the iris).
In such cases, all the user needs to do is to add the desired
feature lines manually, by drawing them on the mesh. Then,
these manual feature lines are added to the set of computed
feature lines and treated similarly. Since our algorithm is de-
signed to work with broken lines, the user does not have
to carefully draw closed lines, which simplifies the drawing
process considerably. In this example, six lines (bounding

Figure 7: A typical colorization session. The user starts by
scribbling two colors (left). Then, the user adds red to the
head band, light gray to the column, dark gray to the base
and pink to the lips (middle). Finally, a slight color bleeding
to the column is easily fixed by additional two scribbles close
to the boundaries (right).

Figure 8: Only a few scribbles are needed to colorize the
cloth, despite its folded structure. Note how the fingers are
separated from the folded cloth or the hand-held objects.

each eye, sclera, and iris) were added, which took the user
about three minutes.

Figure 10(a) demonstrates the robustness of our method to
noise. Synthetic noise of zero mean and variance of 0.1% of
the diagonal of the model’s bounding box was added to the
vertices. The result obtained using the same set of scribbles
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Figure 9: Colorization of a mesh when different colors are
used within the same region (the eye). The user draws the
desired feature lines.

(a) Robustness to noise (b) Robustness to density

Figure 10: Robustness to noise and mesh density. (a) Syn-
thetic noise was added to the vertices. The result obtained
using the same set of scribbles is similar to that of Figure 7.
(b) Simplification of the mesh from 150K to 25K vertices
does not change the colorization results.

is good and similar to clean model in Figure 7. Figure 10(b)
demonstrates the robustness of our method to mesh density.

Comparison to sketch-based segmentation: We are not
aware of any colorization algorithm we could compare to.
Therefore, we compare our method to sketch-based fore-
ground/background segmentation, though the problems are
fundamentally different. Unlike segmentation, colorization
need not identify the precise region boundaries.

In particular, we compare our algorithm to [JLCW06],
which was found in [MFL11] to outperform other algo-
rithms according to most of the comparison criteria. Fig-
ure 11 shows a segmentation result, where a larger and
more accurate set of strokes than those used in Figure 7, are
drawn. It can be seen that similarly to the observation made
in [LLW04] regarding image colorization vs. segmentation,
“segmentation is a very difficult problem and even state-of-

(a) User’s scribbles (b) Segmented mesh

Figure 11: Sketch-based segmentation. Even with a larger
and a more accurate set of strokes than those used in Fig-
ure 7, the fuzzy boundary between the hair and the face is
not accurately detected by [JLCW06].

(a) [JLCW06] (b) [ZWC∗10] (c) Our result

Figure 12: Comparison to two segmentation algorithms us-
ing the same scribbles. In [ZWC∗10], the blue curves indi-
cate the boundaries between the segments.

the-art methods may fail to automatically delineate all the
correct boundaries, such as the intricate boundary between
the hair and the forehead.”

Figure 12 compares our result both to [JLCW06] and
to [ZWC∗10], using the same scribbles as those used to pro-
duce Figure 4. It is noticeable that the segmentation results
are inferior to that produced by our colorization algorithm.

An additional difference is that the released fore-
ground/background interfaces, often used in interactive seg-
mentation, do not support segmentation with branching
points, i.e., points where three or more boundaries meet.
Such a case is illustrated in Figure 12, where the book, the
sleeve, and the hand meet at a branching point.

Finally, objects such as the one in Figure 1, which consist
of many shapes whose geometries overlap, are very difficult
to segment. We failed to segment this model using the seg-
mentation systems discussed above, possibly due to multiple
branching points. Moreover, in other regions of the mesh,
these systems did not segment correctly the hair and the
beards. Conversely, our algorithm manages to colorize this
model thanks to its ability to utilize the imperfect valleys
between regions.

Alternative vertex descriptors: The choice of a vertex de-
scriptor (Section 3.1) is critical to the success of the algo-
rithm. We considered alternative local descriptors, includ-

c© 2011 The Author(s)
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(a) Shape index (b) HKS (c) Isophotic

Figure 13: The colorization results obtained when using
other vertex descriptors are inferior to ours (Figure 3).

ing the heat kernel signature (HKS) [SOG09], shape in-
dex [KvD92], Willmore energy [BS05], and combinations of
vertex normals and curvatures (e.g., the improved Isophotic
metric [JLCW06]). They were all found less suitable for dis-
tinguishing between adjacent vertices residing in different
regions. Consequently, the colorizations obtained were infe-
rior, as illustrated in Figure 13 for three state-of-the-art de-
scriptors.

Implementation and running times: The system is imple-
mented in Matlab, where some parts (i.e., the similarity com-
putation and the valley generation) are implemented in C++.
The user scribbles on the mesh using the Z-painting tool of
Meshlab [CCR08].

We tested the algorithm on an Intel Core i5 laptop with
4GB of memory, Windows 7 operating system. The pre-
processing step computes the similarity between each pair of
adjacent vertices. This step is computed once, regardless of
the number of iterations in the colorization session. The on-
line stage solves the minimization problem of the color prop-
agation. It is computed whenever the user adds new scribbles
and can thus be performed multiple times. Table 1 summa-
rizes the running times for meshes of different sizes. It can
be seen that both stages are approximately linear in the size
of the mesh and that the online stage is performed in just a
few seconds even for large meshes.

Limitations: In general, our algorithm requires a relatively
dense input mesh, which is almost always the case in our ap-
plication. When the input mesh is highly irregular or sparse,
or when the vertices of two valleys are one vertex apart, re-
meshing may be needed. For example, in Figure 10(b), sim-
plification to 25K vertices did not require re-meshing, but if
the mesh were simplified to 10K vertices, re-meshing would
have to be performed.

Mesh size Preprocessing step Online session
50K faces 43 sec 0.7 sec
100K faces 71 sec 1.5 sec
200K faces 198 sec 3.3 sec
400K faces 480 sec 7.1 sec

Table 1: Running times for meshes of different sizes. The
complexity is linear and the online stage is fast.

Figure 14: Limitation. To colorize the suction cups, we
should draw a stroke on each of them.

Second, adding manual feature lines, as done in Figure 9,
requires re-computation of the field, which slows down the
running time.

Finally, our algorithm does not handle 3D patterns or sym-
metries automatically. Figure 14 shows such a case, where in
order to colorize the suction cups of the octopus, we need to
draw a color stroke on each suction cup.

6. Conclusions

This paper introduced a novel colorization algorithm for
meshes. The user can draw several strokes quickly and easily
and our system propagates the colors.

We addressed two challenges when designing our color
propagation algorithm. The first relates to the choice of
points that need to get the same color and the second con-
cerns the avoidance of color bleeding. For the first problem,
we discussed a vertex descriptor and a similarity measure
that can jointly distinguish between local geometries in the
neighborhood of a vertex. For the second, we proposed a
new feature line field that can be utilized in the similarity
measure, so as to prevent color bleeding. We demonstrated
the capabilities of our algorithm by colorizing a variety of
statues. In all these examples, we obtained good results in
only a few minutes of interactive user work.

In the future, we would like to address 3D patterns and
symmetries. Moreover, it will be interesting to examine the
use of our algorithm in NPR applications. Finally, remeshing
could be utilized in regions of color transitions, in order to
improve the results.
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