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Uncluttering Graph Layouts Using
Anisotropic Diffusion and Mass Transport

Yaniv Frishman and Ayellet Tal

Abstract— Many graph layouts include very dense areas, mak-
ing the layout difficult to understand. In this paper, we propose
a technique for modifying an existing layout in order to reduce
the clutter in dense areas. A physically-inspired evolution process,
based on a modified heat equation is used to create an improved
layout density image, making better use of available screen space.
Using results from optimal mass transport problems, a warp
to the improved density image is computed. The graph nodes
are displaced according to the warp. The warp maintains the
overall structure of the graph, thus limiting disturbances to the
mental map, while reducing the clutter in dense areas of the
layout. The complexity of the algorithm depends mainly on the
resolution of the image visualizing the graph and is linear in the
size of the graph. This allows scaling the computation according
to required running times. It is demonstrated how the algorithm
can be significantly accelerated using a graphics processing unit
(GPU), resulting in the ability to handle large graphs in a matter
of seconds. Results on several layout algorithms and applications
are demonstrated.

Index Terms— Graph layout, graph visualization, GPU,
anisotropic heat equation, mass transport.

I. I NTRODUCTION

Graph drawing addresses the problem of constructing geo-
metric representations of graphs [1], [2]. It has applications
in a variety of areas, including software engineering, software
visualization , social networks and biology . A variety of graph
layout algorithms exist. Each of these algorithms is suited for dif-
ferent applications. A few examples include hierarchical, planar,
circular, orthogonal, and force directed layout [1], [2].

Graph layouts often contain a highly varying local density.
While some regions in the generated layouts are sparse or
even empty, others are very dense, containing many close-by or
overlapping edges and nodes. This results in low efficiency in
utilizing the available screen space.

Instead of developing a new layout algorithm, this paper
describes an algorithm that can improve a given graph layout.
This allows the user to select a layout algorithm that is suited
for the application at hand. The clutter in the layout can then be
reduced by our algorithm, resulting in a layout with a smaller node
density in the high-density regions of the original layout. This
is achieved while preserving the overall structure of the graph.
Figure 1(a) shows an example of a cluttered layout. The layout
is difficult to read and the available screen space is not used
effectively. Figure 1(b) shows the enhanced layout. Note how the
screen space is more efficiently used, allowing more details of
the graph to become visible.

Some research has addressed the problem of reducing the
visual clutter of graph layouts in the past. Lyons et al. [3] use
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a combination of a Voronoi diagram and a force-directed type
approach [4]–[6] in order to disperse nodes clustered together.
Merrick and Gudmundsson [7] modify the layout based on
properties of the structure of the underlying graph. However,
these algorithms employ schemes that are either computationally
expensive or perform local improvements to the graph. In contrast,
the algorithm in this paper is able to operate on large graphs,
making a more global enhancement to the layout.

Instead of operating on the abstract graph representation, the
algorithm proposed in this paper operates on an image of the
density of the input layout. The density image is modified,
making use of low-density regions in order to reduce the visual
complexity in high-density regions of the layout. A physically-
inspired evolution of the density image using a modified heat
diffusion process is used to create the target density image. Given
the target density, a warp of the 2D layout is computed, in which
dense regions are allowed to expand and make use of available
screen space. The warp is computed using results from optimal
mass transport problems [8]–[10]. The evolution process attempts
to retain the overall structure of the input graph, limiting potential
disturbances to the user’s mental map as outlined in Misue et
al. [11].

This paper makes a couple of contributions. First, a new
algorithm for uncluttering graph layouts in a mental-map pre-
serving fashion is presented. Second, a method for accelerating
the computation of the target density, which is the most time-
consuming stage of the algorithm, using a graphics processing
unit (GPU), is described. Several examples, using various layout
algorithms and applications, are provided to demonstrate the
capabilities of the algorithm.

II. RELATED WORK

This work is related to three sub-fields: algorithms for graph
uncluttering, node overlap removal in graph drawing, and applica-
tions in areas outside of graph drawing. In this section we discuss
related work in these fields.

Several papers have addressed the graph uncluttering problem.
Lyons et al. [3] attempt to more evenly distribute the nodes while
maintaining the user’s mental map of the original layout. Two al-
gorithms are presented. The first uses a Voronoi diagram in order
to move nodes. The second algorithm repositions nodes inside a
region defined by a Voronoi diagram, according to the forces
acting on them, defined using a force-directed approach [4]–
[6]. Using a Voronoi diagram performs only local enhancements,
which may not be sufficient in order to reduce clutter in dense
areas of the graph.

Merrick and Gudmundsson [7] propose a technique for enlarg-
ing dense areas of a given graph layout and shrinking sparse
areas. Their algorithm first determines the important nodes, then
calculates the desired edge lengths, and finally repositions vertices
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(a) (b)

Fig. 1. Protein graph (V=30727, E=1206654). (a)FM3 [12] layout. (b) Improved layout. Note how displacing nodes outwards allows more details to become
visible, especially in the center of the drawing. Also note that the overall structure of the graph is maintained.

using the algorithm of Shimizu and Inoue [13], which tries to
minimize the change in the angles of the edges. Determining the
important nodes, callednode centrality, is an expensive operation,
takingO(V ·E) for V nodes and E edges. It is thus not scalable to
large graphs. Centrality is determined according to graph-theoretic
properties of the underlying graph, which do not take the actual
layout into account. Therefore, the algorithm is not effective at
uncluttering dense areas of the graph with non-central nodes. Our
algorithm attempts to solve these problems.

There are two related, yet distinct, problems to graph unclut-
tering: graph overlap removal and overlap removal in other fields
such as map cartography. Hereafter we describe some related
work on these issues.

While most graph drawing algorithms assume that nodes are
dimensionless (e.g. point-sized), in practice nodes may be labeled,
and the labels may overlap. Several algorithms have been devel-
oped to remove overlaps between nodes.

Chuang et al. [14] use potential fields in order to remove
overlaps. Gansner and North [15] use an iterative Voronoi diagram
method in order to tidy up the layout. Harel and Koren [16] use
a combination of a Kamada Kawai [5] method and a modified
spring method, which takes node shapes into account when
calculating forces in order to converge to an overlap free layout.
Marriott et al. [17] use a constrained optimization approach
in order to remove overlaps. Eades and Nikolov [18] remove
overlaps using spring algorithms, followed by displacement of
nodes in a way that preserves the mental map as measured by the
orthogonal node ordering model. Huang et al. [19] discuss the
force-transfer algorithm which pushes overlapping nodes away
from each other. Dwyer et al. [20] use a constraint optimization
problem for each dimension separately.

The graph uncluttering problem addressed in this paper is dif-
ferent from the node overlap removal problem. Overlap removal
attempts to compute a minimal displacement of nodes in order
to avoid overlaps, but may result in graphs that are still difficult
to comprehend since they include very dense areas. Moreover,
while the algorithms discussed above deal with removing overlaps

between a small number of large, labeled nodes, our algorithm at-
tempts to improve layouts of large, dense graphs in a mental-map
preserving fashion. In addition, graph uncluttering attempts to
maintain the original structure of the graph, while overlap removal
does not necessarily have this aim. Finally, while overlap removal
algorithms guarantee a final drawing free of node overlaps, graph
uncluttering algorithms do not necessarily guarantee this property.

Figure 2 shows a comparison between the results of using
a node overlap removal algorithm [15] and using our graph
uncluttering algorithm. It can be seen that the overlap removal
algorithm not only modifies the structure of the graph, but also
leaves some dense areas (Figure 2(b)). Our uncluttering algorithm
improves the layout in a mental-map conserving manner by
expanding the graph to empty regions (Figure 2(c)).

Overlap removal and graph uncluttering problems arise in other
fields outside of graph drawing. Deussen et al. [23] present
an extension of Lloyd’s method for distributing objects on the
plane in order to create stipple drawings. Chan et al. [24] use a
density constrained minimization formulation in order to compute
overlap-free placements for components in integrated circuits.
Hayashi et al. [25] present anO(n2) algorithm for finding the
minimum area layout of a set ofn rectangles that avoids inter-
sections and preserves the orthogonal ordering of the rectangles.

Map cartography attempts to create maps in which the size
of regions is in proportion to their population or some other
analogous property. Gastner and Newman [26] perform diffusion
in order to create maps which have a uniform information density.
There are a couple of differences between their work and this
paper. First, in cartography an attempt to conserve the area is
made, while our algorithm tries to use sparse or empty regions
of the screen. Second, while in [26] isotropic diffusion is used,
here anisotropic diffusion is used in order to avoid ”collisions”
between neighboring dense areas of the graph.

III. T HE ALGORITHM

Given Linitial , which is a straight-edge layout of an un-directed
graph G = (V,E), the goal of the algorithm is to produce an
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(a) Input layout (V=247, E=1230) (b) Removing node overlaps (c) Uncluttering using our algorithm

Fig. 2. Comparison between node overlap removal and graph uncluttering. (a) is a layout produced usingneato [21] of a reduced version of the bcsstk32
graph from [22]. In (b) the node overlap removal algorithm from [15] is used. Note that although the overlaps between nodes are eliminated, the structure
of the graph is not maintained and the center of the layout is cluttered. In (c) our algorithm is used. Note how the cluttered right side of the input layout is
expanded, thus increasing node separation, while the structure of the graph is maintained.

enhanced layoutL f inal . This layout should make better use of
the available screen space by dispersing nodes from high density
regions to surrounding regions, while maintaining the structure of
the original layout. The algorithm utilizes several key ideas. First,
for each pixel in the image of the layout, we compute the density
of the information it contains. Second, we perform an evolution
process in order to improve this density, making use of unused
areas of the image and reducing the density in congested areas.
Third, a warp is computed between the initial and the improved
densities. This image warp is used to modify the graph layout
in a way that helps preserve the mental map, resulting in an
enhanced layout. Algorithm 1 gives an overview of the steps of
the algorithm. We elaborate on each of these steps below.

Algorithm 1 Layout improvement algorithm
input: Linitial , layout of a graph G=(V,E)
output: L f inal , modified layout of G

1) ComputeDinitial , the density image of the layoutLinitial .
2) Calculate Dsmooth, a smoothed density image ofLinitial ,

using the heat equation.
3) CalculateDtarget, the target density image, using a modified

heat evolution.
4) Calculate an optimal mapping̃u between Dsmooth and

Dtarget.
5) CalculateL f inal by displacing nodes according to the map-

ping ũ.

Computing the density image of the layout (Step 1):The first
step of the algorithm computes the densityDinitial of the given
layout Linitial , as illustrated in Figure 3(a) and (c). The intensity
of each pixel in the density image is proportional to the number
of graph elements that cover the pixel. Using the density image,
the cluttered areas of the graph, which we wish to visualize more
clearly, can be identified.

The density image can be computed using only the nodes or
both the nodes and edges of the graph. Our experiments indicate
that using only the nodes produces better results. This is since
each edge has a rigid structure, while node concentrations consist
of individual points which can be dispersed by our algorithm
to generate a more understandable layout. The resolution of the

computed image is configurable by the user. While small grids
reduce the running time of the algorithm, the quality of the results
can suffer, especially for large, dense graphs. In our experience,
using a resolution of257 by 257 pixels gave good results at a
reasonable running time for a large variety of graphs, and thus was
used as the default. (Note that the multigrid algorithm requires a
resolution equal tok·2m+1 wherek,m∈N (see Section IV) [27].)

In our implementation, the density is computed using OpenGL
and the GPU. Since we are interested in identifying areas where
several graph elements (i.e. nodes) occupy the same screen pixel
(i.e. overlap), we useblendingin order to accumulate the density.
This is achieved by using a rendering mode in which the color of
different overlapping rendered primitives is accumulated. Thus,
pixels that contain more graph elements will have a higher value
in the density image. Anti-aliasing is used to render a smoother
image.

Note that in this paper density images are used to compute an
improved layout. However, there can be other uses of density
images. For instance, in [28] they have been used to aid in
visualization.

Smoothing the density image (Step 2):In this step the image
Dinitial is smoothed it in order to create the imageDsmooth. This is a
pre-processing phase that creates an input that is more suitable and
hence improves the numerical stability of the warping algorithm
in Step 4.

We base the smoothing algorithm on theheat equation[29].
This is a partial differential equation (PDE) that models the
variation of the temperature in a region over time. Intuitively,
this PDE implies that the rate of change in temperature over
time depends on the temperature difference between a point and
its neighbors. The PDE describes a diffusion process that can
be used for smoothing. In addition, it has the desirable property
that given a potentially discontinuous initial temperature, it very
rapidly becomes continuous.

Given a 2D domainΩ we define the temperature in each point
in the domain asu(x,y). The heat equation is

∂u
∂ t

= k(
∂ 2u
∂x2 +

∂ 2u
∂y2 )≡ k∇2u, (1)

where∇2 is theLaplacianoperator andk is a constant describing
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the rate of heat diffusion. In our case,u(x,y) is set to the density
Dinitial (x,y) computed in Step 1 and it is evolved to compute the
smoother densityDsmooth(x,y). Appropriate boundary conditions
need to be set on the values ofu. We defineu= 0 on the boundary
∂Ω, corresponding to setting a zero density at the boundary of
the image of the layout.

To solve this equation numerically it is necessary to discretize
the grid and use numerical approximations for derivatives [30].
This results in the following discrete approximation of Equation 1:

ut+1(i, j)−ut(i, j)
dt

= k
ut(i +1, j)−2ut(i, j)+ut(i−1, j)

(dx)2

+k
ut(i, j +1)−2ut(i, j)+ut(i, j−1)

(dy)2 , (2)

whereut(i, j) is the value of the density at grid point (i,j) at time
stept, dx anddy are the grid dimensions in the x and y directions,
respectively,dt is the time step andu0(x,y) = Dintitial (x,y). Thus,
given the density at every grid point at timet we are able to
compute the density at timet + 1. Figure 3 (c) and (d) shows
the smoothing performed by the heat equation. The Laplacian
operator on the right-hand side of Equation 2 can be represented
by the following template [30]:

∇2 ≈



0 1 0
1 −4 1
0 1 0


 , (3)

which describes how the values in each grid point are updated,
taking its neighbors into consideration.

It should be noted that it is possible to perform the smoothing
by performing a convolution with the heat kernel. The iterative
formulation discussed here serves as a basis for the anisotropic
case discussed in Step 3.

The algorithm uses several parameters. We use a square grid
and therefore setdx = dy = 1. Using k = 1 in the heat equa-
tion results in a reasonable diffusion rate. In order to maintain
numerical stability, it is required to havedt ≤ 1

8
(dx)2+(dy)2

k [31].
We usedt = 0.23. Thirty iterations of Equation 2 are run. This
number represents a tradeoff. If too few iterations are used, the
smoothing will not be sufficient for Step 4. If too many iterations
are used, the image will be too smooth, potentially reducing the
displacements computed in Step 4.

Calculating the target density image (Step 3):Although
the algorithm in Step 2 has the advantage of creating a more
uniform, evenly distributed density, it has the disadvantage that
the diffusion process takes into account only local properties of
the density, as governed by the heat equation. This is not desirable
in our case since it may lead to cases of ”collisions” between
close-by high density regions. We would like to take the topology
of the given graph density into consideration when calculating
an alternative, more uniform density with lower maximal values,
corresponding to a less cluttered layout. The goal of this step is
to computeDtarget, which is an improved density image, given
Dinitial .

Creating an improved, shape-aware density image is achieved
by modifying the evolution described by the heat equation (Equa-
tion 1). Instead of performing isotropic diffusion as governed by
the discrete Lapalcian operator (shown in Matrix 3), we modify
the direction of the diffusion according to the shape of the density
image. The diffusion is performed in a direction that makes use of
empty and low-density regions of the image. This allows making

more effective use of the screen space in the improved layout
L f inal .

To select the preferred directionθbest at each time step and for
each pixel of the current density imageµ , a ray-shooting process
is performed. For location(x,y) in the density image, given a
possible diffusion directionθ , we calculate the following score

score(x,y,θ) =
∫ l=lmax

l=0
µ(x+ lcosθ ,y+ lsinθ)dl,

wherelmax corresponds to a point on the ray that is on the image
boundary. The intuition behind this formula is that we sum up
the amount of material we encounter when traveling in direction
θ from (x,y) up to the boundary of the density image. In discrete
form, the score is

score(x,y,θ) =
l=blmaxc

∑
l=0

µ(x+ lcosθ ,y+ lsinθ). (4)

The final advancement direction is

θbest(x,y) = argmin
θ∈[0,2π]

{score(x,y,θ)}, (5)

which corresponds to the direction in which the least amount of
material is encountered, hence making the best use of available
screen space (since we disperse the material to the emptiest
regions).

Since there are potentially several nodes located in the same
pixel of the density imageµ, it is required to use sub-pixel
accuracy in the sampling performed in Equation 4. This is
efficiently handled by using bilinear interpolation for sampling
µ. Using higher fidelity kernels is also possible, but would result
in a significant decrease in performance.

Given θbest for every pixel in the current density image, we
evolve the density according to equation 1, but replace the
isotropic Laplacian operator in Matrix 3 with the following
anisotropic operator:

∇2
anisotropic≈




0 1+sin(θbest) 0
1+cos(θbest) −4 1−cos(θbest)

0 1−sin(θbest) 0


 .

(6)
The intuition behind this operator is that the averaging performed
depends on the directionθbest, resulting in a new density that is
biased in the required direction.

In summary, in this step, starting withµ = Dinitial , we iteratively
compute Equation 5 and updateµ using the anisotropic Laplacian
Matrix 6, resulting inDtarget.

In our implementation we calculate the best diffusion direction
for 64 angles symmetrically distributed over the possible advance-
ment directions (i.e.[0,2π]). Five iterations of the heat equation
evolution (using Matrix 6) are performed between recalculations
of the best direction (Equation 5). This is a tradeoff between
computation speed and accuracy, which our experiments show
produces good results. A total of 60 iterations of the heat equation
evolution are performed. This number is used in order to ensure
that the evolution of the target densityDtarget continues for more
iterations than the evolution ofDsmooth. Doing so allows the warp
computed in Step 4 to expand the layout to unused portions of
the screen.

Computing an optimal warp (Step 4): After computing
Dsmooth and Dtarget in the previous steps, we are now ready to
compute a warp̃u = (u1(x,y),u2(x,y)) that maps location(x,y)
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(a) Input layoutLinitial for the 3elt graph, V=4720 E=13722 (b) Output graphL f inal

(c) Initial densityDinitial (Step 1) (d) Smoothed densityDsmooth (Step 2) (e) Target densityDtarget (Step 3)

(f) x-component of the warp̃u (Step 4) (g) y-component of the warp̃u (Step 4)

Fig. 3. Algorithm steps. Higher intensity represents higher values. Values are scaled to improve contrast.

in Dsmooth to location (u1(x,y),u2(x,y)) in Dtarget. Using ũ, we
are able to modify the layout, as discussed in Step 5, in order to
computeL f inal .

The warp procedure is based on the algorithm of Haker et
al. [9], which is shown to compute a warp that minimizes
displacements. In our case this helps maintain the overall structure
of the graph, thus helping preserve the mental map . The key idea
of the algorithm is to iteratively converge to an optimal mapping
by using a gradient descent technique. More details are given in
Section IV.

Computing the final layout (Step 5): In the final stage of
the algorithm, the positions of the nodes are modified in order
to create the output layoutL f inal . Given the optimal warping
ũ = (u1(x,y),u2(x,y)) that was computed in Step 4, which is
defined over a discreet, regular grid, this step computes the
updated positions of each node in the graph, which are non-
integral. Note that this stage modifies the node coordinates and

not the image of the layout.
The optimal warping̃u= (u1(x,y),u2(x,y)) gives for each pixel

in the input density a destination position in the image. Using the
warp, new node positions are computed using an iterative process.
Given a noden with current position(xn,yn) (initialized to the
node position inLinitial ), its updated position is set to

xupdated
n = xn +α(u1(xn,yn)−xn)

yupdated
n = yn +α(u2(xn,yn)−yn). (7)

The number of repetitions of Equation 7 is controlled by the
user. Performing more iterations results in a larger displacement,
representing a tradeoff between node separation and preserving
the structure of the graph. The constantα , whose default value
is 0.5 is used to scale the displacement.

In order to compute the value of the functionsu1 and u2 at
the non-integral node coordinates(xn,yn) bilinear interpolation
is used. Using an interpolation method with sub-pixel accuracy
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helps increase the separation between close-by nodes in the input
layout.

Complexity: Step 1 requires traversing the nodes and edges
of the graph, which isO(E +V) for a graph withE edges and
V nodes. In addition it requires rasterizing the nodes and edges,
which is performed quickly on the GPU. Step 2 performs a fixed
number of iterations, each of which takesO(P) for an image
containing P pixels. Step 3 uses a fixed number of directions, each
requiringO(

√
P) work for summing up the densities along the ray

emanating from each of theP pixels. The total here isO(P1.5).
As discussed in Section IV, Step 4 requiresO(P). Finally, the
last step isO(V). Hence, the total runtime isO(E+V +P1.5). As
shown in Section VI, it is dominated by the time spent in Step 3,
which can be controlled by changingP.

IV. COMPUTING AN OPTIMAL MAPPING

In this section we describe a method, based on optimal mass
transport, for finding a mapping between the two density images
Dsmooth and Dtarget in a way that minimizes displacements, thus
preserving the structure of the graph.

First, a brief introduction to the optimal mass transport prob-
lem, which was first formulated by Monge in 1781 and later by
Kantorovich [8] is provided. Next, the application of this problem
to improving graph layouts is discussed. The section concludes by
briefly describing how the mass-transport problem is efficiently
solved using the algorithm of Haker et al. [9].

Let Ω0 and Ω1 be two subdomains ofR2, with smooth
boundaries. Positive density functionsµ0(x,y) and µ1(x,y) are
defined on these domains, respectively. We assume that

∫∫

Ω0

µ0(x,y)dxdy=
∫∫

Ω1

µ1(x,y)dxdy, (8)

i.e. the same total mass is contained in both regions. In our case
of density images of graph layouts, we assumeΩ0 = Ω1 = [0,1]×
[0,1].

Our purpose is to construct a mapping betweenDsmooth com-
puted in Step 2 andDtarget computed in Step 3. Unlike the
classical setting described above, the densities used in our case
can be zero in some regions of the image - the ones not occupied
by the input graph layout. We therefore equalize the mass (in
order to ensure Equation 8 is met) and add a constantε to each
of the input densities before computing the optimal mappingũ,
using the following relations:

µ0 = ε +Dsmooth , µ1 = ε +Dtarget

∫∫
Ω0

Dsmooth(x,y)dxdy

∫∫
Ω1

Dtarget(x,y)dxdy
, (9)

where µ0,µ1 are the equalized and shifted densities which are
used to compute the optimal warp. In our implementationε = 0.5.

Diffeomorphismsũ= (u1(x,y),u2(x,y)) from Ω0 to Ω1, which
map one density function to the other according to the following
relation

µ0(x,y) = |Dũ(x,y)|µ1(ũ(x,y)) (10)

are considered. HereDũ is the Jacobian matrix and|Dũ| is its
determinant [29] . Equation 10 is called theMass Preservation
(MP) property and accordinglỹu∈MP. It implies, for example,
that if a small region inΩ0 is mapped to a large region inΩ1,
there must be a corresponding decrease in density in order for
the mass to be preserved.

Many mappings̃u that satisfy Equation 10 exist. We would like
to choose an optimal one for our application. We use the squared
L2 Monge-Kantorovich distance, defined as follows

d2
2(µ0,µ1) = inf

ũ∈MP

∫∫
‖ũ(x,y)− (x,y)‖2µ0(x,y)dxdy. (11)

This distance places a penalty on the distance the mapũ moves
each bit of material, weighted by its mass. Hence, this distance
fits our requirement of disturbing the input graph layout as little
as possible, in order to reduce changes to the structure of the
layout, thus conserving the user’s mental map.

A fundamental theoretical result [10], [32], [33] states that there
exists a unique optimal mapping̃u that is a gradient of a convex
function ω, i.e. ũ = ∇ω. In order to find the optimal mapping
ũ we use the algorithm of Haker et al. [9]. This algorithm has
two main stages. First, an initial mappingu0 is found. Next, the
mapping is updated iteratively in order to decrease the functional
in Equation 11.

Finding an initial mapping is achieved by first solving a one-
dimensional problem of transporting mass in a direction parallel
to the x-axis (Equation 12), followed by the solution of a series of
problems transporting mass parallel to the y-axis (Equation 13).
A function a = a(x) is implicitly defined by the equation

∫ a(x)

0

∫ 1

0
µ1(η ,y)dydη =

∫ x

0

∫ 1

0
µ0(η ,y)dydη . (12)

a(x) is determined by numerically calculating the integrals. Dif-
ferentiating Equation 12 with respect to x gives

a′(x)
∫ 1

0
µ1(a(x),y)dy=

∫ 1

0
µ0(x,y)dy.

A function b = b(x,y) is now defined implicitly by the equation

a′(x)
∫ b(x,y)

0
µ1(a(x),ρ)dρ =

∫ y

0
µ0(x,ρ)dρ. (13)

Given a(x), the functionb(x,y) can be computed by numerically
performing the integrations in Equation 13. The initial mapping
is set to beu0(x,y) = (a(x),b(x,y)).

Consideringu0 to be a vector field, the Helmholtz-Hodge
decomposition [29] states thatu0 can be decomposed into the
sum of a curl-free vector field∇ω and a divergence free vector
field χ, i.e. u0 = ∇ω +χ. In the 2D case a divergence free vector
field χ can be written asχ = ∇⊥h for some scalar function h,
were⊥ represents rotation by90◦, so ∇⊥h = (− ∂h

∂y , ∂h
∂x). In this

case the decomposition isu0 = ∇ω +∇⊥h.
In order to compute the optimal MP mapping̃u = ∇ω , the

second step of the algorithm removes the curl fromu0. This is
achieved by using an iterative gradient descent method. In each
iteration the current mappingu is modified in order to reduce the
functional in Equation 11. Note that at all stages, the mapping
u is a valid solution to the mass-transport problem. Settingu =
∇ω +∇⊥ f , f is found by solving the following Poisson Equation
with a Dirichlet-type boundary condition:

∇2 f =−div(u⊥)
f = 0on∂Ω0. (14)

The boundary condition ensures that the mapping will remain
constrained in the given domain. It is shown in [9] that the
functional in Equation 11 can be reduced by the following
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evolution equation:

∂u
∂ t

=
1
µ0

Du∇⊥ f . (15)

The time step4t is set as4t = minx,i ‖ 1
µ0

(∇⊥ f )i‖−1, where the
subscripti stands for the component of the vector. The algorithm
iteratively solves the Poisson Equation and updates the mapping
u until the curl ofu is below a given threshold. Our experiments
show that performing up to30 iterations of Equation 15 is
sufficient for obtaining a high-quality warp.

A multi–grid method [27], [30] is used in order to quickly
solve Equation 14. The implementation uses the V-cycle algorithm
to control the transition between grid levels, Jacobi iterations
for smoothing the solution and full weighting for downsampling
solutions between grids [27]. The complexity of the multi-grid
method for an image containingP pixels is O(P), resulting in a
rapid solution. Equations 12,13,15 are linear in the image size. A
fixed number of iterations of Equation 15 is performed. Hence,
The total complexity of this step in the algorithm isO(P).

V. I MPLEMENTATION ON THE GPU

Computing the target density (Step 3) is the most time con-
suming stage of the algorithm since we need to perform many
computations for each pixel of the image. In this section we
describe how this step is implemented on the GPU, resulting in
a significant speedup of the running time of the algorithm, as
shown in Section VI.

The GPU has several architectural characteristics that help
improve the speed of computation compared to the CPU. First, the
GPU is highly parallel. It is able to run hundreds of computational
threads in parallel. In some cases, memory access latency is
hidden by switching to executing a different thread. Second,
the GPUs memory system is optimized for two-dimensional
locality, as opposed to the one-dimensional locality employed in
CPUs. Our implementation on the GPU takes advantage of these
properties.

Given the current density imageµ as an input, the goal is to
calculate for each pixel the best advancement direction,θbest, as
in Equation 5. This is done by finding for each pixel the angle
that minimizes the score in Equation 4.

Fig. 4. Execution graph of finding the best advancement direction on the
GPU in Step 3 (rectangles = textures, ovals=kernels,θ is the current direction
being tested)

Several textures, which are two-dimensional images or data
arrays, are used to store data on the GPU, as illustrated in
Figure 4. The input densityµ is stored in thedensity texture.
For each candidate directionθ , the current score for each pixel is
stored in thelocal metric texture. Two textures are used to store
the current best angle for each pixel:global metric #1andglobal
metric #2. We use two textures due to the GPU’s inability to read
and write to the same texture. At the end of the computation the
global metric texture holds the best advancement directionθbest

for each pixel.
Computation on the GPU is achieved by running akernel or

fragment programfor each pixel in the image. The GPU is able
to split the computation into hundreds of parallel threads, thus
achieving high performance. The computation, shown in Figure 4,
is performed using two kernels. The first kernel, calledcalc
metric, calculates Equation 4 for each pixel in the image given
the current directionθ . Given the coordinates of the current pixel,
lmax from Equation 4 is determined by calculating the closest
intersection of the ray in directionθ , starting at the current pixel,
with a boundary of the image. Next, the score is accumulated
using Equation 4. During this process, Bilinear interpolation is
used to access the density texture in the non-integral coordinates.

The GPU is able to efficiently execute the calc metric kernel.
For each directionθ , when concurrently running the kernel on
neighboring pixels, the accesses to the density metric have a
2D locality. This results in a good utilization of the caches and
memory bandwidth of the GPU, which are optimized for 2D
operations.

A second kernel, themergekernel is used to update the current
best advancement direction per pixel. This kernel accepts as input
the previous best direction, stored in the global metric texture,
and the value of the score calculated in the current direction
θ , stored in the local metric texture. The kernel compares the
two scores and writes to its output the merged best score. After
iteratively running the calc metric and merge kernel for the set of
all candidate angles, the global metric texture contains the value
of the best angleθbest for each pixel.

It should be noted that it is better to compute the best direction
(Equation 5) in a single pass, using the current densityµ as
the input and the best directionθbest(x,y) as the output. This
would remove the necessity for having a temporary texture for the
local result, performing the ping-pong algorithm between the two
copies of the global metric texture and running the merge kernel.
However, in order to protect the system from fatal errors, the
graphics driver limits the amount of time a computational kernel
is allowed to run. The allotted time is insufficient to perform the
computation in one pass, especially in lower performance GPUs.
Thus, we chose the multi-pass implementation discussed in the
previous paragraphs.

VI. RESULTS

Our algorithm was tested using the output of several state-
of-the-art graph layout algorithms in a variety of applications.
Table II gives information about the graphs and the parameters
used in our algorithm. Below, we discuss the results of our
algorithm and compare them to the results obtained by the node
overlap algorithm of Dwyer et al. [20]. We were not able to
compare the results of our algorithm to those of Gansner and
North [15] since their algorithm is not designed to handle the
large graphs used in our experiments.
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(a) InputFM3 layout (b) Removing node overlaps using [20] (c) Our improved layout

Fig. 5. ug380 graph (V=1104, E=3231). Note how when using our algorithm the center expands, reducing node density while the outer ring is unchanged.
When using [20] the layout is hardly changed.

Figures 1 and 5 show improvements of layouts computed by
FM3 [12], which is a multi-level force-directed algorithm. It uses
solar systems, which consist of nodes at a distance of two edges
or less from the center of the solar system, in order to create the
graph hierarchy.

Figure 1 shows a layout of the protein graph, which is the un-
weighted version of the protein homology graph presented in [34].
The layout contains a large, dense central cluster. Applying our
algorithm increases the percentage of screen space devoted to the
elements of the graph. This allows more of the fine details of the
graph to become visible, especially in the central region of the
graph. Note how the overall structure of the different elements of
the graph, such as the different ”spokes” it contains, is retained.
In comparison, the algorithm from [20] was not able to remove all
of the overlaps and the changes to the layout were small, similarly
to Figure 8 (b).

Figure 5 shows a layout of the ug380 graph [35], which
contains one node with a very high degree. The layout contains a
central core which is packed with many nodes. In (b) the results
of a node overlap removal algorithm [20] are shown. Since the
input layout contains hardly any overlaps, the result in (b) is
very similar to (a) and the graph remains cluttered. Applying
our algorithm to this challenging case, shown in (c), results in an
increase in the radius of the central core, increasing the separation
between the nodes. The exterior nodes, which are sparser, are
unaffected.

Figure 6 shows an improvement of the layout produced by
TopoLayout, which is a feature-based multi-level graph drawing
algorithm [36]. It creates a subgraph hierarchy by recursively
detecting topological features in the graph and replacing them
with meta-nodes. Each feature is drawn using an algorithm tuned
for the specific topology. The graph hierarchy is drawn bottom-
up using an area-aware algorithm. The figure shows the add32
graph [22], which describes a 32-bit adder that contains many
biconnected components. In (b) the results of a node overlap
removal algorithm [20] are shown. Note that the structure of
the input layout is significantly distorted, making it difficult to
comprehend the structure of the graph. Our improved layout,
shown in (c), is able to expand the circular clusters contained
in the graph, better visualizing the intricate details of the graph.
For example, additional details about the composition of the inner

circle in the leftmost part of the graph become visible. Also,
expanding the small circular formation at the bottom right hand
side of the graph allows more detail about the sub-clusters it
contains to become visible. Moreover, as opposed to (b), the
layout in (c) maintains the overall structure of the layout.

Figures 7 and 8 show improvements of the layouts produced
by [37], which is a multi-level forced directed graph layout algo-
rithm. Spectral partitioning is used to create the graph hierarchy.
KD-tree type partitioning is used to accelerate the computation
and allows for an efficient GPU implementation.

Figure 7 shows the ISP graph, which represents the router
networks of several internet service providers (ISPs) [38]. In the
layout, green, black and blue nodes represent routers belonging
to the ISPs visualized, while red nodes show other routers used
to connect to the Internet. The layout in (b), computed by the
algorithm from [20], manages to displace nodes in order to avoid
overlaps, while generally maintaining the overall structure of
the graph. Unlike our algorithm, the resulting layout does not
attempt to make use of sparse regions of the layout. Instead, small
displacements are used in order to avoid overlaps. Applying our
algorithm to this layout, as shown in (c), improves the separation
between the nodes of the graph, while maintaining important
characteristics of the graph, such as the separation to clusters
(excluding the red nodes). This is especially evident in the blue
cluster at the bottom right and among the red nodes in the center
left part of the graph. Note how the algorithm is able to expand
each of the clusters into surrounding sparse areas, allowing more
details to become visible inside the clusters, while still preserving
the overall clustered structure of the graph.

Figure 8 shows the bcsstk32 graph [22], which represents a
stiffness matrix. It has a very high edge density:E/V > 22. The
layout in (b), computed by the algorithm from [20], is nearly
identical to the input layout. The algorithm is not able to remove
all of the overlaps of the graph, even when we change the size
of the squares representing the nodes. In (c) our uncluttering
algorithm is used. It stretches the input layout, making the
mesh-like structure of the graph more evident. Note that the
overall structure and features of the graph are conserved after the
uncluttering process. Also note that in the improved layout there
are less highly-concentrated areas, where the edges are totally
hidden. This makes the mesh structure of the graph visible in a
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(a) Input layout by TopoLayout [36] (b) Removing node overlaps using [20] (c) Our improved layout

Fig. 6. Add32 graph (V=4960, E=9462). Note how in (c) each of the rings is expanded, showing more detail.

(a) Input layout from [37] (b) Removing node overlaps using [20] (c) Our improved layout

Fig. 7. ISP router graph (V=5044, E=8043) . Nodes are color-coded by the ISP they belong to. Note how in (c) the blue nodes are uncluttered.

(a) Input layout from [37] (b) Removing node overlaps using [20] (c) Our improved layout

Fig. 8. Bcsstk32 graph (V=44609, E=985046). Note how in (c) reducing the node density allows more of the mesh structure of the graph to be uncovered
in the top left, bottom and middle of the graph.

larger portion of the layout.

In order to quantitatively measure the quality of the improve-
ment to the layout, we define the following metric:

Q =
1

V(V−1)
AG ∑

u,v∈V,u6=v

1
dist(u,v)

, (16)

whereV is the number of nodes in the graph,AG is the area of
the layout, anddist(u,v) is the distance between nodesu andv.
The metric sums the inverted distances between all node pairs,
multiplied by a normalization factor. Under this metric, a lower
score is better since it implies that nodes are further away (and
hence 1

dist(u,v) is smaller). In order to normalize the metric we
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graph name input node overlap removal [20] our algorithm
add32 10763 15535 9392

bcsstk32 1465.9 1301.2 623.56
ISP 251.41 511.36 198.37

ug 380 7811.8 7811.8 6751.5

TABLE I

QUALITY RESULTS. VALUES IN THE TABLE ARE CALCULATED ACCORDING TO THE QUALITY METRIC IN EQUATION 16. LOWER VALUES IMPLY A HIGHER

QUALITY LAYOUT . THE INPUT COLUMN REPRESENTS THE QUALITY METRIC FOR THE INPUT GRAPH. THE NODE OVERLAP REMOVAL COLUMN GIVES

RESULTS WHEN APPLYING THE ALGORITHM FROM[20]. THE RESULTS WHEN USING OUR ALGORITHM ARE SHOWN IN THE RIGHT–MOST COLUMN.

graph information node overlap removal [20] our algorithm
graph V E CPU

√
P ITRS CPU CPU+GPU

protein 30727 1206654 543 257 8 643 6.62
add32 4960 9462 2.23 257 15 641 4.86

bcsstk32 44609 985046 462 257 4 642 5.84
ISP 5044 8043 0.9 257 25 643 5.19

ug 380 1104 3231 0.03 257 30 643 4.86

TABLE II

GRAPH INFORMATION AND RUNNING TIMES. THE LEFT SIDE OF THE TABLE GIVES INFORMATION ABOUT THE GRAPHS. V AND E ARE THE NUMBER OF

GRAPH NODES AND EDGES, RESPECTIVELY. THE CENTRAL PART OF THE TABLE GIVES THE RUNNING TIMES IN SECONDS OF THE ALGORITHM

FROM [20], USING THE SAME MACHINE USED TO RUN OUR ALGORITHM. THE RIGHT SIDE OF THE TABLE SHOWS THE RESULTS OF OUR ALGORITHM. THE

WIDTH AND HEIGHT IN PIXELS OF THE DENSITY IMAGE USED IS EQUAL TO
√

P. ITRS IS THE NUMBER OF ITERATIONS OFEQUATION 7 IN STEP 5. CPU

IS THE TOTAL RUNNING TIME OF THE ALGORITHM IN SECONDS WHEN USING ONLY THECPU. CPU+GPUIS THE TOTAL RUNNING TIME OF THE

ALGORITHM IN SECONDS WHEN USING THEGPU TO ACCELERATE STEP 3.

divide by the number of node-node combinations (V ∗ (V−1)).
The metric is multiplied by the area of the layout in order to take
into account changes to the size of the layout. A larger layout will
receive a higher (i.e. worse) metric since enlarging the layout will
naturally lead to improved distances between the nodes.

Table I shows the results of using the quality metric defined
in Equation 16 on the graphs in Figures 5 - 8. The table shows
the metric for the input graph as well as the results when using
the node overlap removal algorithm from [20] and when using
our algorithm. As can be seen, using our algorithm improves
the metric (corresponding to a lower value) consistently. This
demonstrates that indeed our algorithm manages to increase the
separation between nearby nodes, thus improving the readability
of the layouts and showing finer details. When using the algorithm
from [20], the quality is improved in some cases (such as the
bcsstk32 graph) while it is reduced in others. For example, in
the ISP graph, the graph is stretched in the y axis (this is not
visible Figure 7 (b), which is square), thus reducing the quality
metric of the computed layout. A similar case, contributing to a
less desirable high score, happened with the add32 graph, whose
area was significantly enlarged in order to avoid node overlaps.

For our performance tests, we used a PC running Windows XP
equipped with 2GB RAM, an Intel Core 2 Duo E6750 2.66 GHz
CPU and an NVIDIA 8800GTS GPU with 96 shader processors
running at 1.2GHz. The algorithm was implemented using C++,
OpenGL and Cg.

Table II gives information about the graphs and the running
times. It is evident that the running time is relatively indepen-
dent of the size of the graph and the number of displacement
iterations made. This is so since the bulk of the computation
time is spent working on the different images the algorithm
operates on. More specifically, as can be seen from comparing

the CPU and CPU+GPU columns, most of the time is spent in
Step 3, which involves a computationally demanding ray-shooting
process (Equations 4 and 5). Using the GPU results in a very large
speedup of this step, accelerating the total runtime by up to 130
times. This reduces the total runtime to a few seconds.

Table II compares our running times to those of [20]. In
the latter, there is a big variation in the running time, since it
depends on the number of overlaps. When there are few overlaps
(add32, ISP, ug380), the algorithm runs quickly. Consequently,
the changes to the layout are small. In other cases (protein,
bcsstk32), the running time is higher. Due to the large variation
in running times, in some cases it runs faster than our GPU
implementation while in others it runs slower.

There are several reasons why the GPU is able to accelerate
Step 3 and therefore the execution of the entire algorithm so
significantly. First, since the amount of work per-pixel is similar,
there is good load balance between the different processors in the
GPU. Thus, the GPU is able to make efficient use of its computing
power, which is much higher than the CPU’s. Second, due to the
2D locality in the memory access pattern during the ray-shooting
process, the GPU is able to make efficient use of its caches. On
the CPU, however, accessing a 2D image requires lookups using
pointers, which is inefficient. Finally, as opposed to the CPU, the
GPU contains built-in instructions for performing the clamping
operations needed for performing the interpolation of the values
in the density texture. In summary, this is a good example in
which the architecture of the GPU is able to provide a significant
speedup compared to a CPU implementation.

VII. C ONCLUSION

This paper proposes a new algorithm for reducing the cluttering
commonly occurring in graph layouts. Given any graph layout,



11

the algorithm moves nodes to empty regions of the screen while
attempting to retain the overall structure of the graph and thus
reduce disturbances to the user’s metal map.

The algorithm has several key ideas. First, the density image
of the computed graph layout is used to decide how nodes will
be displaced. Second, a diffusion process that takes the structure
of the density image into account computes an alternative node
distribution, making better use of the available screen space.
Third, an optimal and mental-map preserving warp, based on
results from mass-transport problems, determines how to displace
the nodes. Although the mathematical techniques used in this
paper require a great deal of computation, the paper demonstrates
how improved layouts can be computed in a matter of seconds,
by using the GPU to significantly accelerate the algorithm.

It has been shown that our algorithm is able to improve layouts
of large graphs, produced by a variety of well-known algorithms.

In future research we plan to integrate the algorithm into an
interactive system that allows presenting user-selected regions of
interest in the graph with more detail. Another research direction
is using the algorithm to enhance the visualization of changes in
a dynamic graph sequence.

It may be possible to accelerate the algorithm further by moving
more parts to the GPU. These include the multi-grid solution of
the Poisson equation [39] (Equation 14) and the iterative mass-
transport evolution [40] (Equation 15).
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