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Abstract Archaeological artifacts are an essential element of archaeological research. They
provide evidence of the past and enable archaeologists to obtain qualified conclusion. Nowa-
days, many artifacts are scanned by 3D scanners. While convenient in many aspects, the 3D
representation is often unsuitable for further analysis, due to flaws in the scanning process
or defects in the original artifacts. We propose a new approach for automatic processing of
scanned artifacts. It is based on the definition of a new direction field on surfaces (a normal-
ized vector field), termed the prominent field. The prominent field is oriented with respect to
the prominent feature curves of the surface. We demonstrate the applicability of the promi-
nent field in two applications. The first is surface enhancement of archaeological artifacts,
which helps enhance eroded features and remove scanning noise. The second is artificial
coloring that can replace manual artifact illustration in archaeological reports.

Keywords Shape analysis - Shape processing - Archaeological models

1 Introduction

Man-made artifacts are a major source of our knowledge about the past. Archaeologists who
study assemblages of artifacts seek to identify distinctive patterns in them, which can be used
for analysis and comparison. In order to disseminate the information about artifacts, these
are either illustrated in reports or scanned by 3D scanners. Nowadays, 3D representations are
becoming more popular, since they provide more information by allowing the archaeologist
to view the artifact from different viewpoints at various scales and perform comparative
measurements. Therefore, this paper focuses on 3D representation of artifacts. Specifically,
we concentrate on artifacts with reliefs, which consist of a detailed surface, the relief, that
resides on the top of a smooth base surface.
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(a) Original object (b) Filtered object

Fig. 1 Enhancement of a late Hellenistic oil lamp from the first century BCE. The red rectangle depicts the
zoomed-in part.

The main task facing the archaeologists is the analysis of these artifacts. This is done
in several ways — accurately illustrating them by highlighting the surface edges, comparing
artifact styles, classifying them etc. All these tasks can be facilitated by applying computer
vision and computer graphics techniques [2,13,20,29]. However, the 3D representation is
often flawed, either due to defects in the original artifacts or due to the erosion the artifact
underwent after spending two thousand years underground. Noise added in the scanning
process may also damage the representation. Figure 1(a) gives an example of a flaw. The
surface of the original object is slightly rippled and looks blurred.

This paper addresses this problem by proposing a novel framework for processing the
artifacts. It is based on a definition of a new direction field (a normalized vector field),
termed the prominent field, defined for every point on the surface. This field is constructed
in a manner in which it is smooth on the surface. Intuitively, the direction of this prominent
field, termed the prominent direction, is perpendicular to the surface’s feature curves. With
respect to the reliefs, we show that the prominent field is superior to previously proposed
vector fields. The existing fields are oriented mostly according to the principal directions,
which do not always coincide with the feature curves of the surface.

Since the prominent field is closely related to the feature curves of the relief surface,
it is beneficial for a variety of processing applications. We demonstrate its effectiveness in
two applications: surface enhancement and artificial coloring. The goal of adaptive filtering
is to enhance the features while keeping the surface intact. This may also help to remove
the scanning noise. We propose to smooth the surface using the prominent field along the
feature curves and enhance it in the prominent direction. Figure 1(b) shows the effect of the
adaptive filtering. The filtered object is smoother and has crisper, more visible details than
the original object.

As a second application, we present a method for artificially coloring objects. The key
idea is to color the surface according to its normal curvature in the prominent direction. This
coloring increases the color contrast on the feature curves, thus enhancing them.

The contribution of this paper is hence threefold:

— We define the prominent field and show how to compute it in interactive time.
— We show how to employ the prominent field for surface smoothing and enhancement.
— We propose a method for artificial surface coloring that emphasizes the object features.

The paper continues as follows. Section 2 presents the required background. Section 3
defines the prominent field and shows how to compute it. Sections 4 and 5 demonstrate
the applications. Finally, Section 6 concludes the paper. A preliminary version of this work
appeared in [16].



2 Background

This section presents the essential background on relief surfaces and on vector fields on
surfaces.

Relief surfaces and feature curves on them: A relief surface can be viewed locally as a
terrain. Like any other terrain, it has valleys and ridges. Three types of feature curves are
defined on it: ridges, valleys, and relief edges, as illustrated in Figure 2(a). All these curves

run on the slopes of the terrain, which can be approximated locally by the step edge model
(Figure 2(b)).
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(a) Local terrain (b) Step edge model

Fig. 2 Three types of feature curves on a relief surface. (a) The Hellenistic oil lamp can be viewed locally

as terrain. The terrain has ridges (red), valleys (blue), and relief edges (green). (b) The step edge model can
approximate the slopes of the terrain.

Ridges and valleys are similar to their geographical counterparts and usually indicate
sharp changes in the surface orientation. Ridges (valleys) are defined as the maximum (min-
imum) of the normal curvature in the first principal direction [5].

On ideal step edges, relief edges run on the slopes between ridges and valleys and are
parallel to them. They are shown to correspond to the image edges of the local image 7 [15].
Equivalently, they are defined as zero crossings of the curvature in the direction of the step
edge model that best approximates the surface locally in the L, norm. The direction is termed
the edge direction.

Figure 3 compares different types of curves. Ridges are erroneous for this model; valleys

make the dancers wider and do not always follow precisely the figures outline; relief edges
provide more accurate results.

Vector fields on surfaces: A vector field is a vector asociated with every point on the sur-
face. Vector fields on surfaces are essential for many graphics applications, such as texture
synthesis [30,28], non photo-realistic rendering [11], fluid simulation [22], shape deforma-
tion [9] and others. There exists a variety of papers on editing, generation, manipulation,
and filtering of vector fields [32,7]. Since the magnitude of the vector field is irrelevant for
our work, we will restrict the discussion to direction fields.

The most common candidates for direction fields are the principal directions, which
correspond to the directions of the maximal and the minimal curvatures. The principal di-
rections are reliable near ridges and valleys, i.e. at locations where the ratio of the principal
curvatures is high, but are ill-defined near umbilical points. Therefore, typically the field
is computed so as to coincide with the reliable principal directions and be smooth at other
points ([11,19]). While the principal directions are useful for general objects, they are less



(a) Original object (b) Ridges and valleys (c) Relief edges

Fig. 3 Three types of feature curves on a Hellenistic vase depicting five dancers. Ridges (red) & valleys
(blue) do not follow precisely the dancers, whereas the relief edges (black) are more accurate.

suitable for objects with reliefs. This is so since the relief details are often close to umbili-
cal and the principal directions might fail to capture their orientation correctly. Figure 4(b)
shows that while the principal directions are oriented well near the ridges and the valleys,
they are noisy at other places.
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(c) Relief direction field (d) Prominent direction field

Fig. 4 Different direction fields. In (a) the ridges (red), valleys (blue), and relief edges (green) are depicted.
The principal direction field (magenta) is oriented well near the ridges and the valleys, but noisy at other
places (b). The relief direction (black) is oriented well on the relief edges, but not at other parts of the
surface (c). Our prominent direction (orange) is oriented well everywhere on the surface.



The directions perpendicular to demarcating curves [14] and to relief edges [15] are
more appropriate for relief surfaces, since these curves are designed to illustrate relief fea-
tures. The direction perpendicular to demarcating curves is the direction of the curvature
gradient (the direction of the maximal curvature derivative). The direction perpendicular to
relief edges is the direction of the locally best-fitting step edge. These directions are well
defined on the relief edges, but are meaningless at the other parts of the surface, and thus
cannot be used in a straightforward manner. Figure 4(c) shows that the relief directions are
well oriented near the relief edges, but are randomly oriented at other locations.

3 Prominent field

This section presents a novel direction field — the prominent field. Intuitively, the prominent
field is defined as the smoothest field perpendicular to the object features. A field satisfying
this definition can enable us for example to enhance features in the direction of the field,
while removing noise in the perpendicular direction.

Below we first present the surface model. Next we define the prominent field, first on
the feature curves and then on the whole surface. Finally, we describe the algorithm for
computing the prominent field on polygonal meshes.

Surface model: We define a relief surface as a surface composed of a smooth, low-frequency
base and a high-frequency height function [15]. This function represents the signed distance
between the base to the surface in the direction of the base’s unit normal. (See Figure 5.)
This decoupling of the surface into the base and the height function is unknown.

Formally, given a surface S(u,v) : R? — R3, we assume that it consists of a smooth base
B(u,v) : R? — R? and a height function /(u,v) : R* — R defined on B:

S(u,v) = B(u,v) +a(u,v)I(u,v), )]

where u and v are the coordinates of a parameterization and i(u,v) : R> — S? is the normal
of B (S? being the unit sphere). We assume that B is locally a manifold and that its curvature
has a smaller value than the curvature of /.

Fig. 5 The surface S (magenta) is composed of a smooth base B (black) and a function 7 (blue). Function /
at point p can be locally viewed as an image defined on the tangent plane (orange) of the base. Point p is a
relief edge point if it is an edge point of this image. The normal n, (brown) is the normal of S and f, (green)
is the normal of B corresponding to p.



The prominent field on features: We are seeking a smooth direction field — the promi-
nent field — that is perpendicular to the object feature curves. This direction is important
since many processing tasks are closely related to the feature direction (which should be
maintained, enhanced, etc.). Smoothness is required in order to produce smooth results.

Had the surface be an ideal step edge, this direction would be perpendicular to the ridge,
valley, and relief edge (Figure 2(b)). In practice however, surfaces are not ideal step edges
(Figure 2(a)) and thus we need to define a direction field more carefully.

To address this problem, we divide the surface points near the feature curves into two
fuzzy classes. The first class consists of the points residing near the ridges and the valleys.
Here the prominent direction should be equal to the first (maximum) principal direction.
The second class includes points residing near the relief edges. In this case the prominent
direction should be equal to the relief direction. The classification is fuzzy and hence the
regions may overlap.

Formally, let p be a point on the surface, g, be the relief direction, and t;, be the first
principal direction. As mentioned above, on the step edge model, g, is meaningful only on
the relief edge and t,, is well-defined near ridges and valleys. Therefore, to define the promi-
nent direction rp, g, and t, are combined as a weighted combination, where the weights are
proportional to the likelihood of the point to be near a relief edge. Therefore, the weight o
is 1 at relief edges and O at ridge/valley points.

Definition 31 The prominent direction is
rp = 0pgp + (1 — o)ty

where o4 € [0,1] is a scalar weight that determines the relative distance of p from the relief
edge.

The question is how to define ¢y,. Let ki and &, be the principal curvatures, k their
ratio, and / the median length of mesh edges. Empirically, we observed that good results are
obtained when

1 max(|x|,|,|) <3/lor |k| <2
=4 0 |k| > 4 2)
4—Jk

T‘ otherwise.

The intuition behind this definition is as follows. On a relief edge (04, = 1), the principal
curvatures should be small (on an ideal step edge, the edge point is planar) with respect to
the surface resolution (thus, the use of /). If the relief edge bends, the ratio of the principal
curvatures is small. On a valley or aridge (oy, = 0), the ratio between the principal curvatures
is large.

The prominent direction on the whole surface: In the previous section we defined the
prominent field on the feature curves. To extend the definition to the whole surface, we
search for the smoothest direction field that satisfies the values of the prominent field on the
features.

Utilizing the Laplacian as the smoothness measure, we define the prominent field as the
solution of the Poisson equation. The values of the prominent field on the features serve as
boundary conditions for the equation.

Formally, we want to compute the prominent field sp = [sg,slv,], such that the Laplacian
[Asy, Asp] of the field components is equal to zero and sp = rp on the features. Let f, € [0, 1]
be our confidence that p is a feature point (explained below). At each point p, the following



should hold:

Bpsp = Bprp.
(1—=PBp)As, =0, 3
(1—Bp)as, = 0.

Thus, on the features (B, ~ 1), the first equation enforces the boundary conditions and else-
where, the two other equations enforce the smoothness of the solution.

We approximate the confidence value B, such that it is close to one when the point is near
an edge and zero otherwise. Recall that the points on the edge are characterized either by a
high ratio between the principal curvatures (near ridges and valleys) or by a small difference
between the surface S and its approximated step edge & [15, Equation 7]. Specifically,

B, = 1 (Jk| > 2 and max(|x],|x2|) > 3/I) or g < 0/1 @)

P70 otherwise,
where 6 is a user controlled threshold. The threshold enables the user to determine what
points are considered edges and directly influence the appearance of the prominent field. We
observed that setting 6 to 2 gives good results in most cases.

Computation of the prominent field: In practice, our surface is given as a triangular mesh.
We need to compute [sp,s,] for every vertex of the mesh, and the entire collection will
constitute a field. Let p be a vertex of the mesh and N(p) be the set of the neighbors of p
(i.e., vertices that share a mesh edge with p).

To compute the prominent field s, we need to solve Equation 3. In order to perform this
efficiently, we restrict ourselves to solving a couple of systems of linear equations. We do
it by first deriving a linear approximation of the Laplacian [Asg,Asm of the components of
the prominent field and then solving the set of linear equations in sp.

To compute the Laplacian of a scalar function f on a mesh, we follow [17]:

F@) = ¥ (cot(y;) +cot(8)(f(p) — (b))
ZAjeN(m )
=0 T wi/(8)=1(0)) ) = oty +eo(d)
JEN(P

where A is the area of the Voronoi cell of p, and ; and §; are the angles opposite the edge
[p,p;] of the triangles sharing this edge.

[Asp,Asp] cannot be computed directly using Equation 5, since the components [sp, sp]
of the prominent field are not scalar functions of the surface. Rather, they are defined in the
local tangent plane, which differs from point to point. To address this problem, we calculate
the transformation between the local coordinate systems of the neighboring vertices and
utilize it in the computation of the Laplacian.

Given a vertex p and its neighbor p;, this transformation is computed as follows. First,
the tangent plane of point p; is rotated by aligning the normals of p and p;. Next, the
coordinates systems are aligned in the tangent plane, by applying a 2D rotation by 6: R =
[(cosB,sin8)T,(—sin@,cos8)7], where 0 is the angel between the rotated first principal



directions (Figure 6). Finally, the Laplacian of the prominent field can be written as:

1
Asp = A Z wj(sp — cos Osp —sinBsp),
Jj=N(p)
! (6)
Asy = 7 '72 w;(sp +sin sy —cos Osp).
Jj=N(p)

(a) Initial positions (b) After aligning the normals

Fig. 6 Alignment of the local coordinate systems. (a) First, we rotate the coordinate system of p; so that the
tangent plane of p; coincides with the tangent plane of p. The rotation is performed around the cross product
of n, and np i (b) Then, the coordinate systems of p; and p are registered by rotating the rotated tangent

plane of p; by 6.

Finally, substituting equations 4 and 6 into Equation 3 yields a system of linear equa-
tions, whose unknowns are the components of the prominent field s,. This is solved using a
standard sparse linear equation solver. Since the prominent field is a direction field, it is then
normalized. Note that after normalization, the Laplacian is not guaranteed to remain small.
In practice, however, the change is negligible.

Figure 7 compares the prominent field to the other direction fields. It can be seen that
the principal direction field and the relief direction field are inappropriate in most surface
locations, whereas our prominent field is both in the desired direction near the feature curves
and smooth everywhere.

4 Application: Surface enhancement and smoothing

Scanned archaeological objects are often unsuitable for further processing and visual anal-
ysis, either due to erosion that they underwent during the ages or due to scanning noise.
This section describes how our prominent field can be utilized to enhance and smooth these
objects, to enable effective processing and analysis.

One way to address these problems is by using adaptive filtering algorithms, which
smooth (or denoise) the surface, while keeping the features intact or enhancing them. Ex-
isting approaches for adaptive filtering on meshes operate either on the mesh vertices [4,
8,31], the mesh normals [18,24], or the curvatures [6]. The techniques differ in the energy
functional they attempt to minimize.

While these approaches perform well preserving and enhancing ridges and valleys, they
are not designed for relief objects. In particular, there are a couple of cases in which they
may produce inferior results. The first case occurs when no distinct ridges or valleys can
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(c) Relief field (d) Prominent field

Fig. 7 Direction fields. The principal directions (b) and the relief directions (c) lack meaning far from their
respective feature curves, in contrast to the prominent field, which is in the desired direction near the feature
curves and smooth everywhere (d).

be detected on the surface. These approaches will simply smooth the objects, diminishing
the 3D features. The second case occurs when there exist distinct valleys and ridges, but the
slope of their step edge is shallow, as illustrated in Figure 8. In this case, these approaches
aim at enhancing each of these features separately, but do not enhance the step edge model
between them. Our goal is to preserve and enhance this step edge by steepening the slope of
the step edge.

Fig. 8 The cyan curve is the local image defined on the black base. Since this surface has sharp ridges
and valleys, it will not be enhanced by standard adaptive filtering. The desired result, illustrated in orange,
enhances the 3D feature.



We propose a novel approach that solves these problems. It consists of two steps —
bilateral filtering and inverse curvature flow — each makes use of our prominent field to
guide the smoothing and enhancement directions. Though we describe a specific bilateral
filtering, our prominent field can be combined with many other adaptive filtering techniques.

Step 1 — Bilateral filtering: A bilateral filter sets the position of a vertex to a weighted
average of its neighbors. The weights depend both on the distance between the vertices and
on their similarity. We propose to base the similarity component on the distance between the
vertices along the prominent direction.

Let p be a vertex on the mesh, N(p) be the set of its neighbors, d; = ||p — p;|| be the
Euclidean distance between p and one of its neighbors p;, and np be the normal at p. In [8]
it is proposed to define the similarity as the distance between p; and p’s tangent plane:
hj=|(np,p—p;)|, so that smoothing is performed when p; is close to the tangent plane of p.
We propose to add to this definition a term that depends on r;, the projection of p —p; along
the prominent direction. Thus, smoothing will not be performed in the prominent direction,
which prevents 3D feature blurring. This is done by multiplying the weights suggested in [8]
by the term e/

Hence, our similarity-based change of p in its normal direction is

5, =C Z e—d}/zaf .e—h§/2asz _e—rf/zc,% hj, )
JjeN(p)

yielding a new position for p:
p'=p+ Gy, @®)

where, C is the normalization coefficient. In the implementation, ¢; = 0.50,, c; = 0.40,,
and o, is a user-supplied parameter that determines the amount of smoothing. It is common
to slightly smooth the object prior to computing the distances.

Figures 9(c) & 10(c) show the results obtained by applying our bilateral filtering to scans
of real archaeological artifacts. In comparison to [8] (Figures 9(b) & 10(b)) it can be seen
that the features are more pronounced.

Step 2 — Inverse-curvature flow: The inverse-curvature flow is a high frequency filter [1,
25,26], which updates the position of a vertex so as to increase the absolute value of its
curvature. It can be based on the mean, maximum, minimum, or any other type of curvature.

While the inverse-curvature flow manages to enhance features, it suffers from two draw-
backs. First, it often creates spurious features on the surface, in addition to the enhanced
features. This is so since in near-flat region points with locally higher-curvature values are
enhanced. Second, it is an iterative process that does not have a well-defined stopping crite-
rion, causing unnaturally exaggerated features.

We propose a new inverse-curvature flow, which is based on two modifications to the
standard flow. To solve the first problem, the curvature is computed in the prominent direc-
tion, enhancing only the real features. To solve the second problem, a new stopping crite-
rion is suggested, which is based on the intuition in which a point should not exceed the
extremum of the height function in the neighborhood of the point. Figure 11 illustrates the
problem and our solution. It can be seen that the standard inverse curvature flow results in
an exaggerated edge (magenta) that exceeds the original height in the neighborhood of the
point (cyan). Our edge (orange) stops when it reaches the maximal height, resulting in a
more appealing surface.

To perform this computation, we need to estimate the relative height function over the
base. However, the decoupling of the surface into a base and a height function is unknown
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(c) The result of our bilateral filtering (Step 1) (d) Our final result

Fig. 9 Enhancement of a late Hellenistic oil lamp from the first century BCE. In our result, the limbs of the
cupid, as well as the ornaments, are more pronounced.
SN

(a) The given object (b) The result of the bilateral filtering of [8]

%

(c) The result of our bilateral filtering (Step 1) (d) Our final result

Fig. 10 Enhancement of a Hellenistic handle stamped by a Greek official. In our result, the letters are crisper,
whereas the bumpy background is smoothed.



Fig. 11 Inverse-curvature flow. The initial surface is in cyan; the standard inverse-curvature flow is in ma-
genta, and our inverse-curvature flow is in orange. The base is the green line and the normal to the base is the
green arrow. Our inverse-curvature flow does not exceed the maximum (minimum) local height.

(Figure 5). To approximate this decoupling, it suffices to estimate the normal to the base
at each point [15]. To estimate the base normals, the surface (S) normals are smoothed at
the neighborhood of the point. Our approach utilizes an adaptive Gaussian filter, similarly
to [18,15].

Results: Figures 9-10 illustrate some results and comparisons. Figure 9 shows a Hellenistic
oil lamp. The original object is slightly eroded and has small ripples on the surface. Standard
bilateral filtering succeeds to remove the ripples but the details become blurred. Our bilateral
filtering (Step 1) causes the blurring (e.g., on the legs), but the result can still be enhanced.
After Step 2 of our algorithm, the surface becomes smooth while the details become crisper.
For instance, the torso of the cupid on the right is smooth while his arms, legs, and wings
are more clearly visible. Figure 10 depicts a Hellenistic handle stamped by a Greek official.
The defects on the original scan are removed by both bilateral filters, but the letters in our
final result are more recognizable and protruding.

Additional results are shown in Figures 12-14. After applying our algorithm, the face
in Figure 12 has much clearer facial features. Note especially the quality of the nose, the
eyes, and the crown. Figure 13 displays an Ottoman pipe. Our algorithm keeps intact even
the smallest carvings on the pipe. Figure 14 displays a shard of a Hellenistic vase. In this ex-
ample the user decided to stop the iterations of the algorithm before the automatic stopping
criterion was reached. The resulting object (Figure 14(a)) looks more appealing and has a
crisper ornament. Zooming in to the details of the shard (Figure 14(b)) it can be seen that the
quality of our result is even more visible. For instance, the S-shaped ornament is smoother
and has clearer boundaries.
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(a) The given object (b) After our bilateral filtering (c) Our final result

Fig. 12 A late Hellenistic oil lamp from the first century BCE. Note especially the eye on the left from which
the noise has been removed and its shape is more pronounced.
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(a) The given object (b) After our bilateral filtering (c) Our final result

Fig. 13 An Ottoman pipe. Note the quality of small carvings which were enhanced by the algorithm.

Original object

Our result

(a) The full object (b) Zoom in

Fig. 14 A shard of a Hellenistic vase. The algorithm removes the noise visible on the left while enhancing
the S shaped decoration on the right.

5 Application: Prominent coloring

Traditionally, archaeological artifacts are drawn by hand and printed in the reports of ar-
chaeological excavations, as illustrated in Figure 15. The artists utilize artificial coloring
in order to enhance the three-dimensional features. Several kinds of computerized artificial
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coloring methods have been proposed in the literature [3,10,12,21,27], in which the object
is colored according to its geometric properties. For instance, it is proposed in [12] to color
each point on the surface according to its mean or maximal curvature.

.

(a) The object (b) Max-curvature coloring  (c) Mean-curvature coloring (d) Prominent coloring

Fig. 16 Comparison of various coloring methods. Top: complete artifact; bottom: partial profile. Note that
the maximal-curvature coloring is noisy; the mean-curvature coloring is blurred; our coloring is crisper and
less noisy. This is visible, for instance, on the eye, crown, and hair.

We propose a new method for artificial coloring, termed prominent coloring. The color
of a vertex is set according to its curvature in the prominent direction. The lower the curva-
ture, the darker its color. Formally, given a vertex with prominent curvature k,, its color is



defined as
color = arctan(A k), 9

where A is a user supplied parameter controlling the overall image contrast.

Results: Figures 16-18 illustrate our coloring method and compares it to mean and maximal
curvature colorings. Prominent coloring can emphasize poorly visible features. For instance,
the scar on the cheek and the cavity on the crown of the person in Figure 16 are not clearly
seen on the original scan. With our prominent coloring, they are easily detectable.

In general, the maximal curvature coloring is noisy and jagged since the maximal cur-
vature is sensitive to noise and to small surface variations. The mean curvature coloring is
blurred since it depends also on the base surface and not only on the details. On the con-
trary, the prominent coloring manages to produce clear and smooth boundaries. It combines
the advantages of the mean and maximal coloring — a smooth image with clear boundaries.
For example, these differences can be observed on the eye and the crown in Figurel6. The
prominent coloring better emphasizes the relevant details. This can also be seen in Figure 17.
The prominent coloring is smoother than the maximal coloring and crisper than the mean
coloring.

Moreover, the maximal and the mean coloring can generate spurious details or remove
the true ones. For instance, observe the small cavities denoted by the yellow and magenta
circles in Figure 18. The mean coloring completely removes them. The maximal coloring
removes one cavity and changes the shape of the other.

6 Conclusions

This paper addressed the problem of automatic processing of scanned artifacts. The process-
ing is based on a definition of a new field — the prominent field, which is a smooth direction
field perpendicular to the feature curves. The prominent field is computed in interactive
time (a couple of seconds for a 100,000-vertex model ). We demonstrated how to employ
the prominent field for two applications: surface enhancement and artificial surface coloring,
which emphasizes the object features. In both cases, the methods were applied to archaeo-
logical artifacts, which are typically noisy and suffered erosion over time. We showed that
our results outperformed the results obtained by previous methods.

The applications received positive feedback from archaeologists from the Computerized
Archaeological Laboratory at the Hebrew university of Jerusalem '. Their impression is
that “it is not just a nice way to visualize and publish archaeological objects, but also an
important research tool that improves the interpretation of the items especially with written
material.” Moreover, they intend to use this enhancement method in their future publications.

In the future, we intend to apply our prominent field to other applications, such as shape
matching and reconstruction.

The data used in the project is available at http://webee.technion.ac.il/labs/cgm/
Computer-Graphics-Multimedia/Resources/Resources.html
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(a) Maximal-curvature coloring (b) Mean-curvature coloring (c) Prominent coloring

Fig. 17 Comparison of various coloring methods. The prominent coloring combines the advantages of the
mean and maximal coloring — a smooth image with clear boundaries.

(a) Maximal-curvature coloring (b) Mean-curvature coloring (c) Prominent coloring

Fig. 18 Comparison of various coloring methods on a Hellenistic lamp. With maximal curvature (a), the area
inside the yellow circle appears as if it is divided into two parts and inside the magenta circle appears broken.
With mean curvature (b) both area are blurred. The prominent coloring (c) better depicts these areas.

References

1. Bajaj, C., Xu, G.: Anisotropic diffusion of surfaces and functions on surfaces. ACM Transactions on
Graphics (TOG) 22(1), 4-32 (2003)

2. Brown, B., Toler-Franklin, C., Nehab, D., Burns, M., Dobkin, D., Vlachopoulos, A., Doumas, C.,
Rusinkiewicz, S., Weyrich, T.: A system for high-volume acquisition and matching of fresco fragments:
reassembling Theran wall paintings. ACM Trans. Graph. 27(3) (2008)

3. Cohen, J., Dunkan, D., Snyder, D., Cooper, J., Kumar, J., Hahn, S., Chen, D., Purnomo, B., Graettinger,
J.: iclay: Digitizing cuneiform. In: Symposium on Virtual Reality, Archaeology and Cultural Heritage,
pp. 135-143 (2004)



17

wn

15.
16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

217.

28.
29.

30.

31.

32.

. Desbrun, M., Meyer, M., Schroder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and

curvature flow pp. 317-324 (1999)

. Do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice-Hall (1976)
. Eigensatz, M., Sumner, R., Pauly, M.: Curvature-domain shape processing. Comp. Graph. Forum 27(2),

241-250 (2008)

. Fisher, M., Schroder, P., Desbrun, M., Hoppe, H.: Design of tangent vector fields. ACM Transactions on

Graphics (TOG) 26(3), 56 (2007)

. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. on Graph. 22(3), 950-953

(2003)

. von Funck, W., Theisel, H., Seidel, H.: Vector field based shape deformations. ACM Transactions on

Graphics (TOG) 25(3), 11-25 (2006)

. Gooch, B., Sloan, PJ., Gooch, A., Shirley, P., Riesenfeld, R.F.: Interactive technical illustration. In:

Symp. on Inter. 3D Graph., pp. 31-38 (1999)

. Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. Proceedings of the 27th annual conference on

Computer graphics and interactive techniques pp. 517-526 (2000)

. Kindlmann, G., Whitaker, R., Tasdizen, T., Moller, T.: Curvature-based transfer functions for direct vol-

ume rendering: Methods and applications. In: IEEE Transactions on Visualization and Computer Graph-
ics, pp. 67-76 (2003)

. Koller, D., Trimble, J., Najbjerg, T., Gelfand, N., Levoy, M.: Fragments of the city: Stanford’s digital

forma urbis romae project. J. of Roman Arch. pp. 237-252 (2006)

. Kolomenkin, M., Shimshoni, I., Tal, A.: Demarcating curves for shape illustration. ACM Trans. on

Graph., SIGGRAPH Asia 27(4) (2008)

Kolomenkin, M., Shimshoni, I., Tal, A.: On edge detection on surfaces. CVPR pp. 2767-2774 (2009)
Kolomenkin, M., Shimshoni, I., Tal, A.: Prominent field for shape processing of archaeological artifacts.
IEEE Workshop on eHeritage and Digital Art Preservation (ICCV) (2009)

Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangu-
lated 2-manifolds. In: VisMath, vol. B, pp. 187-217 (2002)

Ohtake, Y., Belyaev, A., Seidel, H.: Mesh smoothing by adaptive and anisotropic gaussian filter applied
to mesh normals. Vis., Model., and Visual. pp. 203-210 (2002)

Ray, N., Li, W., Lévy, B., Sheffer, A., Alliez, P.: Periodic global parameterization. ACM Transactions on
Graphics (TOG) 25(4), 148-195 (2006)

Rushmeier, H.: Eternal Egypt: experiences and research directions. Recording, Modeling and Visualiza-
tion of Cultural Heritage pp. 22-27 (2006)

Rusinkiewicz, S., Burns, M., DeCarlo, D.: Exaggerated shading for depicting shape and detail. ACM
Transactions on Graphics 25(3), 1199-1205 (2006)

Stam, J.: Flows on surfaces of arbitrary topology. ACM Transactions On Graphics (TOG) 22(3), 724-731
(2003)

Stern, E.: Excavations at dor. Tech. rep., Institute of Archaeology of the Hebrew University (1995)

Sun, X., Rosin, P., Martin, R., Langbein, F.: Fast and effective feature-preserving mesh denoising. IEEE
Trans. on Vis. and Comp. Graph. 13(5), 925-938 (2007)

Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface smoothing via anisotropic diffusion
of normals. IEEE Visualization, 2002 pp. 125-132 (2002)

Taubin, G.: A signal processing approach to fair surface design. Comp. grap. and interact. techn. pp.
351-358 (1995)

Toler-Franklin, C., Finkelstein, A., Rusinkiewicz, S.: Illustration of complex real-world objects using
images with normals. In: NPAR-07, pp. 111-119 (2007)

Turk, G.: Texture synthesis on surfaces. ACM Transactions on Graphics (TOG) 19(3), 347-354 (2001)
Vrubel, A., Bellon, O, Silva, L.: A 3D Reconstruction Pipeline for Digital Preservation. CVPR pp. 2687
— 2694 (2009)

Wei, L., Levoy, M.: Texture synthesis over arbitrary manifold surfaces. ACM Transactions on Graphics
(TOG) 19(3), 355-360 (2001)

Yoshizawa, S., Belyaev, A., Seidel, H.: Smoothing by example: Mesh denoising by averaging with
similarity-based weights. IEEE Int. Conf. on Shape Model. and App. pp. 9-19 (2006)

Zhang, E., Mischaikow, K., Turk, G.: Vector field design on surfaces. ACM Transactions on Graphics
(TOG) 25(4), 1294-1326 (2006)



