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Abstract

With the development of personal communication services, portable terminals such as mobile
telephones and notebook computers are expected to be used more frequently and for longer
times. Hence power consumption will become even more important than it is now. One of
the major concerns in supporting such mobile applications is the energy conservation and
managements in mobile devices. In wireless communications, low power may cause errors
during the transmission. Therefore when we try to conserve power we have to care about

the Quality-of-Service.

In recent years several solution methods were introduced. Usually these methods find
the optimal power policy for minimal average delay under average power constraint. Some
of them are for continuous time domain and other for discrete one. Methods which solve the
problem in the continuous time domain are general but they are not always applicable for
digital systems, and these type of systems are most popular in recent years. Methods which
deal with discrete time domain, in many cases, are not general enough, only for two control
levels, for example. As usual, in digital systems we are interested to find an optimal policy
which minimizes the average delay under average and peak power constraints and uses only

available discrete power levels. None of the existing methods can give us this capability.

This research deals with a derivation of new solution methods for constrained Markov
decision processes and applications of these methods to the optimization of wireless com-
munications. We intend to survey the existing methods of control, which involve control of
power and delay, and investigate their effectiveness. We introduce a new type of power con-
trol in wireless communications, which minimizes the transmission delay under the average
power constraint where at each slot uses one of the available discrete power levels, while the
maximal power level is limited by a peak power constraint. Moreover we develop algorithm
which, aside from the optimization problem solving, will be able to show sensitivity of the

solution to changes in the average power level constraint.
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1 Introduction

In this paper we consider a situation where one type of cost (delay, throughput,etc...) is to
be minimized while keeping the other types of costs (power, delay, etc.) below some given
bounds. Posed in this way, our control problem can be viewed as a constrained optimization

problem over a given class of policies.

Telecommunications networks are designed to enable the simultaneous transmission of
different types of traffic: voice, file transfers, interactive messages, video, etc. Typical per-
formance measure are the transmission delay, power consumption, throughput, transmission
error probabilities, etc. Different types of traffic differ from each other by their statistical
properties, as well by their performance requirements. For example, for interactive messages
it is necessary that the average end-to-end delay be limited. Strict delay constraints are
important for voice traffic; there, we impose a delay limit of 0.1 second. When the delay
increases beyond this limit, it becomes quickly intolerable. For non-interactive file transfer,

we often wish to minimize delays or to maximize throughput.

A trade-off exists between achieving a small delay, on the one hand, and low power
consumption on the other. Note that delay minimization and conserving power are two
conflicting performance metrics. To minimize the delay we should transmit with the highest
possible power because it will increase the probability of successful transmission and decrease
the number of retransmissions. On the contrary, to decrease power consumption, we are
interested to transmit with lowest possible power. The problem is formulated as a constrained
MDP, where we wish to minimize the costs related to the delay subject to constraints on the

average and peak power.



2 Survey and Research Objectives

We can divide the known work in the subject of saving energy to two types: first, the
energy conservation control problem by assuming there is a finite supply of information to

be transmitted and second, where the supply of information to be transmitted is infinite.

The first type of problems are considered in [12]. In this work the authors analyze the
power control problem in transferring a finite-size data under a total energy constraint as
well as delay constraints. In the paper they considered a problem with only two power levels:
a constant power or zero power (i.e., no transmission). A randomized power control scheme
is discussed, i.e., the transmitter can select either power level with a certain probability. The
power control problem is (given the total energy and the file size) to find the optimal policy
that maximizes the probability of success under either an average delay constraint or a strict
delay constraint. These two problems form a constrained Markov decision problem and they
can be solved via a dynamic programming algorithm. In order to solve them the authors

used the techniques which were developed in [1] and [8].

The second type of problems are considered in ([5], Chapter 7.4). In this problem the
author assumes that there exists a buffer so that the information rate into it is constant and
a transmission rate is constant as well. The cost function is defined as buffer size at time
k plus power, that was used in this time, multiplied by a Lagrange multiplier in order to
control the average power. This optimization problem was solved by dynamic programming
algorithm [4]. More precisely, the optimal equation was derived by dynamic programming
techniques, and the equation itself was solved by the value iteration method (Appendix B),
[4] and [§].

The first work helps us to better understand the optimal policy for problems with average
and peak constraints for two control levels but the solution for general problem when we
have constraints for both peak and average power (or delay) simultaneously, with finite, but
arbitrary number of control levels is still unclear from this paper. The second one is much

more general. When the author is solving the optimization problem he takes care of average



power by Lagrangian multiplier so that the average power will be below some chosen level.
The problem is that when the level of average power is given and we need to find the suitable
Lagrangian multiplier - this can be a not trivial mathematical problem. In the paper the
author shows what is a necessarily power levels in order to get an optimal solution, but it
is not clear what happens if this power level is not available, in other words, if we have
discrete levels of power and need to find the optimal solution by using only these power
levels. The more complicated question can be asked as well, what happens to optimal policy
when the level of average available power is changing. Or another question, if the policy will
be changed in the same way when we have a small change in the average available power
and when we have a big change in it. Or what is the behavior of the optimal solution for
this kind of problems. Or does there exist common properties of the solution for different

values of average power level constraints.

One way to solve the first two problems is, instead of using the value iteration method
for optimality equation, to represent the problem in the linear programming form [1] and
to solve it by the simplex method [3] and (Appendix A). In order to answer the rest of the
questions we will derive and prove theorems and based on them algorithm that will solve the
problem (sections 5,6). Moreover the optimal solution that is derived from the new developed
algorithm will be compared to the solution obtained from the simplex method (section 6).
We will show that in addition to the ability of the solution sensitivity investigation, the
algorithm can be used as a tool for solving constrained Markov decision processes problems
(sections 5,6). In section 7 the algorithm will be used in order to solve a wireless optimization

problem that will be defined in section 3.

In this research we developed two fundamental theorems (section 5.2) which describe the
structure of the optimal solution for general constrained Markov decision process problems.
Two additional theorems, that describe the properties of the solution for constrained Markov
decision process in power saving problems, were developed in section 6. In section 6.1.1 we
developed innovative algorithm which solves constrained Markov decision process for power

saving problems and which was applied to wireless communications problems in section 7.2.
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3 Wireless Communications System Model

Our system model can be represented by five blocks (Figure 1): buffer, transmitter, fading

channel, receiver and controller.

A buffer is a device that receives codewords with rate A, stores and removes them de-

pending on "Buffer Control" value.

A transmitter is a device that transmits codewords with rate R and power u which

depends on the "Power Control" value.

A fading Channel is a channel where except for additive noise, there exists multiplicative

disturbances that impact the amplitude of the transmitted signal.

A receiver is a device that receives the transmitted signal, decodes it, if needed, and

transmits acknowledge (ACK or NACK) to the Controller in the transmitter side.

A controller is a device that has one input and two outputs. The input to the controller
is a feedback from the receiver. The first output, named "Buffer Control", controls when the
codewords are removed from the buffer or stored in it. The second output, named "Power

Control", controls the power level that the transmitter should use.

This system works as follows: the transmitter transmits codewords from the buffer,
afterward an amplitude of the transmitted signal is multiplied by disturbances and additive
noise is added to it. In order to write a precise expression for this process, let’s define the

following:

Definitions:

e 1, is a random variable that represents a fading at slot k.

e 7, is a random variable that represents an additive white Gaussian noise (AWGN ) at

slot k.

{;, 1s a codeword transmitted at slot k.

e ¥ is a received word at slot k.



——— Feedback Channel for Success(ACK)/Failure(NACK)

4

Buffer Control Controller | Power Control
—ﬂb Buffer » Transmitter R » Fading Receiver

Channel

Figure 1: Wireless Communications System Model

R is a transmission rate. It is constant over the whole period of transmission.
e ) is an arrival rate. It is constant over the whole period of transmission.

At is the slot duration.

e ACK is an acknowledge about successful transmission.

e NACK is an acknowledge about failure.

In Communications the relationship between transmitted codeword and received code-

word can be expressed by the following formula [7]

Y = Trli + 1y (1)

Now we will describe a block fading Gaussian channel model:

e This model assumes that the fading-gain process is constant on blocks of N symbols.

e It is modeled as a sequence of independent random variables, each of which is the

fading gain in a block.

e Except a fading there exists an additive white Gaussian noise (AWGN), where the
fading and AWGN are iid and independent from each other.
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We assume a block fading Gaussian channel in which the fading of each slot is iid ac-
cording to some distribution (such as Rayleigh, Rice etc...). At each slot a codeword is
transmitted with constant rate R[codewords/time duration]. The information rate into the

buffer is constant A[codewords/time duration].

Define

1
AN = [codewords]

Transmission power is constant during each slot At and may vary between slots. We assume
that the average power of AWGN and fading disturbances remain at the same level during

the whole period of the transmission.

If a transmission succeeds an ACK is returned to the controller in the transmitter side
using a feedback channel without errors and delay. Otherwise a NACK is returned through
the feedback channel without errors and delay, causing a retransmission of the data until
an ACK is returned. The buffer stores the information that has to be transmitted. The
information is removed from the buffer only if an ACK is returned. We assume that the
buffer size is large enough so that we can neglect any loss of information due to overflow. We
aim at finding the value of the optimal transmission power at each slot so that the average
delay is minimal, the average power is below a given level o, and at each slot one of the
available discrete power levels is used where maximal power level is limited by a peak power
constraint. The important thing to notice is that at each slot only one codeword can be

transmitted.

We will try to represent this model as Constrained Markov Decision Process (CMDP)

model.

Let us now introduce CMDP and the new algorithm that will help us to optimize the
solution of the communications problem. We will return to the communications problem in

section (7).



4 Constrained Markov Decision Processes (CMDP) and

Linear Programming Approach

Markov decision processes (MDP), also known as controlled Markov chains, constitute a
basic framework for dynamically controlling systems that evolve in a stochastic way. We
focus on discrete time models: we observe the system at times ¢ = 1,2,...,n where n is
called horizon, and may be either finite or infinite. A controller has an influence on both
the costs and the evolution of the system, by choosing at each time unit some parameters,
called actions. As is often the case in control theory, we assume that the behavior of the
system at each time is determined by what is called the ’state’ of the system, as well as the
control action. The system moves sequentially between different states in a random way; the
current state and control action fully determine the probability to move to any given state

in the next time unit.

MDP is thus a generalization of (non-controlled) Markov chains, and many useful prop-
erties of Markov chains carry over to controlled Markov chains. A key Markovian property
is that conditioned on the state and action at some time ¢, the past states and the next one

are independent.

The model that we consider in this paper is special in that more than one objective cost

exists; the controller minimizes one of the objectives subject to constraints on the other. We

will call this class of MDP Constrained MDP, or simply CMDP.

4.1 CMDP

Definition: A finite constrained Markov decision process is a 7-tuple {X, U, P, ¢, C, d,D} [1]

and [6] , where

e X is the state space that contains a finite number of states.

e [/ is the finite set of actions.

10



P(u) = {P,;(u)} is the transition matrix when action u is taken.
e ¢ = ¢(x,u) is the immediate cost at state x using action w.

e C' = (C(o;m) is the value of the criterion when starting at o and using policy 7.

d
da

o d= E(x, u) = _ is a vector of immediate costs, related to constraints, when at

dn
state x and using action u.

e D = D(o;7) is the vector of values of the constraint criteria when starting at o and

using policy .

> for vectors means that each elements in the left hand vector is greater or equal to

the corresponding element in the right hand one.

Similar definitions hold for < and =.

We now define the cost criteria. For any policy 7 and initial distribution o at ¢ = 1, the

finite horizon cost for a horizon n is defined as [1]

C"(o,7) =Y EFe(X:,Uy)

t=1

An alternative cost that gives less importance to the far future is the discounted cost.

For a fixed discount factor 3,0 < [ < 1, define

Cylo,m) = (1—5)2/3t_1E§C(XtaUt)
t=1

Cs(o,r) = TmC(o,m)

n—oo

11



Since there are finitely many states and actions, the lim indeed exists as a limit and

[e.9]

Cylo,m) = (1= B) Y B Efe(X,, Uy)

t=1

Also, in a similar way we derive for the discounted cost, that is related to constraint, that
Dp(o,m) = (1= 8)) B EFd(X,, U) (2)
t=1

Quite frequently, the discounted cost is defined without the normalizing constant (1 — /).
The techniques are the same for both cases, we can get one from another by multiplying
or dividing the immediate cost by this factor. There are several advantages of using this
normalization. First, we avoid the situation where, for fixed immediate cost ¢, the total
discounted cost becomes very large if § is close to one. Second, with this normalization,
the discounted cost will be seen to converge to the expected average cost when stationary
policies are used. Finally, we shall see that the LP used to solve the discounted and the

expected average costs has the same form when the normalization constant is used.
For a fixed real vector V, we define the constrained control problem COP as:

Find a policy that minimizes Cg(o, ) subject to Dg(o,7) < V.

4.2 Optimal Policies for CMDP Problem

Optimal policies are defined with respect to a given initial state. A policy that is optimal
for one state might not even be feasible for another. In fact, there may be some initial states
at which no policy is feasible, where feasible policy is a policy that satisfies the constraints.
This is in contrast to non-constrained MDPs, in which there typically exist policies that are

optimal for all initial states.

The class of Markov policies turns out to be rich in the following sense. For any policy,

the exists an equivalent Markov policy that induces the same marginal probability measure,

12



i.e., the same probability distribution of the pairs (X;, U;), t = 1,2, ... [1]

All cost criteria that we defined in the previous subsection have the property that they are
functions of the distribution of these pairs. We conclude that Markov policies are sufficiently
rich so that a cost that can be achieved by an arbitrary policy can also be achieved by a
Markov policy. Moreover the Markov policies are dominating for any cost criterion which is

a function of the marginal distribution of states and actions ([1], Theorem 2.1).

4.3 Occupation Measure and Linear Programming (LP)

An occupation measure corresponding to a policy 7 is the total expected discounted time
spent in different state-action pairs. It is thus a probability measure over the set of state-
action pairs and it has the property that the discounted cost corresponding to that policy

can be expressed as the expectation of the immediate cost with respect to this measure.

More precisely, define for any initial distribution o, any policy m and any pair z, u:

folo,m o, u) = (1-7) Zﬁt_ng(Xt =z, U =u), v € X,uecU(x)

t=1
fs(o,m) is then defined to be the set {fs(o, 7; 2, 1)}, .. It can be considered as a proba-
bility measure, which we call the occupation measure, that assigns probability fs(o, m;z,u)

to the pair (z, u).

13



The discounted cost can be expressed as [1]

Csloom) = (L=B)E;{Y B e(wr,ur)}

= (1-5)Y B Ejc(a,uw)

t=1

= (1-7) Z Zﬁt_lP;(xt =z,u = u)e(x, u)

t=1 z,u

= Z(l — ) iﬁtlpf(xt = x,u; = u)c(x, u)
z,u t=1

S-S P = s = el )
z,u t=1
— Zfﬁ(a,ﬂ;x,u)c(:r,u)

) = Z ng(a,ﬂ;x,u)c(:r,u)

zeX ueU

(3)

Also, in a similar way we derive for the discounted cost, related to the constraint, that

= Z ng(a,ﬂ; z,u)d(x, u)

zeX uelU

Lemma ([10])

S falomiy w)(6a(y) — BP(w)

yeX uel(y)
f5<0-7ﬂ—a Yy, u ) Z 07 vya

ZZfﬁaﬁy, ) =1

yeX uelU(y)

(1—05)o(x),Ver e X

Proof:

If x # o then PT(X;—1 = x,U;—; = u) = 0 so that

14
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o0

ngaﬂxu = Z(l—ﬁ)Zﬁt_ng(Xt:x,Ut:u)

uelU(x) uelU(x) t=1
= > (1=-B)) FPIX=2,U =)
uel(x) t=2
= ZZﬁt 'PM(X, = 2,U; = u)
t=2 uelU(x)
= (1- 5)52 Z BRI (X = 2, Uppr = )
t=1 ueU(x)

= (1=8)B>_) . Y BPI(X, =y, U = u)Py(u)

t=1 yeX uel(y)

= BY. > (1=0)> B7PI(Xi =y,U; = u)Py(u)

yeX uel(y) t=1
= B> > fslo,my,u)Py(u)
yEX uel(y)

Thus
Zfﬁffﬂxu 5Znga7ry, o(u), for x # o

uel(x) yeX uel(y

If x = o then, in the first equality above we have an additional term
(1= B)P; (Xem1 = 2, Uy = u) = (1 = B)

Therefore for x = o we can rewrite (8) as

> fsloymmu) =5 Z f5(0, 75y, w) Py (u) + (1 = §)

uelU(x) yeX uel(y

(9)

From (5) we can see that for x # o (5) equals to (8) and for z = o (5) equals to (9). (6)

and (7) is established from the definition of fs(o, 7;y,u). Therefore the proof is completed.
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Now suppose we have a set of numbers p(y, u) that satisfy (5,6,7), define Q° () to be the

set of p = {p(y,u)}

doyex 2aucv(y) P ) (0:(y) — BP(u)) = (1 — B)o(z), Vo € X
p(y,u) > 0,Yy,u

@(0) -

where ¢ is an initial distribution.
In this paper we give p two different representations:
1. pis the set of p = {p(y,u)} as was defined above

2. p is the vector of length |X| x |[U| where in each coordinate (y,u), {y € X, u € U} we

have the value of p(y, u).

By summing the first constraint over  we note that »° , p(y,u) =1, for p € Q%(0), so

p, satisfying the above constraints, can be considered as a probability measure.

Since in many cases we are interested in which control to use in a given state, and not
in the value of p in this state, or what is the probability of using a given control in a given

state, then it is convenient to define /1, (u), where

p(y, u)

yeX uel(y) (11)
ueU (y) p(y, u)

f, (u) = 5

Our optimization problem is:

Find 7 such that Cs(o, 7) is minimal,
Subject to

Eg(a, )<V

It now follows from the definition of Q”(c), from ([1], Theorem 3.2) and from the repre-

sentation of the cost in (3) that the value of COP can be obtained using this program.

We express (o, ) by p € Q°(0), we replace Cjs(o,7) by Cs(p) and Dg(o, ) by Dg(p).

16



So we can rewrite this program as a linear program (LP) as follows

LP(c) : Find p such that Cs(p) = 3.

e €(T,u)p(w, u) is minimal,

Subject to

Dps(p) = 32, dlw w)p(a,u) <V

peQio).

The last constraint is linear by definition (10).

So we can derive the following theorem ([1], Theorem 3.3)
Equivalence between COP and the LP

Theorem ([1], Theorem 3.3): Consider a finite CMDP, then
o For any fs(o,u) there exists p € Q°(o) such that p = fs(o, 1), and conversely for any
p € QF(o) there exists p such that p = f5(o, u).

° LPF (o) is feasible if and only if COP is. Assume that COP is feasible. Then there
exists an optimal solution p* for LPlﬁ (o), and the stationary policy u, that is related

to p* through (11), is optimal for COP.

17



5 The Optimal Policy Properties for CMDP

In this chapter we will derive a number of theorems that describe important properties of
CMDP problems solutions. The most valuable theorems are based on Karush-Kuhn Tucker
conditions and prove in a very elegant way a statement that looks intuitive but not trivial
for formal proof. We begin with considering a problem with two control levels and one

constraint and extend it to arbitrary, but finite, number of control levels and one constraint.

5.1 The Karush-Kuhn-Tucker (KKT) Conditions

Definitions:

e 2 is a vector of length n.

b is a vector of length m.
e s is a vector of variables of length n.

e A is an m X n matrix.

- denotes a scalar product.

Consider the following linear programming problem.

Minimize z-s (12)
Subject to A-s>b (13)
s>0 (14)

The Karush-Kuhn-Tucker (KKT) conditions can be stated as follows:

There exist w and v so that

18



A-s>b s>0 (15)
w-A+v=z w>0,v>0 (16)

w-(A-s—b)=0,v-5s=0 (17)

The first condition (15) merely states that the candidate point must be feasible; that is,
it must satisfy the constraints of the problem. This is usually referred to as primal feasibility.
The second condition (16) is usually referred to as dual feasibility, since it corresponds to
a feasibility of the problem closely related to the original one. Here w and v are called the

Lagrangian multipliers (or dual variables) corresponding to the constraints A - s > b and

s > 0 respectively.

Finally, the third condition (17) is usually referred to as complementary slackness.

Theorem ([3], KKT Conditions, inequality case):

Any solution s that satisfies conditions (15)-(17) is an optimal solution of the Linear
Programming problem (12)-(14).

Consider the following linear programming problem with equality constraints.

Minimize z-s (18)
Subject to A-s=10b (19)
5>0 (20)

19



By changing the equality into two inequalities of the form A-s > band —A-s > —b,

the KKT conditions developed earlier would simplify to

A-s=b, s>0 (21)
w-A+v =2z wunrestricted, v >0 (22)
v-s=0 (23)

Theorem ([3], KKT Conditions, equality case):

Any solution s that satisfies conditions (21)-(23) is an optimal solution of the Linear
Programming problem (18)-(20).
For linear programming problems, these conditions are both necessary and sufficient and

hence form an important characterization of optimality:.

The main difference between these conditions for the inequality problem is that the
Lagrangian multiplier vector (or dual vector) w corresponding to the constraint A -s = b is

unrestricted in sign.

The major objective of this paper is to solve a communications problem (section 3), for
which, as we will see later, only equality conditions are requiered. Therefore in this section

we will derive general theorems for equality case only.

Now let’s represent our optimization problem (LP/(c)) in the form described by (21)-
(23).

Definitions:

e 2 is a vector of length n = | X| * |U|, this is a vector of the cost, which we represent as

a row vector.
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e b is a vector of length m,

(24)

We limit b to the case where o(z) = 0,-;. Later we will see that this is good enough.

e « is a value of the constraint, where we use only one constraint, in other words « is a

vector 1x1.

e p is a vector of variables of length n = | X | |U| where each coordinate (z,u) gives the

value of p(z,u).

e Ais an m X n matrix,

(1= 8Pz (u0)) (1 = 8Pz, (u1)) —B Py, (U0) —BPrye: (1)
—B Py, (o) —B Py, (1) —B Py, (U0) —B Py, (1)
A=
—BPuay (o) —BPyay (w1) (1 = BPoyay (o)) (1= BPoyay(u1))
| d(ew) d(z1, 1) d(z, o) dan,u)

(25)

We can note that the first N rows of the matrix A represent the following part of equation

(5)

— BP(u)), VreX

N><N

-2, 2 b

yeX uel(y

The last row of the matrix A represents the cost vector related to the constraint, where

ug, u; are the available actions and ug, u; € U.
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So by using (5-7) and definitions of z, b, a, p, A, Cs(o, ) we can rewrite (18) - (20) as

Minimize z-p (26)
Subject to A-p=10 (27)
p=>0 (28)
and (21)-(23) as
w-A+v =2z wunrestricted, v >0 (30)
v-p=0 (31)

5.2 The Fundamental Theorems

Now we will derive the fundamental theorems. These theorems describe the structure of the
optimal solution for constrained Markov decision process problems and are used as a basis

for innovative algorithm that will be derived later.
In order to derive our new theorems we will use ([1], Theorem 3.8).
Theorem ([1], Theorem 3.8) (Bounds on the number of randomizations)

If the constrained optimization problem is feasible then there exists an optimal stationary
policy w such that the total number of randomizations that it uses is at most the number of
constraints.

Let X, and X be disjoint sets of states so that | Xo| + |X;| = N — 1. Let z; be the only

state not in Xo U X;. Let

6u07 T € XO
m(x) = bu, xEX (32)

(1 - Q>5u0 + q5u17 r =
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Fix ap so that COP is feasible. By theorem ([1], Theorem 3.8), 7% is optimal, where

790 is randomized only in state x;, and ag = D(o, m%0).

Definitions:

e ug,up €U

e 0< ¢y <L

® Quin = inf D(o,n9).
0<¢<1

® Oy = sup D(o,m?).

0<¢<1
e 7% is the policy that is the same as w90 except in state z; and 7% is chosen so that the
value of the constraint is «, where auin < @ < upax. This is possible because D(o, w1)

is continuous in ¢,. The continuity will be proven later.

¢ = D<O-77Tqa)7 Qmin < @ < Qpax-

Lemma 1: D(o, %) is continuous in ¢,.

From Lemma 1 we can conclude that ¥V apin < o < Qpax, 30 < g0 < 1s.t. D(o, 7%) = .
Proof. Ds(o,7%) = (1 —B) 322, B BT d(X,, Uy)

Given ¢, fix N s.t.

(1-8) X2y B maxyp [d(Xe, U)| < §

= ‘Dg(a,wq“) — Dg(O',?Tq”‘+5)| < S5+

- T B X ) - (- ) 2 AT B (X, )|
‘(1 —B) L BTERA(X, U — (1= ) 3 BT ER (X, Ut)‘ =

(1= B) 5 Yaex Yuer B Pho(n®)d(z, w9 (2))—

(1= B) SN S e Ser B P (w09 d(, w0 ()
where P, (n1) = P4 (x)[(1 - ) P(x°) + ¢P(")].

Thus, the expression |(1 — 8) Son ' B ET d(X,, Uy) — (1= B) SN B EF " d(X,, Uy)
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we can represent as a (1 — ) Zi\:ll tflpoly(t, Ga) — (1 =05) Zi\gl tflpoly(t, do +9)|,
where poly(t, q) is a polynom in ¢, of order t.

Since this is a finite sum we can choose 9 so that

‘(1 = B) i B poly(t,4a) — (L= B) 300, B poly(t, 4o +0)| < 5
therefore | Dg(o, %) — Dg(0, 79 )| < e. So Ve >0, 36 > 0

so that | Dg(o, 7%) — Dg(o, 7Tq‘l+5)} < ¢ therefore we proved the Lemma. m

With a some abuse of notation we will use 770 instead of m%o(z).

Theorem 1 Consider a constrained Markov decision process problem with two control levels
and one constraint, where 0 < q,, < 1. Then for each o, < o < Qpax, T is an optimal

policy.

Proof. The proof will be done by KKT conditions.
For convenience let us rearrange the states so that Xo = {x1,...,x; 1}, X1 = {zi11, ..., xn }

Since randomization is allowed only in state z; then under m%o for any z; # z; there
exists at most one u so that p(x;,u) # 0. Moreover, if p(x;,u) = 0 under m%o, then this is

true also under any 7%, apin < @ < Qax-

From the ([1], Theorem 3.8) w%o is optimal so KKT conditions are satisfied for mio.

Priet] iiet

Denote the Lagrange multipliers by v™ °, w™ " for 7%, and v™*, w™" for 7.

mdoo

Arrange the elements of p = p(r0) = fz(o,ml0) as

ﬂ.CZaO

P = (p(l'l, uO)a p('xb u1)7 R3] p(@, uO)? p(xzv u1)> ey p('x]\ﬁ u0)> p(-TN, ul))

= (p(x1,u0),0, ..., p(zi—1,u0), 0, p(xi,u0), p(xs, u1), 0, p(Tiy1,u1), ..., 0, p(@n, ur))

From (31) < v™, p™"° >= 0. Because p(z;, uo) > 0 and p(x;,u;) > 0, then v? = 0 and

v} =0, and v = 0 in all coordinates where p(z,u) > 0, so

m9e0 1 1 0 0
v = (0,v1,...,0,v;_1,0,0,v;, 1,0, ...,v%,0)
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Let’s check KKT conditions (29-31) for policy 7.

Since changing g, does not change the structure, except perhaps to create more "0", it

follows that p™* = fz(o, w9) takes the form

o

1Y = (P,(xb U()), 07 cey p,(xi—la uO)a 07 Pl(xh uO)a p,(xia ul)a Oa Pl(l’i—&-la ul)a cey O> p/($N> Ul))
(33)

71_‘1(:«0 7rqa 7r¢1a0

q,
We choose w™* = w™ “and v™ =wv

Equation (29) is satisfied because p™ is a feasible solution by definition.

daq

Equation (30) is satisfied because w™ = w™ ®and v™* = v™"°, and A and z are the

same for each choice of «a.
Equation (31) is satisfied because for v™* = v™° it doesn’t matter what is a ratio be-

tween 41, (o) and g1, (u1), and because ¥m. # i jf- (ug) = pf® (o) (e (ur) = pi® (wa)),

therefore

Now we will extend this theorem from two control levels to an arbitrary, but finite,

number of control levels.

Fix g so that COP is feasible. By theorem ([1], Theorem 3.8), w%o is optimal, where

7?20 is randomized only in state x;, and oy = D(o, w90).

Definitions:

® g, Up,...,us € U.

o Let Xy, X, ..., X, be disjoint sets of states so that | Xo| + | X1| + ... +|Xs| = N — 1.
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Let x; be the only state not in XoU X; U... U X;. Let

4 3\
5“07 T e X()
5u1, T € X1
) (x) =
Ou,, T € X
\ Zz qgoau“ €T =x; )

0 < ¢/, <1,Vi or in another representation 0 < g,, < 1.

>, @, = 1, and at most two ¢, > 0.

Qmin = inf D(0,7%0) s.t. the same two ¢/, as above are non zero.
Tag

® (pax = sup D(o, m%0) s.t. the same two ¢, as above are non zero.
Tag

e 7% is the policy that is the same as 7% except in state x; and 7% is chosen so that
the value of the constraint is a;, where ami, < a < amax, and zeros of G, are also zeros
of G,,,- This is possible because o, & € [@min, ¥max), is continuous in g,. The continuity

will be proven later.
e o= D(o, 7).

Lemma 2: D(o,7%) is continuous in g,,.
Proof. The proof is similar to the proof of Lemma 1. m

From Lemma 2 we can conclude that V amin < o < qipax, 3 0 < G, < 1 where zeros of

q,, are also zeros of 7, , Zj ¢ =1s.t. D(o,7%) = .

Theorem 2 Consider a constrained Markov decision process problem with arbitrary, but
finite, number of control levels and one constraint, where 0 < q, < 1. Then for each
Omin < @ < Qmax, o 18 an optimal policy.

26



Proof. The proof will be done by KKT conditions.
For convenience let us rearrange the states so that Xo = {z1,...,z;}, ...,
X, ={xp, o, xi1}y o Xs = {25, ..y N}

Since randomization is allowed only in state x; then for any x; # x; there exists at most

one u so that p(z;,u) # 0.

From the ([1], Theorem 3.8) 7% is optimal so KKT conditions are satisfied for 7%o.
Denote the Lagrange multipliers by v”ﬁao, w™™ for 70, and v™, w™ for mla.

Arrange the elements of p™ = = p(7%0) = f4(c, 7%0) as

7rq0‘0

p = (P(ZE17U0>ap(xlaU1)> "'7p(x17u8)7 "'7p(xi>up)’ ...,p(l’i,U]‘), "'7p(xN7u8—1)’p(xN7u8))

= (p(x1,10),0,...,0,..., p(z;,u,),0, ..., 0, p(x;, u;), ..., 0, p(z N, us))

From (31) < o™, p™*° >= 0. Because p(xi,u,) > 0, p(xs,u;) > 0 then v! =0, v! =0

and v = 0 in all coordinates where p(z,u) > 0. Thus,

mieo 1 s s—1
v = (0,vy,...,v7,...,0,0,...,0% ,0)

Let’s check KKT conditions (29-31) for policy m.

Since changing g, does not change the structure, except perhaps to create more "0", it

follows p™* = f3(o, n%) takes the form

p™ = (p'(21,1),0,...,0, ..., p' (2, up), 0,...,0, 0/ (z4,u5), ..., 0, p' (N, us)) (34)

q, da q, da
We choose w™* = w™ “and v™* = v °

Equation (29) is satisfied because ™ is a feasible solution by definition.

Equation (30) is satisfied because w™* = w™ *and v™* = v™ °, and A and z are the

same for each choice of «.
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Equation (31) is satisfied because for v™* = v™° it doesn’t matter what is a ratio

between 1, (u,) and g, (u;), and ¥m # i ,ugf: (up) = ug?:o (up), and Qmin and Q. are

obtained without changing actions therefore
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6 The Optimal Policy Properties for Power Saving Prob-

lem

Now we will extend our analysis to the power saving problem. We start with a two control
levels problem and one constraint, and will extend it to arbitrary, but finite, number of

control levels. Let define uy and u; as power control levels, where ug < u;.

Assumption 1: For each « for which there exists a feasible solution, there exists a

unique optimal solution.

Assumption 2 (monotonicity assumption): For strictly increasing value of the ratio

Hig, (u1)
fig; (w0)”?

the value of the constraint « is strictly increasing, where & € [in, max] and x; is

the state with randomization.

In the problem defined by diagram on Figure 2 we will show analytically that Assumption

2 is satisfied.

Let’s consider the problem: Vx;, where 0 < j < ¢ the transmission is by u, Vx;, where
1 < j < N the transmission is by wug, at x; we have randomization between uy and u.
The transitions are allowed between neighborhood states only, where the state is defined as
the number of messages in the buffer. Define two systems (Figure 3) where in system 1,

P(u = uilr = x;) = k and in system 2, P(u = ui|r = x;) = k' where ¥ > k. So we can
Yy )

Hig, (u1)
P, (u0)

say that ratio at system 2 is higher than at system 1. Using a coupling, we assume
that at any time ¢, a success in system 1 implies a success in system 2. Two systems have
the same buffer and channel. Server 1 transmits with v = u; in x; with probability x and

server 2 transmits with w = u; in x; with probability . Assume that P(success|u = uy) >

P(success|u = ug) > 0.5.

Lemma 3 Consider the two systems as described in Figure 2 and 3. The average power
usage at the second system is higher than at the first one, where average power this is the

value of the constraint «.

Proof. Till we are not at state x;, the power usage in both systems is the same, because
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Figure 2: Markov Chain for Monotonicity Proof

—» Buffer » Server 1 » Channel

—» Buffer » Server 2 » Channel

Figure 3: Coupled System
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except state z; systems are same. When we arrive to state x; we have three possibilities for

systems behaviors:

1). No one of the transmissions in both servers is successful, so the two systems continue

to be the same.
2). Both systems have succeeded, so the two systems continue to be the same.
3). First system failed to transmit but the second succeeded to transmit.

Note, the two systems are initially at the same state, so the first time that 3) can happen,

is when both systems are at state x;.
Until 3) happens we have two equal systems. So let’s concentrate on the third case.

If 3) has happened, at system 2 we always transmit with power u; till again we will
arrive to state x;, and at system 1 we always transmit with power u till again we will arrive
to state x;. Let’s denote the period of time that both systems are in different states by .
During the period of time 7 the power usage at the second system is higher that at the first
one and when this time is finished both system always meet at the same state (from diagram
2 we can see that 7 can finished only at states zq or xy). So after time 7 > 0 both systems

again at the same state and such we begin the same procedure from the beginning.

Because an average power usage is equal to the sum of all instantaneous power usages
divided by a period of measured time then we can conclude that the average power usage at

the second system is higher than at the first one as we required to prove. m

For more complicates Markov chains we will show numerically that Assumption 2 is

satisfied (section 7).

Fix o™ so that COP is feasible. By theorem ([1], Theorem 3.8), 7{ is optimal, where 7?

. . . q
is randomized only in state z;, and o™ = D(o,7}).

Definitions:

e k is a number of states where p, (u1) = 1 (p,(uo) = 0).
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e Let X! and X| be disjoint sets of states so that |X}| = N —1—k, and | X}| = k. Let

(k) be the only state not in XJ U X, where (k) denotes index ¢ as function of k.

Oug, T € X}
T () = 0wy, T€X]|
(1 - Q1)5UO + q15u17 T = Ti(k)
e Let X2 and X? be disjoint sets of states so that |XZ2| = N —2 — k, and | X?| =k + 1.

Let 2;+1) be the only state not in Xg U X7, where ;441) # @iy, Xg = {X3, Tigesn) }
X12 = {Xll, xi(k)}‘

Oug, T € XE
Sk (7) = Ouy, =€ X7

(1 - C]2)5u0 + @20y, T = Ti(k+1)

Note, for go =0 and ¢; = 1, §Z2+1($) is equal to 7} (z).

o Let X3 and X? be disjoint sets of states so that |[X3| = N —1 — j, and | X3| = j. Let

z, be the only state not in X3 U X3.

Oupy T € XJ
§F(z) = Ous x€X3 (35)

(1 - Q3>5u0 + q35u17 Tr = xr(j)

e @ =sup D(o,n§") and a = inf D(o,7{").
q1 q1

In the following two theorems we are talking about range of « for which a feasible solution

exists.
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Theorem 3 Consider a finite CMDP so that Assumptions 1 and 2 are satisfied. If policy
70 is optimal for some o™ < @ then there exists some a1 > @ so that Sy s optimal

q2
for afk+1,

Proof. The proof will be done by contradiction.

By Theorem 1 7" is optimal for o < o™+ < @. From Monotonicity (Assumption 2), 7

is optimal for & = @ when ¢; = 1.

Assume that ¢} ; is not the optimal solution of the problem for any «; such that Qs >
«; > @, where a1 this is a number so that uy > a1 > @. Take «; | @. By Assumption
1 there exists another optimal solution for these o, say £7°, as defined in (35).

If 5?3 is optimal, o; | @, then by Assumption 2 and Theorem 1, 533 is optimal for « = @
as well.

So for o = @ we have gotten two different optimal solutions: 53-3 and ’ﬂ'Zl:l, in contradic-

tion to the Assumption 1, therefore we proved the Theorem. m

Theorem 4 Consider a finite CMDP so that Assumptions 1 and 2 are satisfied. For each
ke [0, N —1], as defined above, there exists a so that w{" is an optimal policy for constrained

Markov decision process problem with two control levels and one constraint.

Proof. The proof will be done by induction.

1. k = 0. This means V(y # x,x)) € [1, N], i, (u1) = 0, and only in one state ), can

Let’s denote by o/ the minimal o that is needed for p, (u;) = 1. Assume that the
available average power is less than o/, denote it by o”. For o, p, (u1) # 1. By theorem ([1],

Theorem 3.8) we have that for £ = 0 and a = o, 7{_, is the optimal policy.
2. Assume that for each o/rzl, 0<k=j5<N, Wzlzj is the optimal policy.

3. Let’s prove that for oﬂzl, k=j+1, Wzlzj 41 is the optimal policy as well.
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q

From Theorem 3, if 77" is optimal for k¥ = j then there exists a%+1 > ™' so that it

q

is an optimal policy, but ¢73; is equal to 77, ;. When we say that ¢, is equal to 77}, we

J
mean that X} = X2, X{ = X? and a randomization in the same state, ¢ may be different.

Therefore we proved the Theorem.
Because the length of Markov chain is N the maximal k is equal to N — 1. m

Conclusions: If Assumptions 1 and 2 are satisfied, then by Theorems 1,3,4 can be
concluded that if for each « there exists a unique optimal solution then it has the following

form:

For o < wuy is no feasible solution because even if we always use at each state a power

that equal to ug we get that the minimal average required power is
Z p(s, up)uo = uo Z p(rs,up) = ug
i i

1. For a = ug, ™ = (ug, ug, ..., ug) is optimal.

2. For increasing o we begin with a randomization, afterward, the randomization is
converted to u; only; for monotonically increasing o we begin the randomization in another

state.

3. If once for a = o’ we have reached j,(u;) = 1 in state y, we always have p, (u;) =1

in this state for non decreasing «.
4. For o = uy, m = (uq,uq, ..., uy) is optimal.
In the following figures we summarize these conclusions for N = 3 case:
In Figure 4 (a) we can see the situation for oo = wy.

In Figure 4 (b) is represented the situation for o > ug, but less than needed to use u; in

one of the states.

In Figure 4 (c) we can see the situation for « that enables for us using of u; in one of the

states.
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In Figure 4 (d) is represented the situation for a that enables for us using of u; in one of

the states and a randomization in another one.
In Figure 4 (e) we can see the situation for « that enables for us using of u; in two states.

In Figure 4 (f) is represented the situation for « that enables for us using of u; in two

states and randomization in another one.
In Figure 4 (g) we can see the situation for a = u;.

For o > wu; is no feasible solution because even if we always use at each state a power

that equal to u; we get that the maximal average power is

D plriun)u = uy Y plwi,w) =

6.1 CMDPS Algorithm for Two Control Levels

In this section we consider an algorithm that will help us to derive information about the
optimal policy structure. Consider CMDP where Assumptions 1 and 2 are satisfied. From
the previous section we know that there exist exactly N + 1 different optimal solutions
without randomization for N + 1 different values of « in the range ug < a < u;. Two of
them are trivial for @ = up and o = u;, and N — 1 solutions are the optimal threshold
solutions. Let’s define what is an optimal threshold solution.

Definition: The optimal solution for o* = D(o, 7721:1) is called the optimal threshold

solution.

Now we are going to derive algorithm that will help us to obtain the following information:

e What are the values of o.

e What is the maximal variability in values of o that can be allowed, such that 7{" still

an optimal solution for particularly chosen k, when k € [0, N].
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Randomization Changes for Different o, Values

u0<qg O<u1

o 0<q 1<u1

a=o2

al<a2<ui

a=a3

a2<g3<u1

u(x1,u0)

a=o4

a2<qgé4<ui

uxt,ul)  p(x2,u0)  upx2ul)  px3,u0)

Figure 4: Randomization Changes
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e For given «, what is an optimal solution 7 and what is the value of appropriate p,

where p is a vector of variables.

e What is the minimal cost for given a.

6.1.1 CMDPS Algorithm

In order to derive this algorithm we will use KKT conditions (29-31).

Fix o and let p denote the optimizer in the LP, where LP is defined as in LPlﬁ (o) on

page 17.

Consider a finite CMDP so that Vo € X, >, p(x,u) > 0. Note, that the last assump-
tion can be done without loss of generality because in case where Jz; so that Yu p(x;,u) =0
we can throw away state x; from the chain without any impact to the optimal policy. Thus,
for each 7} there exist exactly N + 1 entries in the vector p that are not equal to zero
(N entries correspond to the N states in the chain and one more to the constraint) and
2N — N —1 = N — 1 entries that equal zero, so from (31) in vector T at least N + 1 entries
equal to zero, in the same places where vector p has non-zero entries. Denote the set of these
N + 1 entries by I, where N from these N + 1 entries correspond to N different states in

the Markov chain and the last one to the state with randomization.

Define a matrix A} = [ailier,, where a; is a column ¢ of matrix A defined in (25). So we

get that A}, is a matrix that consists of columns of A with indexes in Ij.

Define a matrix Af = [a];ere, where a; is a column 7 of matrix A defined in (25). So we
get that Af is a matrix that consists from columns of A with indexes from I}, where I} is

the complementary set to [j.

From (30) we have that

wA 4 v =z, wunrestricted, v >0 (36)

We can do the following rearrangement:
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First of all we will write entries of A,v and z from [, and afterward entries from /.

Clearly that it doesn’t impact the equality and values of v and w.

A, rewritten as [A} Af]
v, rewritten as v’, where v’ is a v after rearrangement
z, rewritten as 2/, where 2’ is a 2z after rearrangement

The order of w wasn’t changed

After rearrangement we can rewrite equation (36) as follows:

w[ALA}] + 0" =2/, w unrestricted, v' >0

Because the first N 4+ 1 coordinates of v are zero we can replace this equation by two

equations

wA, = Zi....(NH)a and wAj + UEN+2) 2N — ZEN+2)...2N7 w unrestricted, UEN+2)...2N >0

Now we have two possibilities for matrix Aj,

e The rows are independent, so rank(A}) = N + 1.

e At least one of the rows can be represented as a linear combination of the others, so

rank(A}) # N + 1.

Conjecture 1: Consider a finite CMDP. If there exists a randomization in one of the
states, 0 < ¢ < 1, then the rank of the matrix Aj, is full, rank(A}) = N +1. Moreover if there
no randomization, a deterministic solution (¢ = 0 or ¢ = 1), then rank(A}) = N and the
row that corresponds to the constraint can be removed without any impact to the solution.

(the correctness of this conjecture will be shown numerically).
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By some abuse of notation we will denote by A}, a matrix (N + 1 x N + 1), in which a
last row corresponds to the constraint, for cases where 0 < ¢ < 1, and a matrix (N x N),
where no rows for constraint exists, for cases where ¢ = 0 and ¢ = 1. Thus by Conjecture 1,

we can say that matrix A} is invertible for both cases.

Because A, has a full rank, we have a unique solution for w,
w = Zi....(N+1) * (Ay) ™ (37)
and from here there exists only one possible solution for UE N+2)..2N-

Unjo.oN = ZEN+2)...2N_UJA2 (38)

= Z€N+2)...2N - [Zi....(NH) * (A;c)_l]AZ (39)

If UE N+2).2n = 0 then this is an optimal solution.

Assume that 7 is an optimal solution for a certain value of «. Since the space of states
and actions is finite, then after a final number of checks of (37-39) the optimal solution will

be found.

For example for k = 0 we have N places to begin randomization, therefore maximum as
N possibilities must be checked. For k = 1 we have N — 1 places for randomization because

one place we already found in the previous step. So it is easy to see that after maximum as

N — k checks of (37-39) the optimal solution will be found for each k.
On diagram 5 we can see a block representation of the CMDPS Algorithm.

In the following example the algorithm usage will be shown.

6.1.2 CMDPS Algorithm Usage

For simplicity let’s assume that N =4 and z; is an initial state and the LPlﬁ (o) that we are

required to solve looks as follows
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Assume
power uo in
all states

Does there exist state
with power uo ?

Choose one of
the states with

No 4 Yes—————p
¢ power uo for
randomization
Print a
vector of
alpha
thresholds

Check KKT
Conditions

erS Satisfied? \° i

Choose another

Start X
ISP state with power
randomization at
. uo for
this state

randomization

Reach [‘xower u1
without
< randomization and
calculate alpha
threshold

Figure 5: CMDPS Algorith Diagram
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o
0
= 0
0
L o _
[ (1= P (0) (L= BPen () —BPrsn(0)  —BPrgu, (1) '
— B Py, (U0) —BPpyay(u1) (1= BPryay(u0)) (1 — BPrye,(u1))
—B Py, (t0) Py (1) —BPrys (o) —B Py (1)
— Py (u0) ~B Py (u1) ~ B Py (o) ~ Py (un)
o Uy g uy
: ~BPe () —BPeui(m)  —BPain () —BPrge, ()
— B Pryz, (10) —BPyyuy (1) —B Py, (o) —~BPryz, (1)
(1 = BPryus(u0)) (1= BPryus(wr))  —BPuu3(uo) ~ B Py (1)
— B3 Prge,s (o) —BPrgey(u1) (1= BPrys,(u0)) (1= BPru,(w1))
Uo Uy U (0

Now, by algorithm usage we will answer our questions.

o Let’s find a*. We start with a® because it’s value is always known

OZO = Uo
{Mz‘l <UO) = 17/”%1 (ul) = 0’ luxz (UO) = ]‘7 lul‘z (Ul) = 07
Mmg(uﬂ) = 17:“3:3 (ul) = 07 :ua:4(u0) = 17 :ux4 (ul) = 0}

= 71—Ilc:—l - (17 07 17 07 17 07 17 0)

where Ti__,(z) = d,,(), Vz.
Because N = 4 for 7{*, there exist exactly N = 4 possibilities. Assume that 7}, =
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(1,1,1,0,1,0,1,0) so at first step we suppose to do the following

In=1{1,2,3,5,7},I5 = {4,6, 8} (40)
Ay = (41)
[ (1= P (W) (1= BPun(0))  —BPon(w)  —BPun)  —8Pon(u)
~ Py, (u0) ~BPrzy (1) (1= BPryuy(u0))  —BPrga, (o) — Py (u0)

—B Py, (uo) — BP0, (u1) ~BPrs(u0) (1= BPuya(ug))  —BPrias(u) (43)
—B Py, (t0) —~BPryzy (1) —BPryus (Uo0) —BPusz,(uo) (1= BPua,(uo))
i g Uy g i U |
[ BPun(w)  —BPan(u)  —BPrn(uw)
(1= BPogey(u1)) =B Py, (1) —B Py, (u1)
Ap = —BPryes(u1) (1= BPrus(u1)) =8Pz, (w1)
—BPyye, (1) —BPrguy (1) (1= 8Pz, (1))
uy Uy Uy |

v = (07 07 07 V4, 07 Ve, 07 U8)
z =21 21 22 22 23 23 24 Z4)
v = (07 07 Oa 07 07 Vg, Vg, U8)

/
2 =21 21 20 23 24 22 23 24

From (37-39)

w=[z1 21 22 23 24) % (Ag)_l

V,rs = [22 23 24] — wAG

If vg 75 > 0 then this is an optimal solution, otherwise we continue to the next possible
feasible solution of 7' form.

After ' is found we can find the p and o!'. Assume that 7, = (1,1,1,0,1,0,1,0) is
an optimal solution, then from Theorem 1 for a!
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3t = (0,1,1,0,1,0,1,0)

= p('TIJUO) = O,p(xg,Uq) = Oap<x37u1) = 07p(‘1.47u1) =0

From (27)

p(
= o' = [uy up up ug) (
(
(

P

)

)

xs, uO)
- ) —
Because N = 4 then for 7{; exist only 3 possibilities. Assume that 7{-, = (0,1,1,1,1,0,1,0).

Similarly to o' we can find o? and o as well. It is clear that a* = u;. So the all o is found

for k €[0,1,2,3,4].

e Let’s find what is the maximal variability in the values of o that can be allowed such

that 7' is still an optimal policy for particularly chosen k, when k € [0, N].
k

Define d* as

& = -, B =a'—0a

From Theorem 1, for each d*, 7' is still an optimal solution. So d* is the maximal
variability in the values of « that can be allowed such that 7{" is still an optimal solution

for particularly chosen k, when & € [0, N].
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e For given o we can find an appropriate of*! and o, where o**! > a > oF. After o#*!

and o are known, we can find 7. After 7" is known the p will be found easily from

(27).

e After p was found a cost can be calculated from the following formula

(44)

cost = [21 21 R9 Z9 %3 3 %4 Z4]

6.1.3 Example of CMDPS Algorithm Application to CMDP Problems

For better understanding of the algorithm let’s consider the following example.

We have four states, where for each state, its cost is equal to the number that is written
in the circles on Figure 6. The transitions probabilities as in Figure 6 with values taken from

(45). The values of control levels and § we can see at (46).
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PO P7
P1 P3 P5
P2 P4 P6
Figure 6: Markov Chain for Example 1
PO(up) 0.8, PO(u;) = 0.9
P1(up) 0.2, P1(uy) = 0.1
P3(up) 0.4, P3(u;) = 0.3 (45)
P4(uyp) 0.6, P4(uy) = 0.7
P6(up) 0.65, P6(uy) = 0.75
Ug = 01, Uy = 1, ﬁ =0.99 (46)

From (45) A is easily calculated.

Now let’s answer our questions.
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o Let’s find of. We start with o® and continue according to the algorithm explained

above

a®=0.1
7, =(1,0,1,0,1,0,1,0)
Io=1{1,2,3,5,7},I5 = {4,6,8}
v =(0,0,0,v4,0,v4,0,vs)
z=[00112233]
v'=(0,0,0,0,0, vy, vg, vg)
Z=[00123123]
w=1[00123]x (A"
Vers = [123]—wAg
= [-0.4345 —0.4368 —0.0023] #0
Io={1,3,4,5,7}, I = {2,6,8}
Vers = [023]—wAg
= [0.4345 —0.0023 0.4322] £ 0
Io={1,3,5,6,7},I5 = {2,4,8}
Vers = [013]—wAg
= [0.4368 0.0023 0.4345] >0
= >m_,=(1,0,1,0,0,1,1,0)
p =1[0.6302 0 0.2038 0 0 0.1141 0.0519 0]

ol = 0.2027
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In the same way we can find that

-, = (1,0,0,1,0,1,1,0)
o = 0.3461
T, = (1,0,0,1,0,1,0,1)
o® = 0.3763
T3 = (0,1,0,1,0,1,0,1)

ot = 1

e Let’s find what is the maximal variability in the values of o that can be allowed such

that 77" still an optimal solution for certainly k, when k € [0, N].

d = o' —a®=0.1027
d' = o —a'=0.1434
@ = o®—a?=0.0302

P = o —a®=0.6237

We can see that d® domain is a most stable domain.
e Assume that o = 0.5, let’s find what is an appropriated = and p.

Since a* > (o = 0.5) > a3 , then

7 =(1,1,0,1,0,1,0,1)

and from (27)

p=(0.5556 0.1624 0 0.1779 0 0.0747 0 0.0295) (47)
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e The cost can be calculated from (47) and (44).

cost = 0.4158 (48)

Now we will compare the results which were gotten by CMDPS algorithm to one of the
well known algorithms. The one of the most popular algorithms for LP solving is the Simplex

algorithm, so the comparison will be done to this one.

First of all we are interested to compare the p and the cost for @ = 0.5. The results that
were gotten by the Simplex algorithm coincide with (47) and (48) as expected.

Now let’s compare the behavior of these two algorithms for the different values of «,

where

a € (ug,u1) = (0.1,1)

The results of CMDPS algorithm can be written in the following form:

0

For o« = o, we use in all four states control level wuy.

For (a® = 0.1) < a < (a! = 0.2027), we have randomization in state 2 and in the rest

states we use control level ug.

For o« = o!, in the states 0, 1 and 3 we use control level ug, and in the state 2 we use

control level u;.

For (o' = 0.2027) < @ < (a? = 0.3461), we have randomization in state 1, in the states

0 and 3 we use control level ug, and in the state 2 we use control level u;.

For o = a2, in the states 0 and 3 we use control level ug, and in the states 1 and 2 we

use control level u;.

For (a? = 0.3461) < a < (a® = 0.3763), we have randomization in state 3, in the state 0

we use control level ug, and in the states 1 and 2 we use control level ;.

For o« = o2, in the state 0 we use control level 1y, and in the states 1, 2 and 3 we use

control level u;.
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For (a® = 0.3763) < a < (a* = 1), we have randomization in state 0 and in the rest
states we use control level u;.

4

For o« = o*, we use in all four states control level ;.

Actually from computational point of view, in order to get these results, we need to find
only 3 values of « : at, a?, a®. The values of o and o* are known from the beginning
because these values are equal to the minimal and mazximal value of control level and so

calculated in the trivial way.

In order to derive the same solution properties by Simplex algorithm (Appendix A) we
need to run a simulation with small enough step for «, so in order to get a precise results
we run the algorithm thousands times. Moreover even after this huge number of runs we
don’t know exactly what happens in the each possible value of « because the number of «’s

1s infinite and the number of runs is finite even if it is very big.
On Figure 7 we can see the results that were derived by Simplex method for example 1.

On Figure 8 we can see the randomization behavior for example 1 that were derived by

CMDPS algorithm. The results are the same.
By using a CMDPS algorithm we need to find only 3 values of a.

As was stated in this section, it is enough to find N-1 different points of «, in order to

get the full solution structure.

6.2 CMDPS Algorithm for Finite Number of Control Levels

Now we will extend the analysis from two control levels for the arbitrary, but finite, number

of control levels.

Here we should add one small correction for assumption 2 such that it will suitable for

case with arbitrary number of control levels.

Assumption 2 for arbitrary number of control levels (monotonicity assump-

tion): When the using of higher control levels in state z; is increasing, the value of the
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Figure 8: Randomization Behavior in Example 1

constraint « is increasing, where z; is the state with randomization. We will say that effec-

tive power control level in state with randomization is higher.

By effective power control level of the state we mean the following;:

Ue f fective(Ti) = p(T4, uo)uo + p(T4, ur)us + ... + p(x;, Us)Us (49)

where z; is the state and wug, u;.., us are the power control levels.

With a some abuse of notations we will use Theorem 3 and Theorem 4 for the case with
arbitrary, but finite, number of control levels as well. We can do this because from ([1],
Theorem 3.8) we know that for a certain value of « there exists an optimal policy which has

randomization only in one state and this randomization is only between two control levels.

Conclusions: From Theorem 2,3 and 4 we can conclude that if for each « there exists

a unique optimal solution then it takes the following form:

1. For a = ug, m = (ug, ug, ..., Ug) is optimal.
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2. For increasing o we begin with a randomization, afterward, the randomization is
converted to a certain deterministic control level. For monotonically increasing a we begin
the randomization in another state or in a case that a previous deterministic control level was
not a maximal one, it is possible that we will continue with the randomization in the same

state but with two other control levels such that the effective control level will be higher.

3. If once for a certain value of o we have reached ,uy(us) = 1 in state y, then we always
have p, (us) = 1 in this state for non decreasing values of a.
4. For o = ug, m = (us, Us, ..., Us) is optimal.

Because CMDPS algorithm development is not constrained to the number of control
levels the CMDPS algorithm is suitable for the case with arbitrary number of control levels

without any changes.

Now we will consider the example from the previous subsection but only with S = 3

control levels.

PO(ug) = 0.8, PO(u;) = 0.9, PO(uz) = 0.95
Pl(up) = 0.2, P1(uy) = 0.1, P1(uz) = 0.05
P2(up) = 0.6, P2(u1) = 0.7, P2(uz) = 0.75
P3(ug) = 04, P3(u;) = 0.3, P3(uz) = 0.25 (50)
Pi(ug) = 0.6, PA(wy) = 0.7, P4(uz) = 0.75
P5(ug) = 0.4, P5(u;) = 0.3, P5(uz) = 0.25
P6(ug) = 0.65, P6(u1) = 0.75, P6(uz) = 0.8
P7(up) = 0.35, P7(uy) = 0.25, P7(uz) = 0.2
wo=0.1, uy =1, upy = 1.3, 8 =0.99 (51)
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From (50) A is easily calculated.

Now let’s answer our questions.

o Let’s find af. We start with a® and continue according to the CMDPS algorithm

e Let’s find what is the maximal variability in the values of o that can be allowed such

that 77" still an optimal solution for certainly k, when k € [0, N].

d()
dl
d2

d3

0.1
(1,0,0,1,0,0,1,0,0,1,0,0)
(1,0,0,1,0,0,0,0,1,1,0,0)
0.2307
(1,0,0,0,0,1,0,0,1,1,0,0)
0.4020
(1,0,0,0,0,1,0,0,1,0,0,1)
0.4265
(0,0,1,0,0,1,0,0,1,0,0,1)

1.3

= o' —a®=0.2307
= o> —al'=0.1713
= o —a?=0.0245

= o*—a®=0.8735

We can see that d® domain is a most stable domain.
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e Assume that a = 0.5, let’s find what is an appropriated 7 and p.

Since a* > (o = 0.5) > a3 , then

7 =(1,0,1,0,0,1,0,0,1,0,0,1)

and from (27)
p = (0.6667 0 0.0770 0 0 0.1795 0 0 0.0588 0 0 0.0181) (52)
e The cost can be calculated from (52) and (44).

cost = 0.3514

7 A New Approach to Optimization of Wireless Com-

munications

In this section we will discuss the application of CMDPS algorithm to solving of wireless

communications problems.
Let’s consider a diagram shown in Figure 9 that describes our communications problem.
In this diagram we can see the representation of the following problem:
A=2[codewords/time duration|, R=3[codewords/time duration],

1 1
Tslot — R — 5[

time duration] and N = 3 (the buffer size is 2).

So in each slot a maximally one codeword can be transmitted. In the left upper corner of
the diagram arcs denote arrivals and straight lines denote transmissions. As we can see in the
first two slots after each arrival we have one transmission and in a third slot only transmission

is presented. This structure can be represented by Markov chain. In this diagram (Figure

9), represented only Markov chain for N = 3, but it is clear that for general N it would be
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1-Ps(u)

Figure 9: Markov Chain of the Wireless Communications Problem

the only duplicating of this replica. In each state we have two numbers (a,b), where a this
is the number of messages in the buffer and b this is the number of the transmissions that

were completed at the time duration.

Because our control problem is in which power level to use in each transmission, we can
simplify the above diagram by removing states with arrivals only, without transmissions.
There are (1,trl), (2,trl), (1,tr2) states. The diagram in Figure 10 represents exactly the

same problem but in a simpler way. We can see that for each main state, main states

56



Pg(u) 1-Ps(N)

Figure 10: Simplified Markov Chain of the Wireless Communications Problem

are the states that represent different number of codewords in the buffer, we have R — 1
additional states for each transmission during one time duration. So the maximal number
of necessarily states is RN. The all states will be numerated in the following order: (0,0) is
a state number 1, (0,1) is a state number 2, (0,2) is a state number 3, ..., (1,0) is a state
number 4, ... (N —1,0) is a state number RN — R + 1 and finally (N — 1, R — 1) is a state
number RN.
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7.1 Communications Problem Optimization Using CMDP Ap-

proach

We are interested to minimize the average delay of the transmissions while the average power

remains below a given level a.

We assume a block flat fading Gaussian channel in which the fading of each slot is #id
according to some distribution (such as Rayleigh, Rice etc...). Denote the fading disturbances

at slot k by wy.

Although it is more common to use average cost we are using the discounted cost. It
simplifies the calculation and when the discount factor § — 1 by Tauberian Theorem [10]
we are getting the average cost. Consider a finite CMDP with arbitrary, but finite, number

of control levels and one constraint.

Definitions:

W is the set of all possible fading disturbances.

falo,mz,u,w) = (1—5)> 02, BIPR(X, = 2,U; = u,W, = w), where w € W and
0<pB<1.

e X, is the buffer size at slot k.

e u(xy) € U is a transmitted power at slot k& where in the buffer we have z; codewords

waiting for transmission.

e Immediate cost at time k is the number of codewords waiting in the buffer after & steps
when power u is used in slot k, therefore ¢ = ¢(xy, u) = xy, where z;, is the number of

codewords at slot k.
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e The discounted cost can be defined using [1] and [4]

C = Cglo,m)
= (1=P)E;D>_ B elwr,w)}

k=1

= (1=8))_ B " EFc(wy, u)
k=1

= (1-75) Z Z BFPT (1, = 2, wy = w, uy, = u)e(x, u)

k=1 z,u,w
= Z(l ) Z Zﬁk’ng(ack =x,w, = w, u, = u)c(z,u)
T,u k=1 w

= Y-8 BT @ = 2w = w)e(a, ) (53)

T, k=1

= Zfﬂ(a,ﬂ;x,u)c(x,u)
= ng(a,ﬂ;x,u)x

e Immediate cost at time k, related to the constraint, is the number of codewords waiting
in the buffer after k steps where power u used at slot k, therefore d = d(zy,u) = u,

where x;, is the number of codewords at slot k.

e The value of the constraint criterion when starting at ¢ and using policy 7 can be

defined as follows

D = Dg(o;n)

= Z ng(a,w;x,u)d(x,u)

zeX uelU

= Z Z fs(o,mx,u)u

zeX uelU

In (53) we used property that ¢(z,u) doesn’t depend on w, therefore problem can be

solved for average value of disturbances. (the same derivation for d(z,u)).
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In the next equations we summarize our optimization problem. The optimization problem

is:

min Cg(o, m) = minE folo,mx,u)x
s
T

™

Subject to

Dg(o,m) = ng(a,w;x,u)u <a

We can do one more simplification. The inequality constraint can be replaced by equality
because in practise we are interested to use as much power as we have in order to improve

the delay (higher power will decrease the error probability of the transmission), therefore

Dy(o,7) = 3 fslo.mia,uju = a

Now by using LP/(0) we can rewrite our problem in a simpler form.

mpin Z plx,u)z (54)

Subject to

> o, u)u=a (55)

T,

ZyeX ZUGU(y) p(y, 1) (0:(y) — BPye(u)) = (1 — B)o(z), Ve € X
p(y,u) = 0,Yy,u

Define p, = p,(u) = >, p(z,u), and p, = p,(x) = >, p(x,u), so we can rewrite (54)
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and (55) as following

mian(m, u)
p
= mpianZp(x,u)

Zp(x,u)u
Y st
= ) up,(u)=a

min(z, p, () (56)

Subject to
(@, p,(u)) = a (57)

{ Y oyex 2uevy) PY W (0:(y) = BP(u)) = (1 — B)o(x), Vo € X } 58)
p(y,u) = 0,Vy,u

Define an average delay (ad) in the mean of the number of codewords in the buffer.
Denote the number of codewords in the buffer by "nc", a probability for k£ codewords in the

buffer by P(nc = k) and express an average delay as follows
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ad = i P(nc=k)k (59)

In our design assignment we are interested to answer the following questions:
1. What are the values of o*.

2. What is the maximal variability in average power « that can be allowed such that 7'

still an optimal solution for certain value of k, when k € [0, N].
3. For given o what is an optimal solution © and what is the value of appropriate p.
4. What is an average delay.

The CMDPS algorithm will help us to answer these questions.

7.2 CMDPS Algorithm Application in Wireless Communications

In our model we assume a BPSK modulation without any coding and our Markov diagram
as in Figure 11. We can see that the transitions at final states a little bit differ from the other
because when the buffer is full and arriving is happening we lost an arrival word immediately.

The transition probabilities are calculated according to (65) in Appendix C.

Simulation Conditions:

A =2 [words/ sec], R = 3 [words/ sec]
1 1
Toot = =3 [sec]

5=099, N=3
Eby = 0.1 [Joules|, Eb; =1 [Joules] (Appendix C)

x1 = 0 [words], xe =1 [words], x3 =2 [words|, x4 = 3 [words]

% =1, ¢*=1 (Appendix C)
Tb=0.1 [sec] (Appendix C)
_ Eby _ Eb
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Figure 11: Markov Chain for Communications Problem Example
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For simplicity we will run simulation for two control levels but as we saw in section 6.2

it could be done for the arbitrary, but finite, number of control levels.

[ state number label on the diagram randomization order |

1 (0,0) 1

2 (0,1) 5

3 (0,2) 9

4 (1,0) 7

5 (1,1) 4

6 (1,2) 2

7 (2,0) 6

8 (2,1) 3

9 (2,2) 8

Q_uestions 1 and 2: -
[ state number o d* ]

1 ol =0.3141 d° = 0.3141
6 o =04844 d' =0.1703
8 o® =0.5053 d* = 0.0210

5 at =0.5806 d3 =0.0753

2 a® =0.7685 d*=0.1878
7 a®=0.7716 d° = 0.0031
4 a” =0.7900 d°=0.0184
9 a® =0.7990 d" = 0.0090
3 =1 d® =0.2010 |

Questions 3 and 4:

Assume that a® > a = 0.5 > o2, then

7 =1(0,1,1,0,1,0,1,0,1,0,0,1,1,0,1,1,1,0)
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(0,0.2871,0.2426,0,0.1563, 0,0.0396, 0, 0.0736, 0,

0,0.1448,0.0100, 0, 0.0046, 0.0125, 0.0288, 0)

ad = ZP(nc:k)k
k=0

= Z Z p(xlﬁ u)xk

k=1 u

= 0.3699 [words]
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8 Conclusions and Further Research

In this research we derived a new solution methods for constrained Markov decision processes
and considered applications of these methods to the optimization of wireless communications.
In this paper we concentrated on the problem of infinite amount of information transfer over
a fading channel. We seceded to minimize the transmission delay under the average power
constraint where at each slot we use one of the available discrete power levels, while maximal
power level is limited by a peak power constraint. Moreover we developed an innovative
algorithm which ,aside of optimization problem solving, is able to show sensitivity of the
solution to changes in the average power level. The results show that by using a new

developed algorithm we can get a general and simple solution of the problem.

For further research we would like to propose the following:

e Extension of the fundamental Theorems to the case with arbitrary number of con-

straints.
e Extension of the constraints to inequality cases.

e Extension to finite horizon problems.
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Appendix A: Linear Programming (LP) and Simplex
Method Idea

In this Appendix we will discuss about LP and usage of Simplex Method for its solution.

Consider the following linear programming problem.

Minimize c1r1 + coxo + ... + cry

Subject to  a;1xy + apxy + ... + a1, > by
a91T1 + A92x1 + ... + Qop Ty, Z b2
Am1T1 + Am2T1 + ...+ Amndn 2 bm

T, T2y ey - , Ty Z 0

Here cix1 + coxg + ... + ¢z, is the objective function to be minimized. The coefficients
C1,Ca, ..., Cp are the cost coefficients and x1, xo, ..., x,, are the decision variables to be deter-
mined. The inequality > 7, a;z; > b; denotes the ith constraint. The coefficients a;; for
1=1,2,....m, j =1,2,...n are called the technological coefficients. These technological

coefficients form the constraint matrix A.
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a1 a1 . . . Qp

a921 a922 ... Qop
A=

Am1 Am2 . . . OOmn

The column vector whose ith component is b;, which is referred to as the right-hand side
vector, represents the minimal requirements to be satisfied. The constraints x, zo, ..., z,, > 0
are the nonnegativity constraints. A set of variables x1, xs, ..., z,, satisfying all the constraints
is called a feasible point or a feasible vector. The set of all such points constitutes the feasible

region or the feasible space.

The linear programming problem can be stated as follows: Among all feasible vectors,

find one that minimizes (or maximizes) the objective function.

The idea of the finding of the LP problem solution can be represented Geometrically in

the Figure 12. Let consider the following problem

Minimize c-x
st. A-xz>0

z>0

A feasible region consists of all vectors x satisfying Az > b and x > 0. Among all such
points we wish to find a point with minimal cx value. In order to minimize the cost we
need to move in the direction that do this minimization. This direction is —¢, and hence the
plane is moved in this direction as much as possible. This process is illustrated in Figure 12,
where x* is an optimal point. Needless to say, for a maximization problem, we need to move

as much as possible in the direction c.
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Objective

Xy

Figure 12: Geometric Solution

Now we will give a brief explanation of the Simplex method idea.

Consider the system A-x = b and x > 0, where A is an m x n matrix and b is a vector of
length m. Suppose that rank(A, b) = rank(A) = m. After possibly rearranging the columns

of A, let A= [B, N| where B is an m X m invertible matrix and N is an m X (n —m) matrix.

The solution z = B to the equations Ax = b, where
XN
Xp=B"1b
and
XN - 0

is called a basic solution of the system. If Xp > 0, then z is called a basic feasible solution
of the system. Here B is called the basic matrix (or simply the basis) and N is called the
nonbasic matrix. The components of Xp are called basic variables and the the components

of X are called nonbasic variables.

The key to the simplex method lies in recognizing the optimality of a given basic feasible
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Dptimal solution

Figure 13: Simplex Method - Geometric Motivation
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solution (extreme point solution) based on local considerations without having to (globally)

enumerate all basic feasible solutions.

Let discuss a Geometric motivation of Simplex method. Consider the following LP prob-

lem

min c-x
x
A-z=0D
x>0

Figure 13 illustrates the situation in 2 dimensions, where n = 6, m = 4 and where
Xp = {w3,x4, 25,26} The defining variables associated with n = 6 hyperplanes on this
figure. The vertices or extreme points of the feasible region are labeled as vy, ..., v5 and ¢ is
the cost vector. The current basic feasible solution corresponds to the vertex vy,that is, the
origin. Now consider the origin v; and examine the two defining hyperplanes associated with
the corresponding nonbasic variables. Holding one of these hyperplanes binding and moving
in a direction, feasible to the remaining hyperplane, takes us along a one-dimensional ray
with vertex at v;. There are two such rays. Holding 2 = 0 and increasing x; takes us along
the x; axis. Similarly, holding z; = 0 and increasing x5 takes us along the o axis. Assume
that latter direction is better (from point of minimization view) then we move along the xo
axis. Naturally we would like to move as far as possible along this edge since as far we are
going as more we minimize the objective function (the angle between xs and —¢ is acute).
However, our motion is blocked by the hyperplane x3 = 0, since x3 has been driven to zero
and moving any further would drive x3 negative. If no such blocking hyperplane existed,
then the optimal solution value would have been unbounded. Furthermore, since one linearly
independent hyperplane was binding all along and we were blocked by a new hyperplane, we
now have two linearly independent hyperplanes binding, and so we are at another extreme
point of the feasible region. At v, the nonbasic variables are x; and x3, and the remaining

variables are basic. We have now completed one step known as the iteration or pivot of the
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simplex method. In this step the variable x5 is called the entering variable since it entered
the set of basic variables, and the variable x5 is called the blocking variable, or the leaving

variable, since it blocked our motion or left the set of basic variables at v;.

Repeating this process at vs, we would of course not like to enter z3 into the basis
since it will only take us back along the reverse of the previous direction. However, holding
r3 = 0 and increasing zitakes us along an improving edge because this direction is making
an acute angle with —¢ direction (Figure 13). Proceeding in this direction we notice that
more than one hyperplane blocks our motion. Suppose we arbitrarily choose one of them,
namely x; = 0 as the blocking hyperplane. Hence x4 is the leaving variable, and for current
basis representation of vz, x3 and x4 are the nonbasic variables. Now if we hold x4 = 0 and
move in a direction along which x5 increases, the objective function value decreases since this
direction is making acute angle with —¢ direction. However, this direction is not feasible.
We are blocked by the hyperplane x5 = 0 even before we begin to move. That is, x5 leaves
the basis giving x4 and x5 as our new non basis variables, while we are still at the same
vertex v3. With x4 and x5 as the nonbasic variables at vs, holding x5 = 0 and increasing x4
takes us along an improving, feasible edge direction. The blocking variable that gets driven
to zero is xg, and the new nonbasic variables are x5 and x4. Observe that corresponding to
this basis, none of the two rays, defined by holding one of the nonbasic variables equal to
zero and increasing the remaining nonbasic variable, lead to an improvement in the objective

function, and so our "key result" declares v4 to optimal solution.
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Appendix B: Principle of Optimality and Value Iteration

Algorithm

The dynamic programming (DP) technique rests on a very simple idea, the principle of

optimality. Roughly, the principle of optimality states the following rather obvious fact.
Principle of Optimality: [4]
Let 7* = {mo, 71, ..., Txv_1} be an optimal policy for the basic problem, and assume that
when using 7*, a given state z; occurs at time ¢ with positive probability. Consider the

subproblem whereby we are at x; and wish to minimize the "cost-to-go" from time 7 to time

N. o
E {QN(QCN) + > grl, i), wk)}

k=i
. Then the truncated policy {m;, mii1,..., Tx_1} is optimal for this subproblem.

The intuitive justification of the principle of optimality is very simple. If the truncated
policy {m;, mi+1, ..., Ty—1} were not optimal as stated, we would be able to reduce the cost
further by switching to an otptimal policy for the subproblem once we reach x;. The prin-
ciple of optimality suggests that an optimal policy can be constructed in piecemeal fashion,
first constructing an optimal policy for the "tail subproblem" involving the last stage, then
extending the optimal policy to the "tail subproblem" involving the last two stages, and

continuing in this manner until an optimal policy for the entire problem is constructed.

Value iteration is the most widely used and best understood algorithm for solving dis-
counted Markov decision problems. The following value iteration algorithm finds a stationary

e-optimal policy, (d.)*°, and an approximation to its value.
Value Iteration Algorithm: [8]

1. Select v° € V, specify € > 0, and set n = 0.
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2. For each x € X, compute v"*1(z) by

" (2) = max {r T,u —l—ZBP (], u)o"™(5)} (60)

uelU(z
(@) JjEX

where r(x,u) is a reward at state z € X using action v € U, and P(j|z,u) is a transition

probability to state j from state x using action wu.

3. If
1-p
n+1 n
ot = < <5 o
go to step 4. Otherwise increment n by 1 and return to step 2.
4. For each x € X, choose
d-(x) € arg max {r(x u) + ZﬁP iz, u)v"(j)} (62)

jeX

and stop.

The following theorem provides the main results regarding convergence of the above value

iteration algorithm.
Theorem ([8], Theorem 6.3.1)

Let v° € V, ¢ > 0, and let {v"} satisfy (60) for n > 1. Then

e v" converges in norm to vg,

finite V for which (61) holds for all n > N,

the stationary policy (d.)* defined in (62) is e-optimal, and

vt — v3|| < e/2 whenever (61) holds.
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Appendix C: BPSK Modulation in Fading Environment

In this section we will give a brief description of the BPSK modulation [6] and an impact of

the channel fading for the error probability calculation [7].
Definitions:
e [, is the transmitted signal energy per bit.
e T, is the time duration of one bit transmission.

e f.is the carrier frequency.

BPSK (Binary phase-shift keying) is a modulation where, the pair of signals, s;(t) and

So(t), used to represent binary symbols 1 and 0, respectively, are defined by

[\

£,

s1(t) = T cos(2m f,t) (63)
b
Sot) = ZTEb cos(2m f.t + )
b
= — QTEI’ cos(2m fet) (64)
b

A pair of sinusoidal waves, s1(t) and sy(t), differing only in phase by 180 degrees, as
defined above, are named antipodal signals. Using Gram-Schmidt orthogonalization we find

a single basis function, namely
2
o.(t) = ”T cos(2rfet), 0<t<T,
b
Thus, we may express the transmitted signals s;(f) and s9(t) in terms of ¢, (t) as follows

si(t) = VE (1)

s2(t) = —VEh (1)
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Here we will skip the part of probability of error derivation because it quite technical and

can be seen in [6]. We will give only the final formula:

Pic} = Q ( 2%’))

where
z

1 00 2
Q(z) = ﬁ/m eXP(—E)dZ

For a fading channel we have one additional modification, this is factor r2. For block
fading Gaussian channel in which the fading of each slot is id according to Rayleigh distrib-

ution, the error probability for one bit transmission can be expressed by a following formulas

[6] and [7]:
-

where Rayleigh distribution of random variable r is expressed as follows

roo_x?
f(r)z;e 202, 1 >0

Because we used letter o for another purpose (initial distribution) before, we will replace

o2 here by letter ¢2, and from now on

I 2r2Ey L [ E/No
PActar = /0 Q( No )fmdr_g [1 M

where B, = E{r’E,} =2*E,

= A probability of one bit successful transmission is expressed as follows
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