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Abstract

We consider the optimization of finite-state, finite-actionMarkov Decision processes, under con-

straints. Cost and constraints are of the discounted type. We introduce a new method for investigating

the continuity and robustness of the optimal cost and the optimal policy under changes in the constraints.

This method is also applicable for other cost criteria such as finite horizon and infinite horizon average

cost.
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I. INTRODUCTION

Consider the standard model of a Markov Decision Process (MDP) with finite state and action spaces.

A natural generalization of the optimization problem is to include cost constraints. Such models arise in

relation to resource-sharing systems. For example, in telecommunication networks which are designed to

enable simultaneous transmission of different types of traffic: voice, file transfer, interactive messages,

video, etc. Typical performance measures are transmissiondelay, power consumption, throughput, etc.

[1]. A trade-off exists, for example, between minimizing delay and reducing power consumption: to

minimize delay we should transmit with the highest possiblepower, since this increases the probability

of successful transmission. Such problems are formulated as constrained MDP [2], where we wish to

minimize the costs related to the delay subject to constraints on the average and peak power.
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While the continuity of the value with respect to the policy is a relatively simple matter, robustness

is a more difficult issue. In general robustness means that under a small change in the parameters, the

original policy still meets the requirements. This definition is not appropriate for optimization problems.

Moreover, in constrained optimization the question arisesas to whether under the new parameters the

policy is required to meet the constrains, or perhaps is allowed to deviate by a small amount. Our definition

of robustness is that a small change in some parameters requires a small change in the policy. Since the

parameter we change is the constraints, we require that the new policy satisfies the new constraints, is

optimal under the new constraints, and robustness means that the new policy is close to the original one.

Continuity of the optimizers does not hold in general. We develop a new technique to characterize

and establish robustness with respect to changes in the values of the constraints. For a related study

see [3], which deals with sensitivity of the cost and the policy to changes in the discount factor and in

the transitions.

In Section II we introduce constrained MDP problems. Section III establishes the connection to linear

programming and the formulation in terms of Karush-Kuhn-Tucker conditions. Section IV establishes the

main results: we introduce a new method and give conditions so that an optimal policy is not sensitive

to small enough changes in the constraint. Section V concludes our work.

Notation: For a vectorv the notationv ≥ 0 means that the inequality holds for each coordinate. Given

a collection{vk} of constants or functions, we denote byv the vector with componentsvk.

II. T HE CONSTRAINED PROBLEM

A. The Model

A constrained Markov Decision process (CMDP) [2] is specified through a state spaceX and action

spaceU , both assumed finite here, a set of transition probabilities{Pyx(u)}, where Pyx(u) is the

probability of moving fromy to x when actionu is taken, and immediate costsc(x, u) anddk(x, u), k =

1, . . . ,K. It will be convenient to rename the states and actions so that X = {1, 2, . . . , |X|} and

U = {1, 2, . . . , |U |}.

We shall consider stationary policiesπ, which specify how actions are chosen. In a stationary policy,

π(u|y) is the probability for choosing actionu if the process is in statey. The reason we restrict to

stationary policies is given in Theorem 3 below.

A choice of initial (state) distribution and a policy thus define the discrete time stochastic process

(Xt, Ut), t = 1, 2, . . . and its distribution. We denote the probability and expectation that correspond

to the initial distributionσ and policyπ by P π
σ andEπ

σ respectively. Throughout this paper we fix the
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initial distribution, and fix a discount factor0 < β < 1. We shall therefore omit bothσ andβ from the

notation. The discounted cost and the value of each constraint underπ are then defined as

C(π)
4
= (1 − β)Eπ

∞
∑

t=1

βt−1c(Xt, Ut),

Dk(π)
4
= (1 − β)Eπ

∞
∑

t=1

βt−1dk(Xt, Ut).

B. The Constrained Problem

Given a set of constraintsV1, . . . , VK the Constrained Optimization problem COP is

COP: Find π that minimizesC(π)

Subject toDk(π) = Vk, 1 ≤ k ≤ K.

Remark 1: In Section IV-A we comment on the constrained problem, wherethe constraints are of the

form Dk(π) ≤ Vk.

Remark 2: Note that for constrained problems, optimal policies generally depend on initial conditions

(there may be no feasible policy for some initial conditions). This is the reason we fix the initial condition

throughout.

III. C ONSTRAINED OPTIMIZATION AND L INEAR PROGRAMMING

The approach we take relies on a Linear Programming formulation for COP.

A. Occupation measures

An occupation measure corresponding to a policyπ is the total expected discounted time spent in

different state-action pairs. It is thus a probability measure over the set of state-action pairs. More

precisely, define for any policyπ and any pair(x, u)

f(π;x, u)
4
= (1 − β)

∞
∑

t=1

βt−1P π(Xt = x,Ut = u).

f(π) is then defined to be the set{f(π;x, u)}x,u. It can be considered as a probability measure, called

the occupation measure, that assigns probabilityf(π;x, u) to the pair(x, u). The discounted cost can be

expressed as the expectation of the immediate cost with respect to this measure [2]:

C(π) =
∑

x∈X

∑

u∈U

f(π;x, u)c(x, u) = f · c , (1)

where in the last equality we considerf andc as vectors. Analogue expressions hold forDk.
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Given a setR of policies, denoteLR
4
= {f(π) : π ∈ R}. Let Π denote the set of all policies,S the set

of stationary policies andD the set of deterministic policies (that is, the probabilityof using an action

is either1 or 0). Let co denote the closed convex hull, that is, all convex combinations and their limits.

Then

Theorem 3 ([2, Theorem 3.2]): LΠ = LS = coLD.

Since by (1) all costs are linear inf(π), the first equality in the theorem shows that the restrictionto

stationary policies does not influence the optimal value, sothat it is reasonable to impose this restriction,

as we do here.

B. Linear Programming formulation

DefineQ to be the following set ofρ = {ρ(y, u)}

Q =



































ρ :



















∑

y∈X

∑

u∈U

ρ(y, u)(δx(y) − βPyx(u))

= (1 − β)σ(x), ∀x ∈ X

ρ(y, u) > 0,∀y, u.





















































(2)

By summing the first constraint in (2) overx we obtain that
∑

y,u ρ(y, u) = 1 for eachρ ∈ Q, so that any

ρ satisfying (2) can be considered as a probability measure. We regardρ as either a set ofρ = {ρ(y, u)}

as defined above, or as a vector of length|X| · |U |. Below we represent COP in terms of elements of

Q. To complete the picture we need to derive a stationary policy that corresponds to eachρ. So, given

ρ define

µy(u) = ρ(y, u)

(

∑

u∈U

ρ(y, u)

)−1

, y ∈ X,u ∈ U (3)

provided
∑

u∈U ρ(y, u) 6= 0 (if the sum is0 for somey then necessarilyρ(y, u) = 0 for eachu. In this

case chooseµy(u) ≥ 0 arbitrarily but so that
∑

u µy(u) = 1.)

CL(ρ)
4
=
∑

x,u

c(x, u)ρ(x, u), DL
k (ρ)

4
=
∑

x,u

dk(x, u)ρ(x, u). (4)

LP: Find ρ that minimizesCL(ρ)

Subject toDL
k (ρ) = Vk, 1 ≤ k ≤ K andρ ∈ Q.

The last constraint is linear by definition (2). Now we can state the equivalence betweenCOP and the

LP.

Theorem 4 ([2, Theorem 3.3]): Consider a finite CMDP.
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• For anyf(π) there is aρ ∈ Q such thatρ = f(π), and conversely for anyρ ∈ Q the policy µ

defined in (3) satisfiesρ = f(µ).

• LP is feasible if and only if COP is. Assume that COP is feasible. Then there exists an optimal

solutionρ∗ for LP, and the stationary policyµ (3) is optimal for COP.

Let us rewrite LP as a generic linear program:

LPG : Minimize z · ρ (5)

Subject to A · ρ = b (6)

and ρ ≥ 0 (7)

Remark 5: To cast LP in this form, we letz represent the costc (written as a vector), so thatz · ρ =
∑

x,u z(x, u)ρ(x, u) is the cost. Next, the matrixA has|X|·|U | columns and|X|+K rows, where|X| rows

represent the left-hand-side of the equality constraints of (2), andK rows represent the value of the con-

straints; that is, row k represents dk, with

1 ≤ k ≤ K. The corresponding|X| entries ofb are then given by(1 − β)σ(x), and the remaining

K entries take the valuesVk. Note that onlyb depends on the value ofV .

C. Karush-Kuhn-Tucker conditions

We need a standard tool in the theory of linear programming—the Karush-Kuhn-Tucker (KKT) con-

ditions:

KKT: There existw andv so that

A · ρ = b, ρ ≥ 0 (8)

w · A + v = z, v ≥ 0 (9)

v · ρ = 0. (10)

Theorem 6 ([4, KKT Conditions]): ρ satisfies conditions (8)–(10) for somev andw if and only if it

is an optimal solution of the Linear Programming problem (5)–(7).

IV. ROBUSTNESSANALYSIS

In this section we show that an optimal policy is not sensitive to small enough changes in the constraints,

provided the changes retain feasibility. We start with a simple continuity result. Consider a policyπ as

a vector of dimension|X| · |U |. Define the distance between two policies:

|π − π′| = δ means
∑

x,u

|π(u|x) − π′(u|x)| = δ.
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Lemma 7: C andD are continuous inπ.

Proof: Fix π. Given ε > 0 we need to show that there is aδ so that |π − π′| ≤ δ implies

C(π) − C(π′) ≤ ε. The proof forDk is identical. First, fixN so that

(1 − β)

∞
∑

t=N

βt−1 max
x,u

|c(x, u)| <
ε

4
. (11)

PM (π) denotes the Markov transition matrix induced byπ,

{PM (π)}yx =
∑

u

Pyx(u)π(u|y).

Note thatPM is linear (hence continuous) inπ. Now

Eπc(Xt, Ut) =
∑

x,u

P π(Xt = x,Ut = u)c(x, u).

But P π(Xt = x,Ut = u) = P π(Xt = x)π(u|x) and

P π(Xt = x) =
∑

y

σ(y)P t
M (π)yx.

Thus, sincePM (π) is linear inπ, we have thatEπc(Xt, Ut) is a polynomial of degreet in π and so

(1 − β)Eπ

N−1
∑

t=1

βt−1c(Xt, Ut)

is a polynomial inπ, of degree at mostN − 1. This together with the approximation in (11) proves the

continuity.

This continuity means that a small change inπ entails a small change inC andDk. However, suppose

π is optimal for COP, and supposeπ′ is close toπ. Define

V ′
k = Dk(π

′), 1 ≤ k ≤ K.

Then by continuity,V ′
k is close toVk. But it is not difficult to construct examples in whichπ′ is not

optimal for problem COP with constraintsV ′
k, regardless of how closeVk andV ′

k are. There may be a

better policy, and it may be quite far fromπ. This is a particular case of a general phenomenon: the

minimizing point is in general not continuous in the parameters of the problem.

The following key Theorem gives conditions under whichπ′ is in fact optimal.

Theorem 8: Let πV be an optimal policy for COP. Define

UV (x)
4
= {u : πV (u|x) = 0} . (12)
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Let π′ be any stationary policy such thatπ′(u|x) = 0 for all u ∈ UV (x). DenoteV ′
k = Dk(π

′). Thenπ′

is optimal for COP with constraintsV ′
k, 1 ≤ k ≤ K.

Remark 9: The condition onπ′ means that ifπV never uses actionu in statex, then the same holds

for π′. Thus π′ differs from π only in the value of the randomization, at those states whereπ uses

randomization.

The optimality means thatC(π′) ≤ C(π) for any π that satisfiesDk(π) = V ′
k, 1 ≤ k ≤ K.

Proof: Recall from Remark 5 thatb is the only coefficient that depends on the value ofV : let us

make this explicit using the notationbV . A change inV does not change the matrixA or the vector

z. To help the exposition, let us consider eachρ ∈ Q as a a vector of dimension|X| · |U |. SinceπV

is optimal for COP, by Theorem 4ρV = f(πV ) is optimal for LP, and by Theorem 6ρV satisfies

the KKT conditions (8)–(10) for somev and w. Considerρ′ = f(π′). We claim thatρ′ satisfies the

KKT conditions (8)–(10) with constantsb′, and with the samev andw. b′ is obtained by replacing the

constraintsVk with V ′
k.

Note first that since the elements ofρV are non-negative, Condition (10) holds if and only ifv(x, u)

satisfiesv(x, u) = 0 wheneverρV (x, u) 6= 0. Now ρ′ satisfies Condition (8) sinceρ′ ∈ Q and by

definitionDL
k (ρ′) = V ′

k. Condition (9) is unchanged—it does not depend onρ. As for the last condition,

it suffices to show thatρ′(x, u) = 0 wheneverρV (x, u) = 0; since for other(x, u), we havev(x, u) = 0

by the optimality ofρV .

Using ρV = f(πV ), it follows that if

ρV (x, u) = f(π : x, u) = P πV (Xt = x) · πV (u|x) = 0

then one of the following holds.

(i) πV (u|x) = 0, that is, actionu is never used in statex, or

(ii) P πV (Xt = x) = 0 for all t, that is, statex is never visited underπV .

If (i) holds then, by (12),π′, π′(u|x) = 0. Thereforeρ′(x, u) = f(π : x, u) = 0.

If (ii) holds then note thatπ′ does not introduce any new transitions to the process: it merely changes the

probability of transitions. But transitions that have probability 0 underπV will also have the same probabil-

ity under π′. Thus if

f(πV : x, u) = ρV (x, u) = 0 thenf(π′ : x, u) = ρ′(x, u) = 0 and the proof is complete.

Clearly, the largerUV (x) is, the simpler it is to implement the policy. While not much can be said at

eachx, there is a general result on the combined size over all states. Let 1 [A] be the indicator of the

eventA: that is, it is equal1 if A holds, and zero otherwise.
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Theorem 10 ([2], Theorem 3.8): There exists an optimal policyπ∗ for COP so that the number of

randomizations is at mostK. That is,

∑

x

(

∑

u

1 [π∗(u|x) > 0] − 1

)

≤ K.

In particular, ifK = 1 then there is an optimal policyπ∗ which chooses one action in every state, except

in one state, sayx0. This allows to say more about the case with one constraint.

Corollary 11: Consider the caseK = 1 . Let π∗ be an optimal policy for COP, and supposeπ∗(u|x)

is either0 or 1 except atx0 and that

π∗(u|x0) =











qV if u = u′

1 − qV if u = u′′.

(13)

Let πq denote the policy which agrees withπ∗, except that atx0 it chooses betweenu′ and u′′ with

probability q and1 − q respectively. Let

Vmin
4
= inf

0≤q≤1

D1(π
q), Vmax

4
= sup

0≤q≤1

D1(π
q).

Then, for eachVmin ≤ α ≤ Vmax there is aqα so thatπqα is optimal for COP with constraintα.

Proof: By Lemma 7,D1(π
q) is continuous inq. The proof now follows from Theorem 8.

A. Inequality constraints

With MDP, constrained optimization with inequality constraints are more common. We now extend

our results to this case. Define

COPi: Find π that minimizesC(π)

Subject toDk(π) ≤ Vk, 1 ≤ k ≤ K.

Let πV be optimal forCOPi and suppose that

Dk(πV ) = Vk, k ≤ K1 and Dk(πV ) < Vk, k > K1.

Lemma 12: πV is optimal for problemCOPi with constraintsk ≤ K1, and with the constraints for

k > K1 omitted.

The point is that the constraints that are not biding may be omitted, and optimality still holds. The proof

is immediate and is omitted.

Recall now the definition (12) ofUV and define

ΠV = {π stationary,π(u|x) = 0 for all u ∈ UV (x),

Dk(π) ≤ Vk, k > K1} . (14)
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By continuity, this set of policies is not empty, and contains all policies which are close enough toπV

and do not introduce new actions.

Recall the one-to-one correspondence between policies andoccupation measures—Theorem 4. Let

{πi} be the (finite) collection of all deterministic policies without any actions inUV . By Theorem 3 for

any π ∈ ΠV we can write

f(π) =
∑

i

αif(πi) (15)

for someαi ≥ 0 with
∑

i αi = 1. That is, f(π) is a convex combination of occupation measures

corresponding to deterministic policies.

Theorem 13: Let π′ be any stationary policy inΠV . DenoteV ′
k = Dk(π

′) for k ≤ K1 and setV ′
k = Vk

for k > K1. Thenπ′ is optimal for COPi with constraintsV ′
k, 1 ≤ k ≤ K.

Note thatDk(π
′) ≤ Vk for k > K1 by definition.

Proof: Let us representπV using (15) with the coefficients{αi} andπ′ with the coefficients{α′
i}.

Define γ = mini{αi/α
′
i} and note thatγ < 1 and soγα′

i ≤ αi for all i. Recall that each occupation

measure corresponds to aρ in Q (Equation (2)), which is convex.

If π′ is not optimal, then there exists someπ̃ so thatDk(π̃) ≤ V ′
k for all k, andC(π̃) < C(π′). Note

that

ρ
4
= γ

(

f(π̃) −
∑

i

α′
if(πi)

)

+ f(πV ) (16)

= γf(π̃) +
∑

i

(

αi − γα′
i

)

f(πi) (17)

is in Q. This is the case sinceαi−γα′
i ≥ 0 andγ +

∑

i(αi−γα′
i) = 1, so thatρ is a convex combination

of f(π̃) and thef(πi). From ρ, defineµ through (3). Now by (16) and Theorem 4, fork ≤ K1

Dk(µ) = γ
(

Dk(π̃) − Dk(π
′)
)

+ Dk(πV ) (18)

≤ Dk(πV ) (19)

since for suchk we haveDk(µ) ≤ V ′
k = Dk(π

′). For k > K1 we have thatDk(πV ) < Vk and so, by

makingγ smaller if necessary, we obtainDk(µ) ≤ Vk is this case as well. Thus we conclude thatµ is

feasible for the constraintsV . Now

C(µ) = γ
(

C(π̃) − C(π′)
)

+ C(πV ) (20)

< C(πV ), (21)

by assumption, a contradiction to the optimality ofπV .
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V. CONCLUSIONS

We introduced a new method to establish robustness of policies in constrained MDPs. The method

is clearly applicable to finite-horizon problems, and is also applicable to the average cost problem

under some recurrence conditions. With a small change in thevalues of the constrains, only a small

number of parameters need to be adjusted in order to retain optimality. This method was applied to

telecommunication networks in [7].
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