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Abstract

We consider the optimization of finite-state, finite-actibtarkov Decision processes, under con-
straints. Cost and constraints are of the discounted tymeiriioduce a new method for investigating
the continuity and robustness of the optimal cost and thengpipolicy under changes in the constraints.
This method is also applicable for other cost criteria sugffirdte horizon and infinite horizon average

cost.
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. INTRODUCTION

Consider the standard model of a Markov Decision ProcessRMiath finite state and action spaces.
A natural generalization of the optimization problem istielude cost constraints. Such models arise in
relation to resource-sharing systems. For example, icdaelenunication networks which are designed to
enable simultaneous transmission of different types dfidravoice, file transfer, interactive messages,
video, etc. Typical performance measures are transmisiatay, power consumption, throughput, etc.
[1]. A trade-off exists, for example, between minimizinglale and reducing power consumption: to
minimize delay we should transmit with the highest possfimever, since this increases the probability
of successful transmission. Such problems are formulasedoastrained MDP [2], where we wish to

minimize the costs related to the delay subject to condtain the average and peak power.
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While the continuity of the value with respect to the polisyd relatively simple matter, robustness
is a more difficult issue. In general robustness means thderua small change in the parameters, the
original policy still meets the requirements. This defiitiis not appropriate for optimization problems.
Moreover, in constrained optimization the question arisego whether under the new parameters the
policy is required to meet the constrains, or perhaps isvaltbto deviate by a small amount. Our definition
of robustness is that a small change in some parametersesgusmall change in the policy. Since the
parameter we change is the constraints, we require thatetepolicy satisfies the new constraints, is
optimal under the new constraints, and robustness meanththaew policy is close to the original one.

Continuity of the optimizers does not hold in general. Weedep a new technique to characterize
and establish robustness with respect to changes in thesvaiuthe constraints. For a related study
see [3], which deals with sensitivity of the cost and the @otio changes in the discount factor and in
the transitions.

In Section Il we introduce constrained MDP problems. Seclibestablishes the connection to linear
programming and the formulation in terms of Karush-Kuhreler conditions. Section IV establishes the
main results: we introduce a new method and give conditionthat an optimal policy is not sensitive
to small enough changes in the constraint. Section V coeslaadir work.

Notation: For a vector the notationv > 0 means that the inequality holds for each coordinate. Given

a collection{v;} of constants or functions, we denote Byhe vector with components,.

Il. THE CONSTRAINED PROBLEM
A. The Mode

A constrained Markov Decision process (CMDP) [2] is spedifierough a state spacé and action
spaceU, both assumed finite here, a set of transition probabili{i€s,(u)}, where Py, (u) is the
probability of moving fromy to = when actionu is taken, and immediate cost&e, u) anddy(x, u), k =
1,...,K. It will be convenient to rename the states and actions sb ¥ha= {1,2,...,|X]|} and
U=A{12,...,|U|}.

We shall consider stationary policies which specify how actions are chosen. In a stationary polic
m(uly) is the probability for choosing action if the process is in statg. The reason we restrict to
stationary policies is given in Theorem 3 below.

A choice of initial (state) distribution and a policy thusfite the discrete time stochastic process
(Xy, Up), t =1,2,... and its distribution. We denote the probability and exp@mtathat correspond

to the initial distributionc and policyw by PT and E7 respectively. Throughout this paper we fix the
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initial distribution, and fix a discount factar < 3 < 1. We shall therefore omit both and 5 from the

notation. The discounted cost and the value of each constraders are then defined as

[e.e]

Clr) 2 (1 -BE™Y. B e(X,,Ty),
t=1

Dy(m) = (1-B)E" Zﬁt_ldk(Xt, Ut).

t=1
B. The Constrained Problem

Given a set of constrainfi, ... , Vi the Constrained Optimization problem COP is
COP: Find 7 that minimizesC/()
Subject toDy(7) = Vi, 1 <k < K.
Remark 1: In Section IV-A we comment on the constrained problem, whkeeconstraints are of the
form Dy (m) < V.
Remark 2: Note that for constrained problems, optimal policies galyedepend on initial conditions
(there may be no feasible policy for some initial conditiprigis is the reason we fix the initial condition

throughout.

I1l. CONSTRAINED OPTIMIZATION AND LINEAR PROGRAMMING

The approach we take relies on a Linear Programming forioualdor COP.

A. Occupation measures

An occupation measure corresponding to a policys the total expected discounted time spent in
different state-action pairs. It is thus a probability measover the set of state-action pairs. More
precisely, define for any policy and any pair(x, u)

flmau) 2 (1-5)> B PT(X, = 2,U, = u).

t=1
f(m) is then defined to be the séf (m;z,u)}, . It can be considered as a probability measure, called
the occupation measure, that assigns probabflity, z, ) to the pair(x,«). The discounted cost can be
expressed as the expectation of the immediate cost witlecesp this measure [2]:

C(m) =Y flmzue(x,u) = f-c, (1)

rzeX uelU
where in the last equality we considgrandc as vectors. Analogue expressions hold foy.
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Given a setR of policies, denotd. 2 {f(m) : m € R}. LetIl denote the set of all policies, the set
of stationary policies and the set of deterministic policies (that is, the probabitifyusing an action
is either1 or 0). Let co denote the closed convex hull, that is, all convex combimatiand their limits.
Then

Theorem 3 ([2, Theorem 3.2]): Ly = Lg = ¢oLp.

Since by (1) all costs are linear ifi(r), the first equality in the theorem shows that the restrictimn
stationary policies does not influence the optimal valughabit is reasonable to impose this restriction,

as we do here.

B. Linear Programming formulation

Define @ to be the following set op = {p(y,u)}
> > p(y.w)(Eay) — Py (w))

yeX uelU
Q=<p: = (1—ﬁ)0’(3§‘), Ve e X 2

p(y,u) = 0, Yy, u.
By summing the first constraint in (2) overwe obtain thagy’u p(y,u) =1 for eachp € Q, so that any

p satisfying (2) can be considered as a probability measueeréyardp as either a set gf = {p(y,u)}

as defined above, or as a vector of lengk - |U|. Below we represent COP in terms of elements of
Q. To complete the picture we need to derive a stationary ypdliat corresponds to eagh So, given

p define

-1
iy (u) = p(y, u) <Zp(y,U)> , YEXuel ®3)

uelU
provided) s p(y,u) # 0 (if the sum is0O for somey then necessarily(y, u) = 0 for eachu. In this
case choosg, (u) > 0 arbitrarily but so thad ", 1, (u) = 1.)
A

Cl(p) Y ela,w)p(x,u), DE(p) 23 diar,u)p(z, ). @)

T

LP: Find p that minimizesC*(p)
Subject toDE(p) = Vi, 1 <k < K andp € Q.
The last constraint is linear by definition (2). Now we carnesthe equivalence betwe&€@0OP and the
LP.
Theorem 4 ([2, Theorem 3.3]): Consider a finite CMDP.
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« For any f(w) there is ap € @ such thatp = f(7), and conversely for any € @ the policy i
defined in (3) satisfiep = f(u).

o LP is feasible if and only if COP is. Assume that COP is feasifilhen there exists an optimal
solution p* for LP, and the stationary policy (3) is optimal for COP.

Let us rewrite LP as a generic linear program:

LPg: Minimize z-p (5)
Subject to A-p=10 (6)
and p=>0 (7)

Remark 5: To cast LP in this form, we let represent the cost (written as a vector), so that- p =
>z 2@, u)p(z, u) is the cost. Next, the matri® has| X |-|U| columns andX |+ K rows, wherg X | rows
represent the left-hand-side of the equality constraiff®)) and K rows represent the value of the con-
straints; that is, row k represents dp, with
1 < k < K. The correspondingX| entries ofb are then given by1 — 5)o(z), and the remaining

K entries take the valudg,. Note that onlyb depends on the value 6f.

C. Karush-Kuhn-Tucker conditions
We need a standard tool in the theory of linear programmirge—Karush-Kuhn-Tucker (KKT) con-
ditions:

KKT: There existw andv so that

w-A+v=2z2 v>0 9)
v-p=0. (10)

Theorem 6 ([4, KKT Conditions]): p satisfies conditions (8)—(10) for someandw if and only if it

is an optimal solution of the Linear Programming problem-(3).

IV. ROBUSTNESSANALYSIS

In this section we show that an optimal policy is not sensitivsmall enough changes in the constraints,
provided the changes retain feasibility. We start with apd@rcontinuity result. Consider a policy as

a vector of dimensionX| - |U|. Define the distance between two policies:

m—7'| =06 means »_ |m(ulz) — ' (ulx)| = 0.

T
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Lemma 7: C and D are continuous inr.
Proof: Fix 7. Givene > 0 we need to show that there isdso that|r — 7’| < § implies

C(m) — C(n') < e. The proof for Dy, is identical. First, fixV so that

o

(1) 8" maxe(a,u)] < 7. (11)

4
t=N
Py () denotes the Markov transition matrix induced by

u
Note thatP,, is linear (hence continuous) in. Now

E"c¢(Xy,Uy) = ZP”(Xt =z,U; = u)c(z,u).

T

But P"(X; = z,U; = u) = P"(Xy = x)w(u|x) and

P (X;=x) =Y o(y)Pi(m)ye-

Thus, sincePy () is linear inw, we have thatE™c¢(X,, U;) is a polynomial of degreeé in = and so
N-1

1=BE™ Y B (X, Up)

t=1
is a polynomial inw, of degree at mosV — 1. This together with the approximation in (11) proves the

continuity. [ |
This continuity means that a small changerirentails a small change &' and D;. However, suppose

m is optimal for COP, and supposg is close tor. Define
Vi =Di(n'), 1<k<K.

Then by continuity,V}/ is close toV}. But it is not difficult to construct examples in whictl is not
optimal for problem COP with constrainig/, regardless of how closg, andV; are. There may be a
better policy, and it may be quite far from. This is a particular case of a general phenomenon: the
minimizing point is in general not continuous in the paraenetof the problem.

The following key Theorem gives conditions under whichis in fact optimal.

Theorem 8: Let 7y, be an optimal policy for COP. Define

Uy (z) 2 {u: my(ulz) = 0}. (12)
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Let 7’ be any stationary policy such that(u|z) = 0 for all uw € Uy (z). DenoteV,! = Dy (). Thenz’
is optimal for COP with constraintg/, 1 <k < K.

Remark 9: The condition ont’ means that ifry, never uses action in statex, then the same holds
for n/. Thus ' differs from = only in the value of the randomization, at those states whereses
randomization.

The optimality means that'(z’) < C() for any 7 that satisfiesD,(7) =V, 1 <k < K.

Proof: Recall from Remark 5 that is the only coefficient that depends on the valud/oflet us
make this explicit using the notatiok,. A change inV does not change the matrig or the vector
z. To help the exposition, let us consider eaclke @ as a a vector of dimensioX| - |U|. Sinceny
is optimal for COP, by Theorem 4y = f(my) is optimal for LP, and by Theorem By satisfies
the KKT conditions (8)—(10) for some and w. Considerp’ = f(x'). We claim thaty’ satisfies the
KKT conditions (8)—(10) with constants, and with the same andw. ¥’ is obtained by replacing the
constraintsV, with V.

Note first that since the elements @f are non-negative, Condition (10) holds if and only(fc, u)
satisfiesv(x,u) = 0 wheneverpy (z,u) # 0. Now p’ satisfies Condition (8) sincg’ € @ and by
definition D,%(p’) = V}.. Condition (9) is unchanged—it does not dependpois for the last condition,
it suffices to show thap’(x,u) = 0 whenevery (z,u) = 0; since for othenz, u), we havev(z,u) =0
by the optimality ofpy .

Using py = f(my), it follows that if

pv(z,u) = f(r:z,u) =PV (Xy =2z) my(ulz) =0

then one of the following holds.
(i) my (u|z) = 0, that is, actionu is never used in state, or
(i) P™ (X, =x) =0 for all ¢, that is, stater is never visited undety.

If (i) holds then, by (12)x’, 7' (u|z) = 0. Thereforepy’ (z,u) = f(7 : x,u) = 0.

If (ii) holds then note that’ does not introduce any new transitions to the process: ieljpehanges the
probability of transitions. But transitions that have pabbity 0 underry will also have the same probabil-
ity under 7. Thus if
f(ry s x,u) = py(z,u) =0 then f(«' : x,u) = p'(z,u) = 0 and the proof is complete. [
Clearly, the largetUy () is, the simpler it is to implement the policy. While not muchncbe said at
eachz, there is a general result on the combined size over allsstaegt 1 [A] be the indicator of the

eventA: that is, it is equall if A holds, and zero otherwise.
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Theorem 10 ([2], Theorem 3.8): There exists an optimal policy* for COP so that the number of

randomizations is at modt’. That is,

D 1 (uz) >0 -1) < K.
In particular, if K = 1 then there is an %ptimal policy* which chooses one action in every state, except
in one state, say,. This allows to say more about the case with one constraint.
Corollary 11: Consider the cas& =1 . Let 7* be an optimal policy for COP, and suppos&u|x)

is either( or 1 except atry and that

qv if u=1
T (ulzo) = (13)
1—qy ifu=14d"
Let 7 denote the policy which agrees with, except that atr, it chooses between’ and v” with

probability ¢ and1 — ¢ respectively. Let

N, AN
Vinin = inf Di(7?),  Vipae = sup Dy (79).
0<g<1 0<g<1

Then, for each,,,;, < a < Ve there is ag, so thatw? is optimal for COP with constraint.

Proof: By Lemma 7,D;(n?%) is continuous irg. The proof now follows from Theorem 8. =

A. Ineguality constraints
With MDP, constrained optimization with inequality coratits are more common. We now extend
our results to this case. Define
COPi: Find 7 that minimizesC ()
Subject toDy(m) < Vi, 1 <k < K.
Let my be optimal forCO Pi and suppose that

Dk(ﬂ'v) =V, k<K and Dk(ﬂ'v) < Vi, k>Kj.

Lemma 12: 7y is optimal for problemC'O Pi with constraintsk < K4, and with the constraints for
k > K; omitted.
The point is that the constraints that are not biding may b#ted) and optimality still holds. The proof
is immediate and is omitted.

Recall now the definition (12) of/y; and define

IIy = {r stationary,r(u|z) = 0 for all u € Uy (x),

Dip(n) < Vi, k> K1}, (14)
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By continuity, this set of policies is not empty, and congall policies which are close enough tg
and do not introduce new actions.

Recall the one-to-one correspondence between policiesoaodpation measures—Theorem 4. Let
{m;} be the (finite) collection of all deterministic policies Witut any actions ii/y,. By Theorem 3 for

any r € Il we can write
fm) = aif(m) (15)

for somewo; > 0 with Y. a; = 1. That is, f(7) is a convex combination of occupation measures
corresponding to deterministic policies.
Theorem 13: Let ' be any stationary policy ifily,. DenoteV, = Dy (n’) for k < K; and setV] =V,
for k > K;. Thenz' is optimal for COPi with constraint§), 1 <k < K.
Note thatDy(7") < Vi for k > K; by definition.

Proof: Let us representy using (15) with the coefficientsa; } andr’ with the coefficients{«/,}.
Definey = min;{«a;/a}} and note thaty < 1 and sovya) < «; for all i. Recall that each occupation
measure corresponds tgpan ) (Equation (2)), which is convex.

If 7/ is not optimal, then there exists sorfieso thatDy(7) < V/ for all k, andC(7) < C(n’). Note

that
PR (f(fr) — Z a;fm)) + f(mv) (16)

=~vf(7) —I-Z (ai —vap) f(m) (17)
is in Q. This is the case sinae; — vy« > 0 andy+ ), (o —va}) = 1, so thatp is a convex combination
of f(7) and thef(w;). From p, definey through (3). Now by (16) and Theorem 4, fbr< K,

Dy(p) = v (Dx(7) — Di(n")) + Dy.(nv) (18)
< Dy(mv) (19)
since for suchk we haveDy(u) < V) = Dy(n’). For k > K; we have thatD,(my) < V; and so, by

making~ smaller if necessary, we obtai (1) < Vj is this case as well. Thus we conclude tpaits

feasible for the constrainfg. Now

C(u) =~ (C(7) — C()) + C(mv) (20)
< C(mv), (21)
by assumption, a contradiction to the optimality af. |
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V. CONCLUSIONS

We introduced a new method to establish robustness of pslici constrained MDPs. The method
is clearly applicable to finite-horizon problems, and isoabpplicable to the average cost problem
under some recurrence conditions. With a small change invéhaées of the constrains, only a small
number of parameters need to be adjusted in order to retdimaljgy. This method was applied to

telecommunication networks in [7].
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