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Abstract

A Markovian queueing model is considered in which servers of various types work in parallel
to process jobs from a number of classes at rates µij that depend on the class, i, and the type,
j. The problem of dynamic resource allocation so as to minimize a risk-sensitive criterion is
studied in a law-of-large-numbers scaling. Letting Xi(t) denote the number of class-i jobs in the
system at time t, the cost is given by

E exp
{
n
[ ∫ T

0

h(X̄(t))dt+ g(X̄(T ))
]}

where T > 0, h and g are given functions satisfying regularity and growth conditions, and
X̄ = X̄n = n−1X(n·). It is well-known in an analogous context of controlled diffusion, and
has been shown for some classes of stochastic networks, that the limit behavior, as n → ∞, is
governed by a differential game (DG) in which the state dynamics are given by a fluid equation

for the formal limit φ of X̄, while the cost consists of
∫ T

0
h(φ(t))dt+ g(φ(T )) and an additional

term that originates from the underlying large-deviation rate function. We prove that a DG of
this type indeed governs the asymptotic behavior, that the game has value, and that the value
can be characterized by the corresponding Hamilton-Jacobi-Isaacs equation. The framework
allows for both fixed and growing number of servers N → ∞, provided N = o(n).

An additional contribution is the explicit solution of this DG in the case where the servers are
homogenous (µij = µi), h = 0 and g is linear, so that the cost takes the form E exp[

∑
i ciXi(nT )].

An optimal strategy for the DG is identified, that assigns jobs following a fixed priority rule,
specifically according to the index (1−e−ci)µi. This is reminiscent of the cµ rule, that is known
to be optimal under linear queue-length cost with weights ci.
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1 Introduction

In the parallel server model (PSM), servers of various types process jobs from a number of classes,
where each job requires service exactly once. Each class can be served at least by one of the types
of servers, but not necessarily by all. A natural problem is to find a dynamic resource allocation
policy to minimize a cost of interest. The model has been studied extensively in recent years due
to its relevance in telephone call centers and in computer data systems. A sample of references
treating this problem in fluid and diffusion regimes and via dynamic programming techniques is
[2], [6], [7], [8], [10], [11], [14], [15], [22], [23], [24] and [28] (see [1] for a more comprehensive list).

The operation of queueing systems so as to avoid large exceedances of queue length and waiting
time, such as for buffer overflow considerations or quality of service assurance, is of prime importance
in practice. A natural way to address these considerations is to associate to the model a risk-sensitive
cost criterion, that heavily penalizes such large exceedances. It is well-known for controlled diffusion
models [21], [18] and has been shown for classes of stochastic networks [4], [16], [3] that considering a
law-of-large-numbers scaling with this type of criterion brings into play large deviations phenomena,
due to the fact that the most significant contribution to the cost originates from atypically large
perturbations of the underlying state process. The dynamic control problem asymptotics can then
be analyzed by a differential game (DG) associated with a perturbed fluid model. As a result, the
asymptotic regime is different from the fluid or diffusion regimes. The goal of this paper is to study
optimal dynamic resource allocation for the PSM under a risk-sensitive criterion. Our results show
that a DG of the type alluded to above indeed governs the asymptotic behavior, that the game
has value, and that the value can be characterized by the corresponding dynamic programming
equation of Hamilton-Jacobi-Isaacs (HJI) type. Further, in a meaningful special case, we provide
an explicit solution to the DG, that can be regarded as an exponential version of the classical cµ
rule.

The model is treated in a Markovian setting, assuming that job arrival rates are proportional
to a (large) parameter n, and that the total processing capacity for class-i jobs by type-j servers
is given by µijn. Denoting by Xi(t) the number of class-i jobs in the system at time t, the cost is
given by

E exp
{
n
[ ∫ T

0
h(X̄(t))dt+ g(X̄(T ))

]}
(1)

where T > 0 is fixed, h and g are given functions, and X̄ = X̄n = n−1X(n·). Considering such a

cost for large values of n puts emphasis on large values of
∫ T
0 h(X̄(t))dt+g(X̄(T )). Qualitatively it

is obvious that the cost specified above is closely related to risk-sensitive costs for excessive waiting
time, and, in a model with customer abandonment from the queue, for large abandonment count.
This provided further motivation to study this problem. However, in this paper we do not make
precise statements regarding these alternative measures of performance.

The paper [4] studies a class of controlled stochastic networks of re-entrant line structure,
under a risk-sensitive cost associated with escape time (such as the time until the buffer limit is
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reached), establishing relations to the corresponding DG and HJI equation. A sequel [5] establishes
explicit solutions in the case of a network of queues in tandem. Our techniques borrow much from
[4]. However, there are several important aspects in which the treatments differ. First, the fixed
time horizon form of (1) is different from one based on exit time. Second, the unboundedness
of g makes the treatment of both the DG and the HJI equation more subtle. The most serious
difference, however, is that the re-entrant line structure prohibits routing control, where a job could
be handled by more than one server. In particular, a feature that makes the boundary analysis
convenient in [4] is the spacial homogeneity of the controlled generator in the ‘interior’ of the domain
(i.e., when Xi > 0 for all i), with boundary corrections given via a fixed, continuous Skorohod map.
This is not valid for the PSM. Indeed, already in the case of a single class with two servers, there
is difference between the set of possible jump intensities when there are two or more jobs in the
system (the jump rate from x to x − 1 could be as large as µ1 + µ2) and when there is only one
(the jump rate to zero is at most µ1 ∨ µ2). Although the Skorohod map plays an important role in
the present treatment, its use is less straightforward. In our first main set of results we rigorously
relate the control problem’s asymptotics to the DG, prove that it has value, and characterize it in
terms of a HJI equation.

For analogous treatments of other stochastic networks, explicit solutions were found by analysis
of the value function [16] and by using the PDE [5]. In this paper we find explicit solutions by
working directly with the DG. For that we focus on the case of homogenous servers (i.e., where
there is only one type of servers, so µij = µi), h = 0 and g linear. In this case the cost takes the
form E exp[

∑
i ciXi(nT )]. We show that the value of the game under the zero initial condition

gives the leading term in the large-T behavior of the value under a general initial condition. Next,
we provide exact analysis for the case of zero initial condition. We find an explicit expression for
the value of the game and identify an optimal strategy for the minimizing player. This strategy
selects jobs according to a fixed priority rule, in the order of the index (1− e−ci)µi.

The strategy alluded to above is reminiscent of the classical cµ rule that is optimal under
linear cost with weights ci. See [13], [9] for exact optimality results of the cµ rule, and [28], [24]
for asymptotic optimality in heavy traffic of a generalized version of this policy in the case of a
nonlinear cost (we emphasize that, although this paper also studies a nonlinear cost, our results
are different from those in the above references, and so is the structure of the policy). See also [6]
for a variation of the cµ rule for queueing models with abandonment. Like the classical cµ rule, the
strategy identified in this paper is simple and easy to implement. Another desired property is its
independence of the λi parameters. It is reasonable to expect due to the game representation, and
has been shown in [17] in a precise quantitative sense, that risk-sensitive control formulations give
rise to robustness with respect to perturbations in the distribution of the underlying primitives.
The fact that the strategy we have identified does not depend on the λi parameters is clearly a
manifestation of a strong robustness property.

The organization of the paper is as follows. The next section introduces the model and states
the first set of main results, that characterize the asymptotics in terms of the DG and HJI equation.
Section 3 introduces tools required to prove these results. Section 4 addresses the stochastic control
problem – DG relation, while Section 5 proves the DG – PDE relation. Finally, Section 6 analyzes
the DG in the case where h = 0 and g is linear and identifies an optimal index strategy for the DG.
The appendix contains an argument for showing that this strategy is well-defined.
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2 Model and main results

The model is parameterized by n ∈ N. It consists of I customer classes and J service stations,
where station j ∈ J := {1, 2, . . . , J} contains Nj(n) ≥ 1 identical servers. While I and J are fixed,
Nj = Nj(n) may vary with n. Denoting N(n) =

∑
j Nj(n), it is assumed that

lim
n→∞

N(n)

n
= 0. (2)

Note that having Nj(n) = Nj fixed (independent of n) is a legitimate special case.

Arrivals into the system occur according to independent Poisson processes, denoted by Ei,
i ∈ I := {1, 2, . . . , I}, with respective parameters λi(n), where

λi(n) = λin, i ∈ I, (3)

and λi > 0 are fixed. The servers are exponential, where a class-i customer can be served at rate
µij(n) ≥ 0 by a server from station j. Having µij(n) = 0 is possible, and means that a server from
station j is unable to serve a class-i customer. It is assumed that the total processing capacity of
class-i customers by station j, namely Nj(n)µij(n) satisfies

Nj(n)µij(n) = µijn, i ∈ I, j ∈ J , (4)

where µij ≥ 0 are fixed. Thus both the arrival rates and the per-station total service capacity scale
like n.

Denote the number of class-i customers in the system at time t by Ξn,i
t and write Ξn =

(Ξn,i
t )i∈I,t≥0 for the process taking values in ZI

+. A normalized version is

Xn
t = n−1Ξn

t , t ≥ 0, (5)

which is a process taking values in Gn := n−1ZI
+. Denote G = RI

+.

Control processes will be associated with service allocation. We first describe the action space.
An allocation matrix is any member of

U :=
{
u ∈ RI×J

+ :
∑
i∈I

uij ≤ 1, j ∈ J
}
. (6)

If u ∈ U and Nj(n)uij is an integer for all i, j, this quantity represents the number of servers from
station j allocated to serve class-i customers. For simplicity, the product Nj(n)uij is not required
to be integer, and thus a server may work on more than one job instantaneously. The precise
formulation of control is based on the martingale approach. To describe it, introduce the controlled
generator acting on the space of functions Gn → R. It is given, for each n ∈ N and u ∈ U , by

Ln,uf(x) =
∑
i∈I

nλi(f(x+
1

n
ei)−f(x))+

∑
(i,j)∈I×J

nµijuij(f(x−
1

n
ei)−f(x))1{x− 1

n
ei∈RI

+}, x ∈ Gn,

(7)
where {ei} denote the standard basis of RI . Let a complete probability space (Ω,F ,P) be given,
supporting the processes defined below. Given n and an initial condition (t, x) ∈ R+ × Gn, a
control system starting from (t, x) is a triplet Sn = (Un, Xn, (Fs)s≥t), where Un and Xn are
processes defined on [t,∞), taking values in U and Gn, respectively, and having RCLL sample
paths, Fs ⊂ F , s ≥ t forms a filtration to which these processes are adapted, and
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• P(Xn
t = x) = 1;

• One has ∑
j∈J

Nj(n)U
n
ij ≤ Ξn,i ≡ nXn,i, i ∈ I ; (8)

• For each bounded f : Gn → R, the process

f(Xn
s )−

∫ s

t
Ln,Un(r)f(Xn

r )dr, s ≥ t (9)

is a martingale w.r.t. (Fs)s≥t.

Un is said to be a control and Xn the associated controlled Markov process. Given n and (t, x) ∈
R+ ×Gn, denote by Sn,t,x the corresponding class of control systems.

To present the risk sensitive control problem, let h and g be globally Lipschitz functions from
RI
+ to R, monotone nondecreasing with respect to the usual partial order on RI

+. Further, assume
that the function h is bounded. Fix T > 0. The cost associated to a member S = (Un, Xn, (Fn

s ))
of Sn,t,x (where t ∈ [0, T ]) is given by

Cn(t, x, S) =
1

n
logE[en[

∫ T
t h(Xn

s )ds+g(Xn
T )]]. (10)

The value function is given by

V n(t, x) = inf
S∈Sn,t,x

Cn(t, x, S), t ∈ [0, T ), x ∈ Gn. (11)

The first main result relates the limit of V n, as n → ∞, to a PDE of Hamilton-Jacobi-Isaacs
type. To state it we need some notation. Set m0 = ((λi)i∈I , (µij)i∈I,j∈J ). Then m0 is a member
of M := RI

+ × RI×J
+ . We write generic members of M as m = ((λ̄i)i∈I , (µ̄ij)i∈I,j∈J ). While λ and

µ denote the actual arrival and service parameters for the system, a possibly different member m
of M will be interpreted as a perturbed set of parameters. For u ∈ U and m ∈M , let

v(u,m) =
∑
i

λ̄iei −
∑
ij

uijµ̄ijei (12)

ρ(u,m) =
∑
i

λi l
( λ̄i
λi

)
+

∑
ij

uijµij l
( µ̄ij
µij

)
, (13)

where

l(x) =


x log x− x+ 1, x ≥ 0,

+∞, x < 0,

with the convention 0 log 0 = 0 and l(ε/0) = ∞ for ε > 0. Let

H(p) = inf
u∈U

sup
m∈M

[⟨p, v(u,m)⟩ − ρ(u,m)], p ∈ RI . (14)
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Let I : ∂G→ 2I be defined by
I(x) = {i ∈ I : xi = 0}.

The HJI equation, considered with boundary and terminal conditions, is as follows (denoting Vt as
the derivative of V w.r.t. t, and DV the gradient of V w.r.t. x):

Vt +H(DV ) + h = 0 in [0, T )×Go,

⟨DV (t, x), ei⟩ = 0 x ∈ ∂G, i ∈ I(x),

V (T, x) = g(x) x ∈ G.

(15)

The precise definition of a solution to equation (15) is given in Section 3.

Theorem 2.1. Given t ∈ [0, T ] and Gn ∋ xn → x ∈ G,

lim
n→∞

V n(t, xn) = V (t, x),

where V is the unique viscosity solution of (15).

While the above result characterizes the limit behavior of V n in terms of the HJI equation, we
will have an additional characterization of it as the value of a DG (Theorem 3.1).

3 Preliminaries

We introduce the main tools on which the proof of Theorem 2.1 relies: (1) Two alternative queueing
models, used to bound the performance of the original model. (2) Viscosity solutions of equation
(15). (3) A differential game. At the end of this section we provide the proof of Theorem 2.1, that
uses these tools, and present Theorem 3.1 regarding the relation to the DG.

3.1 Two alternative models

The constraint (8) is difficult to work with directly. We introduce two models that are more
convenient, not having such a constraint. They will be used to treat the original model.

Model (a): Recall the definition of the class Sn,t,x. We let S(a)
n,t,x be defined the same way,

except that the constraint (8) is removed, and call the resulting model Model (a). In the original
model, the total processing rate for a given class i, namely

∑
j nµijU

n
ij , can get as large as

∑
j nµij ,

provided Ξn,i ≥ N(n) (see (7) and (8)). Indeed, this is achieved by selecting Un
ij = 1 for all j,

which corresponds to a situation where class i occupies all servers in every station of the system.
When Ξn,i is less than N(n), the maximum possible total processing rate for class i decreases in
the original model, while in Model (a) it remains at the same level. A physical interpretation of
Model (a) could be that multiple servers can simultaneously work on a single job, having their
processing rates sum up.

As is clear from the very definition of the two models, Sn,t,x ⊂ S(a)
n,t,x.
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Model (b): S(b)
n,t,x is defined by replacing (8) by the requirement that, for each i ∈ I,

Ξn,i ≤ N(n) implies
∑
j∈J

Un
ij = 0. (16)

The physical meaning of the resulting model, called Model (b), is that one simply ceases to serve
class-i customers whenever they are too few. Based on (6), it is clear that (16) implies (8). As a

result, S(b)
n,t,x ⊂ Sn,t,x.

The two models automatically provide bounds on the original model. That is, for n ∈ N and
t ∈ [0, T ), x ∈ Gn,

Qn(t, x) := inf
S∈S(a)

n,t,x

Cn(t, x, S) ≤ V n(t, x) ≤ Rn(t, x) := inf
S∈S(b)

n,t,x

Cn(t, x, S). (17)

Models (a) and (b) are quite similar: the controlled transition rates are of the same form∑
j nµijuij in direction −ei, for arbitrary u ∈ U . Further, denote

νn =
N(n)

n
.

Let ν̄n ∈ RI denote the vector (νn, . . . , νn). Set

G∗
n = {x+ ν̄n : x ∈ Gn}, G#

n = Gn \G∗
n. (18)

Then by (16) and the form of the generator (7), under Model (b), if Xn starts in G∗
n it will never

leave this set. This is analogous to the fact that under Model (a) each Ξn,i satisfies a nonnegativity
constraint.

The following useful estimates on these models are proved in Section 4. Throughout, ∥ · ∥
denotes the Euclidean norm.

Lemma 3.1. There exists a constant c0 such that, for all n, t ∈ [0, T ],

|Qn(t, x)−Qn(t, x′)| ≤ c0∥x− x′∥, x, x′ ∈ Gn, (19)

|Rn(t, x)−Rn(t, x′)| ≤ c0∥x− x′∥, x, x′ ∈ G∗
n, (20)

Rn(t, x) ≤ Rn(t, x+ ν̄n) + c0νn, x ∈ G#
n , (21)

Rn(t1, x) ≤ Rn(t, x) + c0(t1 − t), x ∈ G∗
n, t1 ∈ (t, T ]. (22)

3.2 Viscosity solutions

Solutions to equation (15) are defined in the viscosity sense.

Definition 3.1. Let V : [0, T ]×G→ R be continuous in the first variable, uniformly over [0, T ]×G,
and satisfy a global Lipschitz condition in the second, namely

sup{|x− y|−1|V (t, x)− V (t, y)| : t ∈ [0, T ], x ̸= y ∈ G} <∞.
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Then V is said to be a sub (super) solution of (15) if V (T, ·) = g, and, whenever θ ∈ C∞ and V −θ
has a local maximum (minimum) at (t, x) ∈ [0, T )×G, the following holds

[θt(t, x) +H(Dθ(t, x)) + h(x)] ∨ max
i∈I(x)

⟨Dθ(t, x), ei⟩ ≥ 0(
[θt(t, x) +H(Dθ(t, x)) + h(x)] ∧ min

i∈I(x)
⟨Dθ(t, x), ei⟩ ≤ 0

)
.

A function is said to be a solution if it is both a sub- and a supersolution.

Proposition 3.1. Let u be a subsolution and v be a supersolution. Then u ≤ v.

Note that this result, proved in Section 5, gives uniqueness of solutions.

3.3 A differential game

Fix T > 0. Given t ∈ [0, T ), denote by D([t, T ];Rk) the space of RCLL functions mapping [t, T ] to
Rk. The one-dimensional Skorohod map Γ1 = Γ t,T

1 from D([t, T ] : R) to itself is given by

Γ1[ψ](s) = ψ(s)− inf
r∈[t,s]

ψ(r) ∧ 0, s ∈ [t, T ]. (23)

Let Γ = Γ t,T mapping D([t, T ] : RI) to itself be given by

Γ [ψ]i = Γ1[ψi], for i ≤ I. (24)

Γ is often called the Skorohod map on G with normal constraint. It is clear from the definition
that, for ψ, ϕ ∈ D([t, T ];RI),

sup
[t,T ]

∥Γ [ψ]− Γ [ϕ]∥ ≤ 2 sup
[t,T ]

∥ψ − ϕ∥. (25)

Let
Ū = {u : [0, T ] → U ;u is measurable},

M̄ = {m : [0, T ] →M ;m is measurable, l ◦m is locally integrable}.

We describe a deterministic two-player zero-sum differential game where one player attempts to
minimize a cost c (yet to be defined) by selecting a member of Ū , corresponding to service allocation,
and the other one chooses a member of M̄ , interpreted as perturbed arrival and service rates, to
maximize c. To this end, consider the dynamics of the game,

ψ(s) = x+

∫ s

t
v(u(r),m(r))dr, s ∈ [t, T ],

φ = Γ [ψ].

(26)

Let the cost be defined by

c(t, x, u,m) =

∫ T

t
[h(φ(s))− ρ(u(s),m(s))]ds+ g(φ(T )), (27)
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where φ = φ(·; t, x, u,m) is given by (26). Note that neither the dynamics nor the cost are affected
by the value of the controls u and m on [0, t).

To define the game in the sense of Elliott and Kalton [19], we consider the notion of strategies.

To this end, we endow Ū and M̄ with the metric d(v1, v2) =
∫ T
0 ∥v1(t) − v2(t)∥dt, and with the

corresponding Borel σ-fields. A mapping α : M̄ → Ū is called a strategy for the minimizing player
if it is measurable and if for every m, m̃ ∈ M̄ and s ∈ [0, T ],

m(r) = m̃(r) for a.e. r ∈ [0, s] implies α[m](r) = α[m̃](r) for a.e. r ∈ [0, s].

In a similar way a strategy for the maximizing player is defined by a mapping β : Ū → M̄ . The
set of all strategies for the minimizing (respectively, maximizing) player will be denoted by A
(respectively, B). The upper value for the game is defined as

V +(t, x) = sup
β∈B

inf
u∈Ū

c(t, x, u, β[u]),

and the lower value as
V −(t, x) = inf

α∈A
sup
m∈M̄

c(t, x, α[m],m).

The game is said to have value if the value functions V + and V − coincide. The game is related
to the stochastic control problem on the one hand, and to the PDE on the other hand, by the
following two results.

Proposition 3.2. Fix x ∈ G and t ∈ [0, T ]. Then

lim sup
n→∞

Rn(t, xn) ≤ V −(t, x) if G∗
n ∋ xn → x, (28)

and
lim inf
n→∞

Qn(t, xn) ≥ V +(t, x) if Gn ∋ xn → x. (29)

Proposition 3.3. Both V + and V − are solutions of (15).

Proposition 3.2 is proved in Section 4. Given the Lipschitz property of the value functions, that
is proved in Lemma 5.1 at Section 5, the proof of Proposition 3.3 is analogous to that of Theorem
6 in [4], and therefore we omit it.

3.4 Proof of main results

Proof of Theorem 2.1. First, note that Propositions 3.1 and 3.3 imply that the game has value,
and that the value function V := V + = V − uniquely solves the PDE (15). Next, fix t ∈ [0, T ] and
x ∈ G. To prove the theorem, it suffices to consider only sequences of the form G∗

n ∋ xn → x and
G#

n ∋ xn → x. In the former case, the combination of (17) and Proposition 3.2 shows

limV n(t, xn) = V (t, x),
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as required. Consider now the case G#
n ∋ xn → x. By (17) and (29), we still have a lower bound

of the form V (t, x). While (28) does not directly apply as an upper bound, its combination with
(17) and (21), noting that yn := xn + ν̄n ∈ G∗

n and νn → 0, gives

lim supV n(t, xn) ≤ lim supRn(t, yn) ≤ V (t, x).

This completes the proof of the theorem.

As a consequence, we obtain an alternative characterization of the asymptotic behavior of V n.

Theorem 3.1. For Gn ∋ xn → x ∈ G and t ∈ [0, T ], limn→∞ V n(t, xn) = V (t, x), where V is the
value of the DG.

4 The stochastic control problem and the differential game

In this section we prove Lemma 3.1 and Proposition 3.2.

We begin with a result showing that the DG’s value functions do not vary upon truncating the
space M . For b > 0, denote

Mb = {m = (λ̄i, µ̄ij) ∈M : λ̄i ≤ b, µ̄ij ≤ b, i ∈ I, j ∈ J },

and let M̄b be defined as M̄ , with M replaced by Mb. Let also Bb be defined similarly to B, with
M̄ replaced by M̄b. Thus a strategy β ∈ Bb maps Ū into M̄b. Finally, analogously to V + and V −,
set

V +
b (t, x) = sup

β∈Bb

inf
u∈Ū

c(t, x, u, β[u]),

V −
b (t, x) = inf

α∈A
sup

m∈M̄b

c(t, x, α[m],m).

The proof of the following lemma appears at the end of the section.

Lemma 4.1. For sufficiently large b

V b,±(t, x) = V ±(t, x). (30)

Next we prove Lemma 3.1. The proof uses a controlled generator similar to (7), for a process
that need not be constrained to Gn but lives in n−1ZI , namely

Ln,u
0 f(x) =

∑
i∈I

nλi(f(x+
1

n
ei)− f(x)) +

∑
(i,j)∈I×J

nµijuij(f(x− 1

n
ei)− f(x)), x ∈ Gn, (31)

for f : n−1ZI → R.

Proof of Lemma 3.1. We first prove (19). Fix (t, x, x′). Fix also S = (Un, Xn, (Fn
s )) ∈ S(a)

n,t,x.
One can construct a process Y n, a filtration F̄n

s containing Fn
s , s.t. P(Y n

t = x) = 1, Xn = Γ [Y n],
and for each bounded f : n−1ZI → R,

f(Y n
s )−

∫ s

t
Ln,Un(r)
0 f(Y n

r )dr, s ≥ t,
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is a martingale w.r.t. (F̄s). Such a construction, that uses additional exponential clocks for jumps
of Y n that occur when Xn is on the boundary, is standard, and we omit the details.

Next let us construct on the new filtration a controlled process X ′n starting from x′, simply by
setting X ′n = Γ [x′ − x+ Y n]. Then one directly verifies by the properties of Y n and the Skorohod

map, that S′ = (X ′n, Un, (F̄n
s )) ∈ S(a)

n,t,x′ . Now, using (25), sups∈[t,T ] ∥X ′n(s)−Xn(s)∥ ≤ 2∥x−x′∥,
and therefore by (10), Cn(t, x, S) − Cn(t, x

′, S′) ≤ c0∥x − x′∥, using the global Lipschitz property

of h and g. Taking the infimum over S ∈ S(a)
n,t,x shows Qn(t, x) ≤ Qn(t, x′) + c0∥x − x′∥, and the

result (19) follows.

Toward proving (20), the following simple relation between Qn and Rn will be useful. Write
Qn(t, x, g̃, h̃) for the value function Qn of (17) where, in the cost function Cn (10), one replaces h
and g by h̃ and g̃, respectively. Then

Rn(t, x+ ν̄n) = Qn(t, x; g(·+ ν̄n), h(·+ ν̄n)), t ∈ [0, T ], x ∈ Gn. (32)

To obtain this identity, we will argue by correspondences between members of S(a)
n,t,x and members

of S(b)
n,t,x+ν̄n . To this end, we first make the following observation. Recall that the way Model (a) is

defined does not put any constraint on the process Un (taking values in U), whereas under Model
(b), (16) must be satisfied. Now, the form of the generator Ln,u (7) is such that whenever xi = 0
for some i, the value of ui,j , j ∈ J is immaterial. Hence given any control system (Un, Xn, (Fs)) ∈
S(a)
n,t,x, we may assume w.l.o.g., that, for each i ∈ I,

∑
j U

n
ij(s) = 0 for a.e. s for which Xn

i (s) =

0. With this at hand, given a control system S = (Un, Xn, (Fs)) ∈ S(a)
n,t,x starting from (t, x),

(Un, Xn + ν̄n, (Fs)) is clearly a member of S(b)
n,t,x+ν̄n (satisfying, in particular, (16)). On the other

hand, given S ∈ S(b)
n,t,x+ν̄n one automatically has (Un, Xn, (Fs)) ∈ S(a)

n,t,x. These correspondences
and the definition of Rn and Qn yield (32).

Equipped with the above identity, the claim (20), regarding Rn, follows from the estimate just
obtained on Qn.

The proof of (21) is similar to that of (19), and thus omitted.

Finally, we prove (22). Fix x ∈ G∗
n and 0 ≤ t < t1 ≤ T . By standard considerations, Rn, defined

as the value function of a control problem (17), satisfies the dynamic programming principle, namely

Rn(t, x) = inf
1

n
logE[en[

∫ t1
t h(Xn

s )ds+Rn(t1,Xn
t1
)]],

where, as in (17), the infimum is over S ∈ S(b)
n,t,x. Given ε > 0, let S and the corresponding

controlled process Xn be such that

Rn(t, x) + ε ≥ 1

n
logE[en[

∫ t1
t h(Xn

s )ds+Rn(t1,Xn
t1
)]].

Denote by −c1 a lower bound on h. Using Jensen’s inequality,

Rn(t, x) + ε ≥ −c1(t1 − t) + E[Rn(t1, X
n
t1)].

Hence
Rn(t1, x)−Rn(t, x) ≤ ε+ c1(t1 − t)− E[Rn(t1, X

n
t1)−Rn(t1, x)].

11



The jump intensities of Xn are bounded, uniformly over all control systems S, by c2n, where c2 does
not depend on S, n, t1, ε. Hence the number of jumps that Xn performs over [t, t1] is dominated by
a Poisson r.v. of mean c2n(t1 − t), whereas the size of each jump is 1/n. Along with the estimate
(20) (and recalling that from x ∈ G∗

n the process can only jump to sites in G∗
n), this shows that

|E[Rn(t1, X
n
t1)−Rn(t1, x)]| ≤ c0E[∥Xn

t1 − x∥] ≤ c0
1

n
c2n(t1 − t) = c0c2(t1 − t).

We obtain
Rn(t1, x)−Rn(t, x) ≤ ε+ (c1 + c0c2)(t1 − t).

Sending ε→ 0, the result follows.

The value function Qn, defined in terms of the cost Cn (10), clearly satisfies a certain dynamic
programming equation (DPE) of Bellman type on [0, T ]×Gn. It will be more convenient, however,
to take advantage of the fact that, owing to the logarithmic transformation appearing in (10),
Qn also satisfies a DPE of Isaacs type, corresponding to the value of a game. In this game, an
additional player is introduced, controlling the transition rates. By considering this equation we
follow the approach of [21], see also [20], Chapter VI.

To this end, we introduce the following two controlled generators. They are similar to (7) and
(31), but now m = (λ̄, µ̄) are also controlled, namely

Ln,u,mf(x) =
∑
i∈I

nλ̄i(f(x+
1

n
ei)− f(x)) +

∑
(i,j)∈I×J

nµ̄ijuij(f(x− 1

n
ei)− f(x))1{x− 1

n
ei∈RI

+},

for f : Gn → R, and

Ln,u,m
0 f(x) =

∑
i∈I

nλ̄i(f(x+
1

n
ei)− f(x)) +

∑
(i,j)∈I×J

nµ̄ijuij(f(x− 1

n
ei)− f(x)),

for f : n−1ZI → R. The function Qn : [0, T ]×Gn → R is continuously differentiable in t for every
x, and satisfies the following Isaacs equation,

infu∈U supm∈M (Ln,u,mQn(t, x) + d
dtQ

n(t, x) + h(x)− ρ(u,m)) = 0,

Qn(T, x) = g(x).

(33)

The proof of these facts is very similar to that of Lemma 1 of [4], hence omitted.

Lemma 4.2 below regards the existence of processes governed by the generators just introduced.
To state it, we need some additional notation.

Recall the definition of Γ based on the one-dimensional Skorohod map (23). We define a family
of Skorokhod maps Γn, each mapping D([t, T ] : RI) to itself, by

Γn[ψ]i := Γ1[ψi − νn] + νn, i ≤ I.

In fact, Γn is the Skorohod map on G + ν̄n ≡ {x ∈ RI : xi ≥ νn, i ≤ I}, with normal constraint.
Note that

∥Γn[ψ]− Γ [ψ]∥ ≤ Iνn, ψ ∈ D([t, T ] : RI). (34)

12



For f : G∗
n → R, denote

L̃n,u,mf(x) = n
∑
i

λ̄i(f(x+
1

n
ei)− f(x))

+ n
∑
ij

µ̄ijuij(f(x− 1

n
ei)− f(x))1{x− 1

n
ei∈G∗

n}, x ∈ G∗
n, u ∈ U, m ∈M. (35)

The proof of the following result is similar to the proof of Lemmas 7 and 8 of [4], and thus
omitted.

Lemma 4.2. Fix n, t ∈ [0, T ), and b > 0.
i. Fix x ∈ Gn. Let a measurable function u : [t, T ] × Gn → U and a strategy β ∈ Bb be given.
Then there exists a filtered probability space (Ω̄, F̄ , {F̄s}[t,T ], P̄), and (F̄s)-adapted RCLL processes

X̄, Ȳ , m̄ and ū, taking values in Gn, n
−1ZI , M and U , respectively, such that P̄-a.s., m̄ = β[ū],

ū(s) = u(s, X̄(s)), s ∈ [t, T ], X̄ = Γ (Ȳ ), X̄(t) = Ȳ (t) = x and

f(s, X̄(s))−
∫ s

t

(
Ln,ū(r),m̄(r)f(r, X̄(r)) +

∂

∂r
f(r, X̄(r))

)
dr (36)

and

f(s, Ȳ (s))−
∫ s

t

(
Ln,ū(r),m̄(r)
0 f(r, Ȳ (r)) +

∂

∂r
f(r, Ȳ (r))

)
dr (37)

are (F̄s)-martingales for all bounded f having continuous time derivative.

ii. Fix x ∈ G∗
n. Let a measurable function m : [t, T ] × G∗

n → Mb and a strategy α ∈ A be given.
Then there exists a filtered probability space (Ω̄, F̄ , {F̄s}[t,T ], P̄), and (F̄s)-adapted RCLL processes

X̄, Ȳ , m̄ and ū, taking values in G∗
n, n

−1ZI , M and U , respectively, such that P̄-a.s., ū = α[m̄],
m̄(s) = m(s, X̄(s)), s ∈ [t, T ], X̄ = Γn[Ȳ ], X̄(t) = Ȳ (t) = x, and the process defined as in (36),
replacing L by L̃, as well as the process defined as in (37), are (F̄s)-martingales for all bounded f
having continuous time derivative.

Proof of Proposition 3.2. We first prove the second assertion, namely (29). Fix t0 ∈ [0, T ), x0
and Gn ∋ xn → x0. It follows from Lemma 4.1 that to show

lim inf
n→∞

Qn(t0, x
n) ≥ V +(t0, x0), (38)

it suffices that for each β ∈ Bb (where b is sufficiently large),

lim inf
n→∞

Qn(t0, x
n) ≥ c(t0, x0, β) := inf

u∈Ū
c(t0, x0, u, β[u]). (39)

We fix such β and turn to prove (39).

Since U is compact and convex, and the objective function in (33) is affine in u and concave
in m, the outer minimum in (33) is achieved. We denote by u = un(t, x) a minimizer in (33).
Furthermore, the minimizer un(t, x) can be selected as a measurable function of t and x (see
Theorem 2.2 in [25]). Then from (33) we have

Ln,un(t,x),mQn(t, x) +
d

dt
Qn(t, x) + h(x)− ρ(un(t, x),m) ≤ 0, m ∈M, t ∈ [t0, T ], x ∈ Gn. (40)
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We invoke Lemma 4.2(i) with u = un and the given β. With replacing x by X̄n
t in (40), un(t, x) by

ūn(t) = un(t, X̄n(t)) and m = m̄n(t) := β[ūn](t), we have, P̄-a.s.,

Ln,ūn(t),m̄n(t)Qn(t, X̄n(t)) +
d

dt
Qn(t, X̄n(t)) + h(X̄n(t))− ρ(ūn(t), m̄n(t)) ≤ 0.

Consider the stopping times τL := inf{t ≥ t0 : ∥X̄n
t − x0∥ ≥ L} for positive L. Set Qn

L :=
max[t0,T ]×BL(x0)Q

n(t, x), where BL(x0) is the intersection of Gn and the I-dimensional ball of
radius L, centered at x0. Substituting s = T ∧ τL, f = Qn ∧Qn

L in (36), using the above inequality
and taking expectation,

Ēn

[
Qn(T ∧ τL, X̄n(T ∧ τL))−Qn(t0, x

n) +

∫ T∧τL

t0

(h(X̄n(r))− ρ(ūn(r), m̄n(r)))dr

]
≤ 0.

Denote by κn,L the random variable inside the expectation. The assumed monotonicity of h and
g implies that they are bounded below by h(0) and g(0), respectively. It follows by definition of
Qn that it is also bounded below. Since we also have m̄n(r) ∈ Mb, κn,L is bounded below by a
constant not depending on L. Hence, using Fatou’s lemma, Ēn lim infL κn,L ≤ 0. Since β ∈ Bb, the
processes X̄n are dominated in law by n−1 times a Poisson process with a given rate (that depends
only on n). Hence limL τL = ∞, a.s., and

Ēn

[
Qn(T, X̄n(T ))−Qn(t0, x

n) +

∫ T

t0

(h(X̄n(r))− ρ(ūn(r), m̄n(r)))dr

]
≤ 0.

Since Qn(T, x) = g(x) for all x, we obtain

Qn(t0, x
n) ≥ Ēn

[∫ T

t0

(h(X̄n(r))− ρ(ūn(r), m̄n(r)))dr + g(X̄n(T ))

]
. (41)

From the definition of c we have P̄-a.s.,∫ T

t0

[h(φn(r))− ρ(ūn(r), m̄n(r))] dr + g(φn(T )) ≥ c(t0, x0, β), (42)

where φn = Γ (ψn) and ψn(s) := x0 +
∫ s
t0
v(ūn(r), m̄n(r))dr, s ∈ [t0, T ]. Combining (41) and (42),

Qn(t0, x
n) ≥ c(t0, x0, β)− εn,

where

εn = Ēn
[ ∫ T

t0

|h(X̄n(r))− h(φn(r))|dr + |g(X̄n(T ))− g(φn(T ))|
]
. (43)

Using the Lipschitz continuity of h, g and the map Γ (in the sense of (25)), denoting ∥f∥∗ :=
sup[t0,T ] ∥f∥, we have

εn ≤ c1Ēn[∥Ȳ n − ψn∥∗],

where c1 is a constant not depending on n.
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Toward proving that εn converges to zero, write m̄n(s) = (λ̄ni (s), µ̄
n
ij(s)), and observe by (37)

with f(s, y) = yi, and (12), that

Ȳ n(s)− xn =

∫ s

t0

∑
i

λ̄ni (r)ei −
∑
ij

µ̄nij(r)ū
n
ij(r)ei

 dr + ηn1 (s)

=

∫ s

t0

v(ūn(r), β[ūn](r))dr + ηn1 (s)

= ψn(s)− x0 + ηn1 (s),

where each of the components of ηn1 is a zero mean martingale. Given i, write Mn for the ith
component ⟨ei, ηn1 ⟩. By the Burkholder-Davis-Gundy inequality,

Ēn{(∥M∥∗)2} ≤ c2Ēn{[Mn,Mn]T },

where c2 is a universal constant, and [Mn,Mn] is the quadratic variation process (see [26] p. 58,
and p. 175). Note that Mn has sample paths that are piecewise absolutely continuous, null at
zero. Hence [Mn,Mn]T is given by

∑
s≤T ∆M

n(s)2 (see for example [26], Theorem 22(ii), p. 59).

Each jump of Mn is of size n−1. Hence Ēn{(∥Mn∥∗)2} ≤ c2n
−2Ēn[Nn], where Nn is the number of

jumps of ηn1 (equivalently, Ȳ n) in the interval. Since m̄n is bounded, Nn is dominated by a Poisson
r.v. of mean O(n). This shows Ēn{(∥Mn∥∗)2} ≤ O(n−1). As a consequence, Ēn∥ηn1 ∥∗ → 0, and
since xn → x0, εn → 0. This shows (39) and completes the proof of the second assertion of the
Proposition.

We next prove the first assertion of the proposition. To this end, we fix t0 and a sequences
G∗

n ∋ xn → x0. To prove
lim sup
n→∞

Rn(t0, x
n) ≤ V −(t0, x0), (44)

it suffices to show that, for any α ∈ A,

lim sup
n→∞

Rn(t0, x
n) ≤ c̃(t0, x0, α) := sup

m∈M̄
c(t0, x0, α[m],m). (45)

Thus, fixing α, we will prove (45).

Using the relation between Rn and Qn given in (32), it follows from (33) that the function
Rn : [0, T ] × G∗

n → R (that is, the restriction of Rn to [0, T ] × G∗
n, that we still denote by Rn) is

continuously differentiable in t for every x, and satisfies
infu∈U supm∈M (L̃n,u,mRn(t, x) + d

dtR
n(t, x) + h(x)− ρ(u,m)) = 0, t ∈ [0, T ], x ∈ G∗

n,

Rn(T, x) = g(x), x ∈ G∗
n.

(46)
By [27], Corollary 37.3.2, we may interchange the order of infimum and supremum in (46). It is
easy to see that the supremum over m is achieved, as that of a continuous function with compact
super level sets. We denote by m = mn(t, x) a point where this maximum (with reversed order) is
achieved. Thus

L̃n,u,mn(t,x)Rn(t, x) +
d

dt
Rn(t, x) + h(x)− ρ(u,mn(t, x)) ≥ 0 u ∈ U, t ∈ [t0, T ], x ∈ G∗

n. (47)
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Toward using Lemma 4.2(ii), let us argue that mn is bounded. Indeed, by the structure (35) of L̃
and the estimate (20) on Rn, the first term on the r.h.s. of (47) is bounded by C∥mn∥, where C is
a constant and ∥mn∥ = supt,x ∥mn(t, x)∥. Since by (22) we also have that d

dtR
n(t, x) is uniformly

bounded, and h is bounded by assumption, this gives, for every u, t, x the inequality

ρ(u,mn(t, x)) ≤ C(1 + ∥mn∥),

for some constant C independent of u, t, x, n. By the form (13) of ρ, noting that l is superlinear
and selecting u bounded away from zero, it follows that γ(∥mn∥) ≤ C(1 + ∥mn∥) where γ is some
function satisfying γ(r)/r → ∞ as r → ∞. This shows that mn are bounded.

Consider Lemma 4.2(ii) with m = mn and the given α. Replace x by X̄n
t in (47) (note that X̄n

takes values in G∗
n), m

n(t, x) by m̄n(t) = mn(t, X̄n(t)) and u by ūn := α[m̄n](t), to obtain, P̄-a.s.,

L̃n,ūn(t),m̄n(t)Rn(t, X̄n(t)) +
d

dt
Rn(t, X̄n(t)) + h(X̄n(t))− ρ(ūn(t), m̄n(t)) ≥ 0.

Take expectation in (36), substitute t = T , f = Rn and use Rn(T, x) = g(x) for all x, to obtain

Rn(t, xn) ≤ Ēn

[∫ T

t
(h(X̄n(s))− ρ(un(s), m̄n(s)))ds+ g(X̄n(T ))

]
. (48)

Here, we have omitted an argument to go from a truncated version of Rn to Rn, analogous to that
used in the first part of the proof. By definition of c̃ we have P̄-a.s.,∫ T

t0

[h(φn(s))− ρ(ūn(s), m̄n(s))] ds+ g(φn
T ) ≤ c̃(t0, x0, α), (49)

where φn = Γ (ψn) and ψn(s) := x0 +
∫ s
t v(ū

n(r), m̄n(r))dr, s ∈ [t0, T ]. Thus

Rn(t0, x
n) ≤ c̃(t0, x0, α) + ε̃n,

where ε̃n has the same form as εn of (43). The argument that ε̃n → 0 is similar to that for εn.
This establishes (45) and completes the proof of assertion (44).

Proof of Lemma 4.1. Without loss of generality we set t = 0. We only prove V b,+(0, x) =
V +(0, x) (for b sufficiently large), because the proof regarding V − is similar. Recall that Bb denotes
the set of strategies of perturbed rates whose components are all bounded above by the constant b.
Denote by Bb,µ, Bb,λ ⊂ B the sets of strategies of perturbed rates whose service and, respectively,
arrival components are always bounded above by b. Thus Bb = Bb,µ

∩
Bb,λ.

Corresponding to a given m ∈ M̄ , we construct a specific truncation m̃, where only the service
rates are truncated in the following way: µ̃ij := µ̄ij ∧ b for all i, j, whereas λ̃i = λ̄i. Given m ∈ M̄
and u ∈ Ū , denote by φ and φ̃ the state dynamics for (m,u) and, respectively, (m̃, u). Using vector
relation v(u(t),m(t)) ≤ v(u(t), m̃(t)) for all t ∈ [0, T ], we have ψ(t) ≤ ψ̃(t) (in the usual partial
order on RI) and, using the monotonicity of Γ , φ(t) ≤ φ̃(t). Note that for b sufficiently large,

ρ(u(t),m(t)) ≥ ρ(u(t), m̃(t)) t ∈ [0, T ].
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Given β ∈ B, let β̃ ∈ Bb,µ denote the corresponding modification of β. Since h and g are nonde-
creasing functions, by the above analysis we obtain c(0, x, u, β[u]) ≤ c(0, x, u, β̃[u]). Thus

sup
β∈Bb,λ

inf
Ū
c(0, x, u, β[u]) ≤ sup

β∈Bb,λ

inf
Ū
c(0, x, u, β̃[u])

= sup
β∈Bb,λ

∩
Bb,µ

inf
Ū
c(0, x, u, β[u]) = V b,+(0, x).

Hence, to show V + = V b,+ it is sufficient to prove that

V +(0, x) ≤ sup
β∈Bb,λ

inf
Ū
c(0, x, u, β[u]). (50)

Select b larger, if necessary, so that b ≥ b∗ := maxi≤I λie
L > 0 where L = CΓ (TCh + Cg). This

assures ρ′i(u,m)|λ̄i=b∗ ≥ L for all i, where we denote ρ′i(u,m) = ∂
∂λ̄i

ρ(u,m) = log(λ̄i/λi).

We use the same notation, m̃, to specify a different modification of m, where now only the
arrival rates are truncated as in λ̃i := λ̄i ∧ b. We continue to use ψ̃ and φ̃ for the corresponding
state dynamics. Given u and m,∫ T

0
h(φ(t))− h(φ̃(t))dt+ g(φ(T ))− g(φ̃(T ))

≤ Ch

∫ T

0
∥φ(t)− φ̃(t)∥dt+ Cg∥φ(T )− φ̃(T )∥

≤ L
∑
i

∫ T

0
(λ̄i(t)− λ̃i(t))dt. (51)

By convexity of m 7→ ρ(u,m), we have for all t

ρ(u(t),m(t))− ρ(u(t), m̃(t)) ≥
∑
i

ρ′i(u(t), m̃(t))(λ̄i(t)− λ̃i(t)).

Note that λ̄i(t) − λ̃i(t) is nonnegative, and when it is positive one has λ̃i(t) = b ≥ b∗. Hence, due
to the assigned value of b∗, the ith term in (52) is bounded below by L(λ̄i(t)− λ̃i(t)). Integrating
and using (51) gives c(0, x, u, β[u]) ≤ c(0, x, u, β̃[u]). Hence

V +(0, x) = sup
β∈B

inf
Ū
c(0, x, u, β[u]) ≤ sup

β∈B
inf
Ū
c(0, x, u, β̃[u])

= sup
β∈Bb,λ

inf
Ū
c(0, x, u, β[u]).

This gives (50) and completes the proof.

5 The PDE and the differential game

In this section we establish uniqueness of solutions to the PDE (15) by proving Proposition 3.1,
and state and prove Lemma 5.1 regarding regularity of V + and V −.
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Proof of Proposition 3.1. In this proof we write H(p, x) for H(p) + h(x). We will use the
continuity of p 7→ H(p), that can be verified directly, using convexity of H(p, u,m) = ⟨p, v(u,m)⟩−
ρ(u,m) in u and concavity in m.

For a > 0 let

U(t, x) := u(t, x)− ae−⟨e,x⟩

V (t, x) := v(t, x) + ae−⟨e,x⟩

where e =
∑K

i=1 ei ∈ RK . To prove that u ≤ v we arguing by contradiction and assume that

ϱ := sup
[0,T ]×G

[u(t, x)− v(t, x)] > 0.

Hence there exists (τ, z) ∈ [0, T ]×G and a0 > 0 such that for all a ∈ (0, a0),

U(τ, z)− V (τ, z) ≥ 2

3
ϱ. (52)

For ε, δ > 0, introduce

Φ(s, t, x, y) := U(s, x)− V (t, y)− 1

ε2
∥x− y∥2 − 1

ε2
(t− s)2 − ε(∥x∥2 + ∥y∥2)− δ(2T − s− t).

Note that |U(s, x)|+ |V (t, y)| ≤ c+c|x|+c|y|, where c = c(u, v, a). Thus Φ ↓ −∞ as (∥x∥2+∥y∥2) ↑
∞, and Φ admits a maximizer (sε, tε, xε, yε) over [0, T ]2×G2. Therefore there exist positive numbers
ε and δ such that

Φ(sε, tε, xε, yε) ≥ Φ(τ, τ, z, z) ≥ 2

3
ϱ− 2ε∥z∥2 − 2δ(T − τ) ≥ ϱ

2
(53)

for all a ∈ (0, a0). In what follows, δ remains fixed while ε is made smaller (eventually, a will also
be taken small). Since Φ(sε, tε, xε, yε) > 0, we have

U(sε, xε)− V (tε, yε) >
1

ε2
∥xε − yε∥2 + 1

ε2
(tε − sε)2 + ε(∥xε∥2 + ∥yε∥2) + δ(2T − sε − tε). (54)

Since u and v both satisfy the terminal condition, namely, u(T, ·) = v(T, ·) = g(·) and U, V and g
are Lipschitz, there are constants k1 and k2 such that

k1∥xε − yε∥+ k2 ≥ U(sε, xε)− V (tε, yε). (55)

We argue that the left side is bounded for all positive ε. If not true, then there is a small enough ε
such that 1

ε2
∥xε−yε∥ ≥ k1∥xε−yε∥+k2. But this along with (55) and (54) lead to a contradiction.

Thus the left side of (54) is bounded for all positive ε. Hence from (54) we conclude the following
estimates:

∥xε − yε∥ ≤ O(ε), |tε − sε| ≤ O(ε), ∥xε∥ ≤ O(
1√
ε
), ∥yε∥ ≤ O(

1√
ε
). (56)

Next we show that
∥xε − yε∥+ |tε − sε| = o(ε). (57)
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Using Φ(sε, tε, xε, yε) ≥ Φ(sε, sε, xε, xε), we obtain

1

ε2
(∥xε − yε∥2 + (tε − sε)2) ≤ V (sε, xε)− V (tε, yε) + ε(∥xε∥2 − ∥yε∥2) + δ(tε − sε)

≤ ωV (∥xε − yε∥+ |tε − sε|) + ε⟨xε + yε, xε − yε⟩+ δ(tε − sε)

where ωV is the modulus of continuity of V . Therefore (57) follows by using the estimates (56) in
the above inequality. Next we show that

sε, tε < T for all sufficiently small ε > 0. (58)

To this end, note by (53) that

u(sε, xε)− v(tε, yε) ≥ ϱ

2
. (59)

Now if any of sε and tε equals to T , then |T − sε| = o(ε) and |T − tε| = o(ε) hold. Thus using
Lipschitz continuity of g and denoting by ωu and ωv the modulus of continuity of u and v, resp.,

|u(sε, xε)− v(tε, yε)| ≤ |u(sε, xε)− g(xε)|+ |v(tε, yε)− g(yε)|+ |g(xε)− g(yε)|
≤ ωu(T − sε) + ωv(T − tε) + Cg∥xε − yε∥ → 0,

by (57). This contradicts (59). Therefore (58) holds.

Let

θ(s, x) :=
1

ε2
∥x− yε∥2 + 1

ε2
(tε − s)2 + ε∥x∥2 + δ(T − s) + ae−⟨e,x⟩.

By the definition of (sε, xε), (s, x) 7→ u(s, x) − θ(s, x) has local maximum at (sε, xε). Since
Dθ(sε, xε) = 2

ε2
(xε − yε) + 2εxε − ae−⟨e,xε⟩e we have

max
i∈I(xε)

⟨Dθ(sε, xε), ei⟩ < 0. (60)

Hence by definition of viscosity subsolution

0 ≤ ∂

∂s
θ(sε, xε) +H(Dθ(sε, xε), xε)

= − 2

ε2
(tε − sε)− δ +H(Dθ(sε, xε), xε).

Similarly, for the following test function

ϑ(t, y) := −
(

1

ε2
∥xε − y∥2 + 1

ε2
(t− sε)2 + ε∥y∥2 + δ(T − t)

)
− ae−⟨e,y⟩

the map (t, y) 7→ v(t, y) − ϑ(t, y) has local minimum at (tε, yε). Analogous to the prior, by the
definition of viscosity supersolution we obtain

0 ≥ ∂

∂s
ϑ(tε, yε) +H(Dϑ(tε, yε), yε)

= − 2

ε2
(tε − sε) + δ +H(Dϑ(tε, yε), yε).
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From above two inequalities we obtain

2δ +H (Dϑ(tε, yε), yε)−H (Dθ(sε, xε), xε) ≤ 0. (61)

Again using (56) and (57),

∥Dϑ(tε, yε)−Dθ(sε, xε)∥

= ∥ 2

ε2
(xε − yε)− 2εyε + ae−⟨e,yε⟩e−

(
2

ε2
(xε − yε) + 2εxε − ae−⟨e,xε⟩e

)
∥

= ∥ − 2ε(xε + yε) + a
(
e−⟨e,xε⟩ + e−⟨e,yε⟩

)
e∥

≤ O(
√
ε) + 2Ia.

Therefore
lim sup

ε→0
∥Dϑ(tε, yε)−Dθ(sε, xε)∥ ≤ 2Ia. (62)

Recall that u and v are Lipschitz in x uniformly over [0, T ]×G, and denote the maximal of their
Lipschitz constants by C. Let us argue that

∥Dθ(sε, xε)∥ ≤ C, ∥Dϑ(tε, yε)∥ ≤ C. (63)

Because (s, x) 7→ u(s, x)− θ(s, x) has a local maximum at (sε, xε), we have for any x ∈ G,

θ(sε, x)− θ(sε, xε) ≥ u(sε, x)− u(sε, xε) ≥ −C∥x− xε∥,

and so ∥Dθ(sε, xε)∥ ≤ C provided xε is an interior point. If xε ∈ ∂G then from the above display we
can still deduce |⟨ei, Dθ(sε, xε)⟩| ≤ C for all i /∈ I(xε). For i ∈ I(xε) we obtain ⟨Dθ(sε, xε), ei⟩ ≥ −C
by the same inequality, which along with (60) again gives |⟨Dθ(sε, xε), ei⟩| ≤ C. This shows (63)
holds for θ, and for ϑ the argument is similar.

Thus using the uniform continuity of (p, x) 7→ H(p, x) on BC×G and denoting the corresponding
modulus of continuity by ωC , we obtain from (57), (61) and (62)

2δ ≤ ωC(2Ia). (64)

Note that the above holds for all a ∈ (0, a0) and choice of δ does not depend on a. This gives a
contradiction for δ > 0 fixed and small a > 0, and completes the proof of the result.

Lemma 5.1. The functions V −, V + : [0, T ]×G→ R are globally Lipschitz continuous.

Proof. Fix s, t ∈ [0, T ] and x, y ∈ G. In view of (30), given a positive constant ε there exist βε ∈ Bb

such that
V +(s, x)− ε ≤ inf

u∈Ū
c(s, x, u, βε[u]).

For this particular βε, there exists a uε ∈ Ū such that

c(t, y, uε, βε[uε]) ≤ inf
Ū
c(t, y, u, βε[u]) + ε

≤ sup
β∈Bb

inf
Ū
c(t, y, u, β[u]) + ε

= V +(t, y) + ε.
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Therefore
V +(s, x) ≤ c(s, x, uε, βε[uε]) + ε, V +(t, y) ≥ c(t, y, uε, βε[uε])− ε.

Thus
V +(s, x)− V +(t, y) ≤ c(s, x, uε,mε)− c(t, y, uε,mε) + 2ε (65)

where mε := βε[uε]. Note by the definition of Ū and M̄ that uε and mε are defined over the interval
[0, T ]. Let φi

ε := Γ (ψi
ε) for i = 1, 2 where

ψ1
ε(τ) := x+

∫ τ

s
v(uε(z),mε(z))dz τ ∈ [s, T ]

ψ2
ε(τ) := y +

∫ τ

t
v(uε(z),mε(z))dz τ ∈ [t, T ].

If s < t, set ψ2
ε = y on [s, t]. Otherwise, set ψ1

ε = x on [t, s]. Note that ψ1
ε and ψ2

ε are Lipschitz
continuous due to the upper bound of each component of mε. Note also that ∥ψ1

ε − ψ2
ε∥∗ :=

max[s∧t,T ] ∥ψ1
ε − ψ2

ε∥ ≤ ∥x− y∥+ C|t− s|, for some constant C. Thus by (27) we have

c(s, x, uε,mε)− c(t, y, uε,mε)

=

∫ T

t

(
h(φ1

ε(z))dz − h(φ2
ε(z))

)
dz

+

∫ t

s

(
h(φ1

ε(z))− ρ(uε(z),mε(z))
)
dz + g(φ1

ε(T ))− g(φ2
ε(T ))

≤
∫ T

t

(
h ◦ Γ (ψ1

ε)(z)− h ◦ Γ (ψ2
ε)(z)

)
dz

+

∫ s∨t

s∧t
[h ◦ Γ (ψ1

ε)(z) + max
U×Mb

ρ(u,m)]dz + Cg∥φ1
ε(T )− φ2

ε(T )∥

≤ C1∥ψ1
ε − ψ2

ε∥∗ + C2|t− s|

where C1 and C2 are constants (that may depend on T ) and we used the Lipschitz continuity of
g, h and Γ , and the boundedness of h. Hence the Lipschitz continuity of V + follows from (65) and
the above inequality. Analogously, V − can be shown to be Lipschitz continuous.

6 An explicit solution

We find an explicit formula for V in the case where the terminal cost is of the form g(x) =
∑

i cixi,
and the running cost h vanishes. One could approach this by working with the PDE (as e.g. in
[5]). We will find V by analyzing the DG.

We give an exact treatment for the case of a zero initial condition. We later consider the large
time behavior of the game under an arbitrary initial condition, and show that the zero initial
condition case plays a major role in this problem, in the sense that it provides the leading term, as
T → ∞.

Finally, we specialize to the case when the servers are homogenous (i.e., there is only one type
of servers) and present the main result of this section, identifying an optimal strategy for the
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minimizing player for the zero initial condition case. This strategy is dictated by a fixed priority
rule, that is reminiscent of the classical cµ rule.

Fix T and set t = 0. Then under the hypotheses of this section, the cost (27) is given by

c(u,m) = −
∫ T

0
ρ(u(s),m(s))ds+

∑
i

ciφi(T ), (66)

where 
ψ(s) = x+

∫ s

0
v(u(r),m(r))dr, s ∈ [0, T ],

φ = Γ [ψ].

(67)

Recall that V = V + = V −. We will work with the lower value of the game, V −, i.e.,

V = inf
α∈A

sup
m∈M̄

c(α[m],m). (68)

For y ≥ 0, denote li(y) = λil(y/λi) and lij(y) = µijl(y/µij). By (68) and (66),

V = inf
α∈A

sup
m∈M̄

[
−

∫ T

0

∑
i

li(λ̄i(s))ds−
∫ T

0

∑
ij

uij(s)lij(µ̄ij(s))ds+
∑
i

ciφi(T )
]
, (69)

where m = (λ̄i(·), µ̄ij(·)), u = α[m] and φ = φ(u,m) is given by (67). Denote

λ∗i = λie
ci , µ∗ij = µije

−ci , i ∈ I, j ∈ J . (70)

λ̂i = λi(e
ci − 1), µ̂ij = µij(1− e−ci), i ∈ I, j ∈ J . (71)

Set

W = min
u∈U

∑
i

(
λ̂i −

∑
j

uijµ̂ij

)+
. (72)

Theorem 6.1. For x = 0, V is given by WT .

Proof. Using (23) and (24) and the fact x = 0 gives

φi(T ) = sup
s∈[0,T ]

[ψi(T )− ψi(s)] = sup
s∈[0,T ]

∫ T

s
vi(u(r),m(r))dr.

Using this in (69) and interchanging the order of suprema gives

V = inf
α∈A

sup
{si}

sup
m∈M̄

[
−
∑
i

∫ T

0
li(λ̄i(s))ds−

∑
ij

∫ T

0
uij(s)lij(µ̄ij(s))ds+

∑
i

ci

∫ T

si

vi(u(s),m(s))ds
]
,

(73)
where the outer supremum ranges over {si} ∈ [0, T ]I .

We argue that V ≤ WT . Denote by A0 the subset of A of ‘open loop’ strategies that are
constant in time, namely the collection of strategies α for which α[m](s) = u for all s ∈ [0, T ] and
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all m ∈ M̄ , where u ∈ U . Consider the value, that we denote by V0, obtained upon replacing A by
A0 in (73). Clearly, V ≤ V0. Given the {si}, it is easy to solve for the supremum over m. First,
owing to the fact that

∫ si
0 li(λ̄i(s))ds ≥ 0 =

∫ si
0 li(λi)ds, and a similar fact about lij , an optimal m

necessarily sets λ̄i = λi on [0, si] and µ̄ij = µij on that interval. Thus we can write the expression
in square brackets (recalling u is constant) as

∑
i

∫ T

si

(
− li(λ̄i(s))−

∑
j

uijlij(µ̄ij(s)) + civi(u,m(s))
)
ds

=
∑
i

∫ T

si

(
− li(λ̄i(s)) + ciλ̄i(s) +

∑
j

uij [−lij(µ̄ij(s))− ciµ̄ij(s)]
)
ds.

For any α ∈ A0, the constant u = α[m], appearing in the above expression, is independent of m.
Hence, given {si}, the supremum of the above concave function of m is easy to calculate. The
maximizer is λ̄i(s) = λ∗i and µ̄ij(s) = µ∗ij for s ∈ [si, T ]. Recalling the notation (71), substituting
in the above display gives

∑
i

∫ T

si

(
λ̂i −

∑
j

uijµ̂ij

)
ds =

∑
i

(
λ̂i −

∑
j

uijµ̂ij

)
(T − si).

Thus
V ≤ inf

α∈A0

sup
{si}

∑
i

(
λ̂i −

∑
j

uijµ̂ij

)
(T − si) =WT. (74)

Next we prove V ≥ WT . Bound V below by replacing the supremum over {si} ∈ [0, T ]I in
(73) by that over {si} ∈ {0, T}I . Further, replace the supremum over all m ∈ M̄ by the following
particular choice of m (which depends on {si})

(λ̄i(s), µ̄ij(s)) =


(λi, µij), s ∈ [0, si),

(λ∗i , µ
∗
ij), s ∈ [si, T ],

i ∈ I, j ∈ J . (75)

Then

V ≥ inf
α∈A

max
{si}∈{0,T}I

∑
i

∫ T

si

(
− li(λ

∗
i )−

∑
j

uij(s)lij(µ
∗
ij) + civi(u(s),m)

)
ds

= inf
α∈A

max
{si}∈{0,T}I

∑
i

(
λ̂i −

∑
j

ūijµ̂ij

)
(T − si),

where ūij = T−1
∫ T
0 uij(s)ds and, as before, u(·) = α[m]. Since ū is always a member of U ,

the above expression is equal to WT . This shows V ≥ WT . Along with (74), we have proved
V =WT .

Let us now fix an arbitrary initial condition x. Rather than provide an exact analysis of
V (x) := V (0, x), we show that it is governed, to a large extent, by V (0, 0), when T is large.

23



Proposition 6.1. One has

WT ≤ V (x) ≤WT + γ, T > 0,

where γ = γ(x) is linear in x and does not depend on T .

Proof. Write V 0 for the value under zero initial conditions (proved to be equal to WT ). Then
both V 0 and V (x) are given by the formula (68), c(u,m) is as in (66)–(67) (with x = 0 for the case
V 0). Denote by φ0 = φ0(u,m) the trajectory from (67) with zero initial condition, and by c0(u,m)
the corresponding cost. The one-dimensional Skorohod map is monotone in the initial condition.
Thus, using (25), for any u ∈ Ū and m ∈ M̄ ,

φ0
i (T ) ≤ φi(T ) ≤ φ0

i (T ) + 2xi.

As a result, for any u ∈ Ū and m ∈ M̄ ,

c0(u,m) ≤ c(u,m) ≤ c0(u,m) + γ,

where γ is linear in x and does not depend on T . The result follows from this relation and (68).

In the rest of this section we set x = 0. Further, we specialize to homogenous servers, namely
J = 1. Note that as a consequence of the proof of Theorem 6.1, there exists an ‘open loop’ strategy
that is optimal, namely the strategy setting u(s) = u∗ for all s, where u∗ is a minimizer of (72).
A perhaps more useful observation, from a practical viewpoint, is that there exists a fixed priority
policy that is also optimal.

Consider the strategy that prioritizes according to the index µ̂i := µi(1− e−ci). That is, let the
labels be ordered so that

µ̂1 ≥ µ̂2 ≥ · · · ≥ µ̂I , (76)

and let α∗ be the strategy that sends m = (λ̄i(s), µ̄i(s))s∈[0,T ] ∈ M̄ to u ∈ Ū , where, for s ∈ [0, T ],
ρ̄i(s) = λ̄i(s)/µ̄i(s), and

u1(s) =


1 if φ1(s) > 0,

1 ∧ ρ̄1(s) if φ1(s) = 0,

(77)

ui(s) =


1−

∑i−1
m=1 um(s) if φi(s) > 0,

(
1−

∑i−1
m=1 um(s)

)
∧ ρ̄i(s) if φi(s) = 0,

i ≥ 2. (78)

The fact that these relations give rise to a well-defined strategy is proved in the appendix.

Theorem 6.2. α∗ is optimal for V of (68). That is,

sup
m∈M̄

c(α∗[m],m) = inf
α∈A

sup
m∈M̄

c(α[m],m).
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Toward proving the result, let us introduce some notation. Since J = 1, the functions lij depend
only on i, and we denote them by l̃i. Namely, l̃i(y) = µil(y/µi) (while as before li(y) = λil(y/λi)).
Let

Ci(u,m) = −li(λ̄i)− ui l̃i(µ̄i) + ci(λ̄i − uiµ̄i), u ∈ U, m ∈M. (79)

Given r ≥ 0, let

W (r) = min
{ I∑

i=1

(
λ̂i − viµ̂i

)+
: vi ≥ 0,

I∑
i=1

vi ≤ r
}
. (80)

Remark 6.1. It is easy to see that the following v is a minimizer in (80)

v∗1 = r ∧ ρ̂1, v∗i =
(
r −

i−1∑
m=1

v∗m

)
∧ ρ̂i, i ≥ 2,

where ρ̂i = λ̂i/µ̂i.

Lemma 6.1. Given r ≥ 0 and m = (λ̄i, µ̄i) ∈M , one has

I∑
i=1

Ci(u,m) ≤W (r),

provided that

u1 ∈ {r, r ∧ ρ̄1}, (81)

ui ∈ {r − u1,i−1, (r − u1,i−1) ∧ ρ̄i}, i ≥ 2, (82)

where ρ̄i = λ̄i/µ̄i (here, r ∧ (y/0) is interpreted as r) and u1,k =
∑k

1 ui .

Before presenting the proof of the lemma, we show that the theorem follows.

Proof of Theorem 6.2. The fact that a strategy α∗ exists, as well as that under this strategy
one has ψi(s) ≥ 0 for all s, is proved in Proposition A.1 in the appendix. Fix an arbitrary m ∈ M̄
and set u = α∗[m]. To prove the theorem it suffices to show that c(u,m) ≤ WT . Since ψi(s) ≥ 0
for all s, we have φ(T ) = ψ(T ). Thus c(u,m) is given by

c(u,m) =

∫ T

0

∑
i

Ci(u(s),m(s))ds.

By (77) and (78), for each s, u(s) satisfies the hypotheses of Lemma 6.1, with data m(s) and r = 1.
Hence c(u,m) ≤WT , which completes the proof.

Proof of Lemma 6.1. The claim is proved by induction on I. The precise statement proved by
induction involves an arbitrary set of parameters λi, µi, ci. Namely, given I and r, and any 3I-tuple
of positive numbers λi, µi, ci, for which the parameters µ̂i = µi(1− e−ci) are ordered as in (76), the
statement of the lemma is valid.
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Consider first I = 1. We will show

C1(u,m) ≤


λ̂1 − rµ̂1 if u1 = r,

0 if u1 = ρ̄1.

(83)

First, the inequalities
−li(λ̄i) + ciλ̄i ≤ λ̂i, −l̃i(µ̄i)− ciµ̄i ≤ −µ̂i (84)

hold for every λ̄i, µ̄i, as can be directly verified. By (79), this gives the first line in (83). If u1 = ρ̄1
then the last term in (79) is zero, hence C1(u,m) ≤ 0. This shows (83), from which it follows that
C1(u,m) ≤W (r) in case I = 1.

Next, assuming that the claim holds for a given I, we show that it holds for I + 1. Let then r
and m be given, and let u be as in (81)–(82). Denote Ca,b =

∑b
i=aCi(u,m). Also, let Wa,b(r) be

defined as in (80), where the sums range from a to b. The induction assumption implies

C2,I+1 ≤W2,I+1(r − u1). (85)

Case 1: u1 < v∗1. Then by (81), u1 = ρ̄1. As a result, arguing as in the induction base,
C1(u,m) ≤ 0. Thus C1,I+1 ≤ C2,I+1. Hence by the induction assumption, C1,I+1 ≤W2,I+1(r−u1).
Clearly W (r) is decreasing with r. Hence

C1,I+1 ≤W2,I+1(r − v∗1) ≤ (λ̂1 − v∗1µ̂1) +W2,I+1(r − v∗1) =W1,I+1(r).

Case 2: δ := u1 − v∗1 ≥ 0. Using again (84), C1,1 ≤ λ̂1 − u1µ̂1. Hence by (85),

C1,I+1 ≤ λ̂1 − u1µ̂1 +W2,I+1(r − u1).

By definition of W , it is not hard to see that |W (r1) −W (r2)| ≤ |r1 − r2|µ̂max, where µ̂max is the
largest parameter µ̂i involved. Thus, recalling µ̂2 ≥ · · · ≥ µ̂I ,

|W2,I+1(r1)−W2,I+1(r2)| ≤ |r1 − r2| µ̂2, r1, r2 ≥ 0.

As a result,

C1,I+1 ≤ λ̂1 − u1µ̂1 +W2,I+1(r − u1)

= λ̂1 − v∗1µ̂1 +W2,I+1(r − v∗1)− δµ̂1 +W2,I+1(r − u1)−W2,I+1(r − v∗1)

≤ λ̂1 − v∗1µ̂1 +W2,I+1(r − v∗1)− δµ̂1 + δµ̂2

≤ λ̂1 − v∗1µ̂1 +W2,I+1(r − v∗1)

=W1,I+1(r).

We have thus shown that C1,I+1 ≤W1,I+1(r) and completed the argument.
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A Appendix

We argue that the relations (77)–(78) give rise to a well-defined strategy.

Proposition A.1. There exists a strategy α∗ ∈ A with the following properties. Given m ∈ M̄ ,
let u = α∗[m] and let ψ and φ be given by (67) (with x = 0). Then (ψ,φ, u) satisfy the relations
(77)–(78). Moreover, ψi(t) ≥ 0 for all t and i, hence φ = ψ.

Proof. We will use the following fact regarding Γ1 (defined in (23)). Recall that if q : R+ → R and
p = Γ1[q] then p = q + r where r(t) = − infs≤t q(s)∧ 0. In case that q is absolutely continuous and
q(0) ≥ 0, the term r is given by

r(t) =

∫ t

0

(dq
ds

)−
1{p(s)=0}ds. (86)

The above is an immediate consequence of a general fact that solutions p of the Skorohod problem
with absolutely continuous data q solve ODE of the form

ṗ = π(p, q̇),

where π(x, v) is a certain projection map, which in the one-dimensional case is given by

π(x, v) = v1{x>0} + v+1{x=0}.

For this fact and further details see [12].

Let m = (λ̄i, µ̄i) be given. We will construct ψ,φ and u satisfying relations (77)–(78) and (67),
and then argue that the map m 7→ u is a strategy.

For i = 1, . . . , I, denote ρ̄i(s) = λ̄i(s)/µ̄i(s). Let q1 =
∫ ·
0(λ̄1 − µ̄1)ds and p1 = Γ1[q1]. Then

p1 = q1 + r1, where, by (86),

r1(t) =

∫ t

0
(λ̄1(s)− µ̄1(s))

−1{p1(s)=0}ds.

As a result, p1 ≥ 0 and can be written as

p1(t) =

∫ t

0
(λ̄1(s)− u1(s)µ̄1(s))ds,

where

u1(s) =


1 if p1(s) > 0,

1 ∧ ρ̄1(s) if p1(s) = 0.

Now set ψ1 = p1. Then ψ1 ≥ 0 hence φ1 := Γ1[ψ1] = ψ1, and relations (67) and (77) hold. This
gives a construction of (ψ1, φ1, u1).

To proceed to (ψi, φi, ui) for i ≥ 2, we argue recursively. Fix i ≥ 2. Denote u1,i−1 =
∑i−1

m=1 um.
Set qi =

∫ ·
0(λ̄i − (1− u1,i−1)µ̄i)ds and pi = Γ1[qi]. Arguing as before, pi = qi + ri where

ri(t) =

∫ t

0
(λ̄i − (1− u1,i−1)µ̄i)

−1{pi=0}ds,
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hence pi ≥ 0 and

pi(t) =

∫ t

0
(λ̄i − uiµ̄i)ds,

where

ui(s) =


1− u1,i−1(s) if pi(s) > 0,

(1− u1,i−1(s)) ∧ ρ̄i(s) if pi(s) = 0.

Setting ψi = pi and φi = Γ1[ψi] gives φi = ψi and agrees with (67) and (78). This completes the
construction of (ψ,φ, u). The construction has the property that for every t ≥ 0, m|[0,t] uniquely
defines (ψ,φ, u)|[0,t], and moreover, the map m 7→ u is measurable. Thus the map is a strategy.
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