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We consider the problem of computing optimal policies of finite-state finite-action Markov decision processes (MDPs).
A reduction to a continuum of constrained MDPs (CMDPs) is presented such that the optimal policies for these CMDPs
constitute a path in a graph defined over the deterministic policies. This path contains, in particular, an optimal policy of
the original MDP. We present an algorithm based on this new approach that finds this path, and thus an optimal policy. In
the general case, this path might be exponentially long in the number of states and actions. We prove that the length of
this path is polynomial if the MDP satisfies a coupling property. Thus we obtain a strongly polynomial algorithm for MDPs
that satisfies the coupling property. We prove that discrete time versions of controlled M/M/1 queues induce MDPs that
satisfy the coupling property. The only previously known polynomial algorithm for controlled M/M/1 queues in the expected
average cost model is based on linear programming (and is not known to be strongly polynomial). Our algorithm works both
for the discounted and expected average cost models, and the running time does not depend on the discount factor.
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1. Introduction. The problem of designing a strongly polynomial algorithm for finding an optimal policy
in a Markov decision process (MDP) has been a long-standing open problem (Blondel and Tsitsiklis [3]). The
parameters of an MDP are as follows: n—the number of states, k—the number of actions, and B—the length of
the input in bits. In the discounted cost model, there is an additional parameter �< 1 called the discount factor.
Recently, Ye [24] presented a strongly polynomial combinatorial algorithm for the discounted cost model. This
algorithm is based on a predictor-corrector interior-point algorithm.
The well-known algorithms for solving MDPs are: value iteration, policy iteration, and linear programming

(d’Epenoux [5], Kallenberg [8], Littman et al. [11], Puterman [16]). The running times of the value iteration
and policy iteration algorithms in the discounted cost model are polynomial in n, k, B, and 1/�1−�	 (Littman
et al. [11], Tseng [22], Ye [24]). The dependence on 1/�1 − �	 implies that the algorithm is not strongly
polynomial (e.g., when �= 1− 2−n	. The only nontrivial upper bound on the number of iterations of the policy
iteration algorithm (for two actions) that does not depend on the discount factor is O�2n/n	 (Mansour and
Singh [13]).
In the expected average cost model, the only polynomial algorithm is based on a reduction discovered nearly

50 years ago to linear programming (de Ghellinck [4], Derman [6], Manne [12]). Linear programming is not
known to have strongly polynomial algorithms (Schrijver [18]). Hence the problem of developing a strongly
polynomial algorithm for MDPs remains open in the expected average cost model.

1.1. Contribution. We introduce a new approach for solving MDPs in the discounted cost model and
expected average cost model. The approach is based on adding an artificial constraint with parameter � to obtain
a continuum of constrained MDPs, denoted by CMDP��	. We consider the whole range of values for �, so that
it also includes the value that an optimal policy of the MDP attains. Our approach is based on a new structural
lemma that proves that the set of optimal policies of CMDP��	 (for all values of �) constitutes a path in a graph
over the deterministic policies. We present an algorithm that finds all the deterministic policies along the path.
The optimal policy of the MDP is simply the min-cost policy along this path. We cannot rule out the possibility
that this path may be exponentially long, and hence the running time of this algorithm might be exponential.
We overcome the problem of a long path by introducing a coupling property. We prove that, if the coupling

property holds and if a specific artificial constraint is chosen, then the length of the path is polynomial (i.e., n ·k).
Hence the algorithm becomes strongly polynomial. We prove that the coupling property is satisfied in discrete
versions of controlled birth-death processes such as single server controlled M/M/1 queues. Such controlled
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birth-death processes are among the most studied examples of MDPs (Yadin and Naor [23], Altman [1], Kitaev
and Rykov [9], Tijms [21]).
When the coupling property holds, the running time of the algorithm is O�n4 · k2	. This running time holds

both in the discounted cost model and the expected average cost model. This compares with the running time of
Ye’s [24] algorithm, which is O�n4 ·k4 · log�nk/�1−�			. Thus, in addition to coping with the expected average
cost model, we reduce the running time in the discounted cost model.

1.2. Organization. In §2, we briefly overview definitions related to MDPs and CMDPs. In §§3 and 4,
we present two properties: uniqueness and coupling. We prove that uniqueness can be obtained by randomly
perturbing the cost vector. We prove that the coupling property holds in discrete time controlled M/M/1 queues.
In §5, we study the structure of optimal policies of CMDP��	, for all values of �. Lemma 5.4 proves that these
optimal policies are a path in a graph over the deterministic policies. In §6, we present a new algorithm for
computing an optimal policy of an MDP. In §7, we present a strongly polynomial algorithm that works under
the assumption that the coupling property holds. We conclude with a discussion of the assumptions that the
MDP is irreducible and satisfies the uniqueness property.

2. Background. In this section, we briefly overview the topics of MDPs, CMDPs, and their linear program-
ming formulations. See Altman [1], Puterman [16], Ross [17], and Tijms [20, 21] for more material on these
topics.

2.1. Definition of MDP and CMDP. An MDP is a four-tuple �X
U
P
 c�, where X = �0
 � � � 
 n− 1� is a
finite set of states, U = �0
 � � � 
 k− 1� is a finite set of actions, P� X2×U → �0
1� is a transition probability
function, and c� X×U →� is a cost function. The probability of the transition from state x to state y when the
action u is chosen is specified by the function P and denoted by P�y � x
u	. The cost associated with selecting
the action u when in state x equals c�x
u	. We often refer to the cost function as a vector c ∈�nk.
An MDP is a generalization of a Markov chain, where in a Markov chain there is only one possible action in

each state. For simplicity, we assume that the initial state is fixed and we denote it by x0. In fact, Assumption 2.1
implies that, in the expected average cost model, the initial state does not affect the optimal policy. In the
discounted cost model, one could assume any initial probability distribution over the states.
Time is discrete, and in each time unit t, let xt denote the random variable that equals the state at time t.

Similarly, let ut denote the random variable that equals the action selected at time t. The sequence of states
�xt�



t=1 defines an infinite-random walk over the set of states X.
A (stationary) policy1 is a function �� X×U → �0
1�, such that

∑
u∈U ��x
u	= 1 for every x ∈X. A policy

controls the action selected in each state as follows: the probability of selecting action u in state x equals ��x
u	.
If for a state x and an action u, the policy � satisfies ��x
u	= 1 , then we say that � is deterministic in state
x. In this case, we abuse notation and write ��x	= u. If there exists an action u such that 0<��x
u	 < 1, then
we say that � is randomized in state x. A deterministic policy is a policy that is deterministic in all states.
Definition 2.1. A policy � is strictly 1-randomized if: (i) It is deterministic in all states but one state.

(ii) Let x denote the state in which � is not deterministic. Then, the set �u� ��x
u	 > 0� contains only two
actions.
The goal is to find a policy that minimizes the cost C��	 defined below. We consider two cost models:

(1) discounted cost and (2) expected average cost.

2.2. Discounted cost model. In the discounted cost model, the parameter � ∈ �0
1	 specifies the rate in
which future costs are reduced. Let P��xt = x
ut = u	 denote the probability of the event xt = x and ut = u
when the initial state equals x0 and the (randomized) policy is �. The expected cost E

�
t �c�xt
 ut	� equals

E�
t �c�xt
 ut	�=

∑
x∈X
u∈U

c�x
u	 ·P��xt = x
ut = u	�

The infinite-horizon discounted expected cost C��	 is defined by

C��	
�= �1−�	 ·


∑
t=0

�t ·E�
t �c�xt
 ut	�� (1)

1 By the general theory of MDPs and CMDPs (Puterman [16], Altman [1]), under our conditions, there exists an optimal stationary policy.
Therefore we restrict our attention to such policies.
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2.3. Expected average cost model. In the expected average cost model, the cost C��	 is defined by

C��	
�= lim

T→


(∑T−1
t=0 E

�
t �c�xt
 ut	�

T

)
� (2)

It can be shown that this limit exists for every stationary policy (Puterman [16]).

2.4. Definition of CMDP. A constrained MDP is an MDP with an additional input consisting of a cost
function d� X ×U → � and a parameter �. The cost D��	 of � is defined similarly to C��	 in both models
based on E�

t �d�xt
 ut	� =
∑

x∈X
u∈U d�x
u	 · P��xt = x
ut = u	. The additional input defines the constraint
D��	= � that a feasible policy must satisfy. The optimization problem in CMDP��	 is to find a policy � that
satisfies the constraint D��	= � and minimizes C��	.

2.5. Occupation measures. Every policy � induces a probability measure over the state-action pairs. We
call this probability measure the occupation measure corresponding to � and denote it by #� . The definition of
#� depends on the cost model.
In the discounted cost model, #�x
u	

�= �1− �	 ·∑

t=0 �

t · P��xt = x
ut = u	. In the expected average cost

model, #�x
u	
�= limT→
��

∑
t<T P

��xt = x
ut = u		/T 	.
Given an occupation measure #�x
u	 over X × U , the policy �# induced by # is defined by �#�x
u	

�=
#�x
u	/

∑
u′ #�x
u

′	. (Note that if
∑

u′ #�x
u
′	 = 0, then one may define �#�x
u	 arbitrarily as long as∑

u �
#�x
u	= 1.)

We refer to an occupation measure # as deterministic (resp. strictly 1-randomized) if #= #� for a deterministic
(resp. strictly 1-randomized) policy �.

2.6. Irreducibility assumption.
Definition 2.2 (Irreducibility). An MDP is irreducible if every deterministic policy � induces an

irreducible Markov chain.
Throughout this paper, we assume the following.

Assumption 2.1. We assume that the MDP is irreducible.

2.7. Linear programming formulation of CMDPs. In this section, we formulate MDP and CMDP��	 as
linear programs (LPs). We denote the LP corresponding to MDP (resp. CMDP��	) by LP (resp. LP��	). The
LP is of the form min�cT ·# �A#= b
#≥ 0�. The LP��	 is of the form min�cT ·# �A ·#= b
 dT ·#= �
 #≥ 0�
(the transpose of a row vector v is denoted by vT ). The matrix A and the vector b in the LPs depend on the
number of states and actions, as well as on the values of the transition probabilities and cost.
Given an MDP �X
U
P
 c�, where X = �0
1
 � � � 
 n− 1� and U = �0
1
 � � � 
 k− 1�, we represent the cost

function c as a column vector in �nk indexed by pairs in X×U ; namely, cx
u = c�x
u	. We begin with the LP
formulation in the discounted cost model.

2.8. Discounted cost model. We define the matrix A as follows. For each action u ∈ U , let P�u	 denote
the n×n square matrix whose entries are defined by P�u	y
x

�= P�y � x
u	. The matrix A is an n× �nk	 matrix
obtained by concatenating the square matrices I − �P�u	; namely, A= �I − �P�0	
 � � � 
 I − �P�k− 1	�. The
column vector b ∈ �n is defined by b = �1 − �
0
 � � � 
0	T , where the zeroth coordinate corresponds to the
initial state.
The occupation measure is the variable of the LP and is represented by the column vector # ∈�nk indexed by

pairs in X ×U . For a state-action pair �x
u	, the component #x
u denotes the value of the occupation measure
#�x
u	.

2.9. Expected average cost model. In the expected average cost model, the matrix A is an �n+ 1	× �nk	

matrix obtained by adding a row �1 consisting of ones to the concatenation of the matrices I −P�u	. The vector
b is a unit vector, where the coordinate of the one corresponds to the row �1 in A. Note that the constraint
�1 ·#= 1 implies that #�x
u	 is a probability distribution.
The following theorem was proved for various cost models in de Ghellinck [4], d’Epenoux [5], Derman [6],

and Manne [12]. A more recent textbook proof appears in Altman [1, Theorem 3.3].

Theorem 2.1 (Equivalence of CMDP��	 and LP��	). CMDP��	 is feasible if and only if LP��	 is
feasible. Moreover, if #∗ is an optimal solution of LP��	, then �#∗ is an optimal policy of CMDP��	.
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3. The uniqueness property. Consider an MDP and a fixed cost function d�·	.
Definition 3.1 (Uniqueness). An MDP satisfies the uniqueness property if the following holds for every

� ∈�: If �∗ is deterministic and optimal for CMDP��	 and if � �=�∗ is any stationary policy, then D��	 �= �
or C��	 >C��∗	.
Uniqueness has the following geometric interpretation. Consider the polytope generated by all the deterministic

occupation measure (i.e., the feasible solutions of LP). Intersect this polytope with a hyperplane dT · # = �
to obtain the feasible solution of LP��	. If this intersection has an optimal solution that is a deterministic
occupation measure, then this optimal solution is unique.
The following proposition follows from the fact that every basic feasible solution (BFS) of LP��	 is deter-

ministic or strictly 1-randomized (Theorem 5.1).

Proposition 3.1. AnMDP satisfies the uniqueness property if for every � ∈�, every deterministic policy �∗,
and every deterministic or strictly 1-randomized policy � �= �∗, if �∗ is optimal for CMDP��	, then � is not
optimal for CMDP��	.

Uniqueness is, in a sense, a generic property; that is, it holds for most values of the parameters. We show this
by adding a small random perturbation ( ∈�nk to the cost vector c to obtain the perturbed cost vector c( = c+(.
Given any positive )1 and )2, we choose the components of the vector ( randomly and independently, so that
the cost differs from that of the original model by at most )2, and the probability that uniqueness does not hold
is at most )1.
Let C(��	 denote the cost of a policy � with respect to the perturbed cost vector c(. Define each coordinate

(i of ( by (i
�= �ri/�2

p1		 · 2−p2 , where p1
 p2 are positive integers and ri is uniformly distributed over the
set �0
 � � � 
2p1 − 1�. The following lemma proves that a random perturbation meets the requirements, while
increasing the length of each component of the cost vector c by O�n · logk+ log1/�)1 ·)2		 bits. This is done
by choosing appropriate values for p1
 p2.

Lemma 3.1. If p1 ≥ log2�k3n/)1	 and p2 ≥ log2�nk/)2	, then (1) the uniqueness property holds with prob-
ability at least 1−)1, and (2) for every policy �, �C��	−C(��	� ≤)2.

Proof. We prove part (1) as follows. Fix a realization of the vector (, and suppose that c( does not obtain
uniqueness for CMDP��	. This implies that there exists a deterministic policy � that is optimal with respect to
the perturbed cost c( and is not unique. Let #� denote the occupation measure corresponding to �. Since #� is
not the only optimal solution of LP��	 (with respect to the perturbed cost vector c(), there exists a BFS # that is
also optimal (with respect to the same perturbed cost vector c(). Since both #� and # are optimal, it follows that

c( ·#� = c( ·#� (3)

We conclude that the event that perturbation by ( fails implies the existence of an � and a pair #� �= # of
occupation measures that satisfy (1) d ·#� = d ·#= �, (2) #� is induced by a deterministic policy �, (3) # is a
BFS of LP��	, and (4) c( ·#� = c( ·#. Since ( is random, the quantities c(
 �
 #�
 #, which depend on (, are
random as well. By the proof of Theorem 5.1, every BFS corresponds to a deterministic or strictly 1-randomized
policy.
Let R� denote the collection of all pairs �#1
 #2	 of BFS of LP��	 such that #1 corresponds to a deterministic

policy. By Theorem 5.1, #2 corresponds to a deterministic or to a strictly 1-randomized policy. Note that R�

does not depend on ( and is not a random set. Let R=⋃
� R�.

We claim that �R� < k3n. There are kn deterministic policies, thus we need to consider at most kn values
of �. For each �, there are at most kn + (

kn

2

)
< k2n BFSs of LP��	. Indeed, a BFS is deterministic or strictly

1-randomized. We now bound the number of strictly 1-randomized basic feasible solutions of LP��	. Every
strictly 1-randomized policy is a convex combination of two deterministic policies that disagree in a single state
(there are less than

(
kn

2

)
such pairs). For each such pair of deterministic policies, at most one convex combination

induces a BFS of LP��	. This follows from Proposition 5.6, because if every convex combination is optimal,
then none is an extreme point of LP��	. Therefore the number of strictly 1-randomized BFSs is bounded by(
kn

2

)
, and �R�< k3n as claimed.
Consider a pair �#1
 #2	 ∈ R. Without loss of generality, #1 and #2 disagree in the first coordinate. Let c

1
(

denote the first coordinate of c(, and let c
−1
( denote the vector c( with the first coordinate removed, so that

c( = �c1(
 c
−1
( 	. We use identical notation for any vector. The equation c(#1 = c(#2 implies that

c1(#
1
1+ c−1( ·#−1

1 = c1(#
1
2+ c−1( ·#−1

2 �
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Now,

P�c( ·#1 = c( ·#2	= P�c1( · �#11−#12	= c−1( · �#−1
2 −#−1

1 		

≤ 2−p1 �

The last line follows from the fact that, given #1, #2, and (
−1, the event c1( · �#11−#12	= c−1( · �#−1

2 −#−1
1 	 occurs

for at most one value of (1.
We now bound the probability that perturbation fails; namely, Equation (3) holds. Since �#�
#	 ∈R ,

P�c( ·#� = c( ·#	≤ P
(
c( ·#1 = c( ·#2 for some �#1
 #2	 ∈R

)
≤ ∑

�#1
 #2	∈R
P�c( ·#1 = c( ·#2	

≤ k3n2−p1 �

We conclude that if p1 ≥ log2�k3n/)1	, then the probability of nonuniqueness is bounded by )1.
Part (2) requires that the perturbation does not change the cost of the optimal policy by more than )2. It

suffices to show that, for every occupation measure #, ��c( − c	 · #� ≤ )2. Since # is an occupation measure, it
follows that ��c( − c	 ·#� ≤∑

i (i ≤ n · k · 2−p2 . Hence, part (2) holds if p2 ≥ log2�nk/)2	. �

In the light of Lemma 3.1, we assume the following throughout this paper.

Assumption 3.1. The MDP satisfies the uniqueness property.

4. The coupling property.
Definition 4.1. Two deterministic policies are neighbors if they disagree in a single state.
Definition 4.2. Given a deterministic policy � and an action j �= ��i	, the neighbor policy �i
 j is

defined by

∀x ∈X� �i
 j �x	
�=
{
j if x= i


��x	 otherwise.

Thus two deterministic policies � and / are neighbors if there exists a state i and an action j such that
/ =�i
 j .
Suppose that for every state i, there is a linear order over U . We denote the linear order over U corresponding

to state i by ≤i. In addition, we consider the natural linear order over the set of states X = �0
 � � � 
 n− 1�.
The polynomial algorithm in §7 for finding an optimal policy depends on a property that we call the coupling

property defined below.
Definition 4.3 (Coupling Property). The coupling property holds with respect to the linear orders

�≤i�i∈X if for every deterministic policy �, every state i, and every action j ,

��i	≤i j ⇒ ∀x < i ∀u ∈U� #��x
u	≤ #�i
 j �x
 u	�

4.1. Examples of MDPs with the coupling property. In this section, we present a “one-dimensional”
MDP, and prove that it satisfies the coupling property in the expected average cost model. We begin with a
controlled nonabsorbing random walk. We then continue with a one-dimensional MDP that corresponds to a
discrete-time controlled M/M/1 queue.

4.1.1. A controlled nonabsorbing random walk. A controlled nonabsorbing random walk is a simple
example of an MDP that satisfies the coupling property. We formally describe it below.
The MDP has n states �0
 � � � 
 n− 1�. For i < n− 1, there is a transition from state i to state i + 1 with

probability P�i + 1 � i
 j	 ∈ �0
1	. For i > 0, there is a transition from state i to state i − 1 with probability
P�i− 1 � i
 j	= 1− P�i+ 1 � i
 j	. For i= 0, there is a self-loop P�0 � 0
 j	= 1− P�1 � 0
 j	, and similarly, for
state n− 1, there is a self-loop P�n− 1 � n− 1
 j	= 1−P�n− 2 � n− 1
0	.
We assume that all P�i+ 1 � i
 j	 transition probabilities are positive. Hence the MDP is irreducible.
The linear orders ≤i are defined as follows for each state i≥ 1:

j ′ ≤i j
′′ ⇔ P�i− 1 � i
 j ′	≤ P�i− 1 � i
 j ′′	�

Namely, the transition from state i to its left neighbor i−1 is not more likely under the action j ′ than under the
action j ′′. The linear order ≤i is defined arbitrarily for i= 0.
The proof of the following lemma appears in Appendix B.

Lemma 4.1. The coupling property holds for a controlled nonabsorbing random walk.
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4.1.2. A controlled discrete-time M/M/1 queue. We now consider a discrete-time version of a controlled
M/M/1 queue obtained from a continuous-time controlled M/M/1 queue by a technique called uniformization
(see Appendix A). A discrete controlled M/M/1 queue is similar to the controlled nonabsorbing random walk
with the addition of self-loops in each state. Formally, the set of states is �0
 � � � 
 n− 1�. For i < n− 1, there is
a transition from state i to state i+1 with probability P�i+1 � i
 j	 ∈ �0
1	. For i > 0, there is a transition from
state i to state i−1 with probability P�i−1 � i
 j	 ∈ �0
1	. In addition, for every state i, there is a self-loop with
probability P�i � i
 j	. Assumption 2.1 holds by the reduction from the continuous M/M/1 queue.
We assume that the actions do not affect the arrival rates, hence the probabilities P�i+1 � i
 j	 do not depend

on the action j . Moreover, the reduction from an M/M/1 queue implies that, for all states i, the transitions from
state i to state i+ 1 have the same probability. We therefore denote P�i+ 1 � i
 j	 simply by q. This means that
the control only affects the service rates, and hence only the probabilities P�i− 1 � i
 j	 and P�i � i
 j	 depend
on the action j .
For each state i≥ 1, the linear order ≤i in the discrete controlled M/M/1 queue is defined as follows:

j ′ ≤i j
′′ ⇔ P�i− 1 � i
 j ′	≤ P�i− 1 � i
 j ′′	�

We prove the following lemma for the expected average cost model. The same lemma can be proved if the
control affects the arrival rates and does not affect the service rate.
The proof of the following lemma appears in Appendix B.

Lemma 4.2. The coupling property holds for the controlled discrete-time M/M/1 queue.

5. Structure of optimal policies.

5.1. Deterministic policies. Given a policy �, let I� denote the set of pairs �i
 j	 for which ��i
 j	 > 0.
These pairs define columns of the matrix A. Let B� denote the submatrix of A consisting of the projection of A
to the columns in I� . Let #� denote the occupation measure corresponding to the policy �. Let #̃� denote the
vector obtained by projecting #� to coordinates in I� .
The next proposition proves that, under Assumption 2.1, the mapping � �→ #� between deterministic policies

and the corresponding occupation measure is one to one.

Proposition 5.1. If � is a deterministic policy for CMDP��	, then (i) #̃� is the unique solution of the
equations B� · #̃= b, and (ii) the rank of B� is n.

Proof. Part (ii) follows from part (i). We now prove part (i). By the definition of I� , if �x
u	 �∈ I� , then
#��x
u	= 0. Hence A · #� = b if and only if B� · #̃� = b. In the model of discounted cost, the matrix B� is
invertible by Gersgorin’s theorem (Horn and Johnson [7]), hence uniqueness follows.
In the model of expected average cost, if the MDP satisfies the Assumption 2.1, then by the Peron-Frobenius

theorem (Horn and Johnson [7]), the system B� · #̃� = b has a unique solution, and the proposition follows. �

5.2. Properties of optimal policies. The following theorem, proved for the various cost models in de
Ghellinck [4], d’Epenoux [5], Derman [6], and Manne [12], states that, if CMDP��	 is feasible, there always
exists an optimal policy that is deterministic or strictly 1-randomized. The theorem is stated in terms of the
occupation measure (i.e., the optimal solution of the LP��	). This theorem and its proof are an extension of the
theorem that every MDP has an optimal policy that is deterministic.

Theorem 5.1. If LP��	 is feasible, then there exists an optimal solution #∗ of LP��	 that is deterministic
or strictly 1-randomized.

Proof. The rank of the constraints in LP��	 is at most n+ 1. This implies that in every BFS there are at
most n+ 1 nonzero variables. Fix an optimal BFS #∗. By Assumption 2.1,

∑
u #

∗�x
u	 > 0, for each state x.
Hence, for each state x, except perhaps for one, #�x
u	 is positive for exactly one action, and the theorem
follows. �

5.3. Policies along an edge. Let �0 and �1 denote two deterministic policies that disagree in a single state.
Let �q �= q ·�1 + �1− q	 ·�0, for 0 ≤ q ≤ 1. Note that �q is a strictly 1-randomized policy if 0< q < 1. We
say that a policy � agrees with the zeros of policy �∗ if ��x
u	= 0 whenever �∗�x
u	= 0.
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Let Ax
u denote the column of A corresponding to x ∈ X and u ∈ U . Complementary slackness implies the
following optimality condition.

Proposition 5.2. Let # and w denote feasible solutions of LP��	 and the dual-linear program (DLP),
respectively. The following two conditions are equivalent: (1) # and w are optimal and (2) For every x ∈ X

and u ∈U , either #�x
u	= 0 or the dual constraint is tight (i.e., wT ·Ax
u = c�x
u	).

Proposition 5.3 (Zadorojniy and Shwartz [25]). Let �∗ denote an optimal policy for CMDP��∗	. Let
� denote a policy that agrees with the zeros of �∗. Then, � is an optimal policy for CMDP�D��		.

Proof. Let #∗ = #�∗ and # = #� . Note that #
∗�x
u	 = 0 implies that #�x
u	 = 0. Let w∗ denote a dual-

optimal solution of LP��∗	. By Proposition 5.2, it follows that, for every �x
u	, either #∗�x
u	= 0 or the dual
constraint is tight (i.e., �w∗	T ·Ax
u = c�x
u	). Note that w∗ is also a feasible solution of the DLP corresponding
to CMDP�D��		. It follows that # and w∗ also satisfy the optimality condition, and hence, by Proposition 5.2,
# is optimal, as required. �

Proposition 5.4. For every two policies � ′ and � ′′ such that D�� ′	 <D�� ′′	, there exists a policy � such
that D�� ′	 <D��	 <D�� ′′	.

Proof. Denote �q �= q ·� ′′ + �1−q	 ·� ′. Define D�q	
�=D��q	. Since D��	 is continuous in � (Zadorojniy

and Shwartz [25]), it follows that D�q	 is continuous in q. It follows that the image of D�q	 over the interval
�0
1� contains the interval �D�� ′	
D�� ′′	�. �

Proposition 5.3 and the proof of Proposition 5.4 imply the following.

Corollary 5.1 (Zadorojniy and Shwartz [25]). If �q∗ is an optimal policy for CMDP��∗	 and
q∗ ∈ �0
1	, then, for each � ∈ �inf0≤q≤1D��q	
 sup0≤q≤1D��q	�, there exists q� ∈ �0
1� such that �q� is an
optimal policy for CMDP��	.

Consider the strictly 1-randomized policy �1/2 = ��0 +�1	/2. Then I�1/2 is the set of pairs �i
 j	 for which
�1/2 > 0.
Let B�d	 denote the �n+ 1	× �n+ 1	 square matrix obtained by first augmenting the matrix A with the

row dT , and then projecting the augmented matrix on the columns in I�1/2 .

Lemma 5.1. The following three conditions are equivalent:
(i) D��0	=D��1	.
(ii) B�d	 is not of full rank.
(iii) D��q	=D��0	, for all q ∈ �0
1�.

Proof. (i)⇒ (ii). Fix � = D��0	. The occupation measures #�0 and #�1 (induced by the deterministic
policies �0 and �1, respectively) are distinct feasible solutions of LP��	. Hence, both #̃�0 and #̃�1 are distinct
solutions of the system of equations B�d	 · #̃= (

b

�

)
. This implies that B�d	 is not of full rank.

(ii)⇒ (iii). Both policies �0 and �1 induce occupation measures that are feasible solutions of LP. By con-
vexity, for every q ∈ �0
1�, the occupation measure #�q is also a feasible solution of LP. Since B has rank n,
if B�d	 is not of full rank, the last row (corresponding to the constraint dT · #= �) depends on the other rows.
Hence, every occupation measure # that is a feasible solution of LP and whose support is contained in I�1/2 has
the same cost dT · #. This implies that D��q	=D��0	, for all q ∈ �0
1�, as required. Finally, the implication
(iii)⇒ (i) is trivial, and the lemma follows. �

Proposition 5.5. If D��0	 �=D��1	, then C��q	 is linear in D��q	 over the range q ∈ �0
1�.

Proof. We consider the following two cases:
(i) Suppose B�d	 is of full rank. In the model of discounted cost, B�d	 is an �n+1	× �n+1	 square matrix,

and thus invertible. Hence #̃�q = B�d	−1 · �b
D��q		T . Therefore, C��q	= c̃ · #̃�q = c̃ · B�d	−1 · �b
D��q		T ,
and C��q	 is linear in D��q	, as required. In the model of expected average cost, one needs to remove first a
dependent row from B�d	 to make it square and thus invertible.
(ii) If B�d	 is not of full rank, then by Lemma 5.1, D��0	=D��1	, a contradiction. �
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Proposition 5.6. Fix a value of �. Consider the set of policies E�0
1	
�= ��q� 0< q < 1�. Exactly one of the

following cases holds:
(i) Every policy in E�0
1	 is an optimal policy of CMDP��	.
(ii) No policy in E�0
1	 is an optimal policy of CMDP��	.
(iii) Exactly one policy in E�0
1	 is an optimal policy of CMDP��	.

Proof. If B�d	 is of full rank, then by Proposition 5.5, either exactly one policy in E�0
1	 is an optimal
policy of CMDP��	 or no policy in E�0
1	 is an optimal policy of CMDP��	.
If B�d	 is not of full rank, then by Lemma 5.1, D��q	 = D��0	, for q ∈ �0
1�, and thus either every

policy in E�0
1	 is a feasible policy of CMDP��	 or no policy in E�0
1	 is a feasible policy of CMDP��	. By
Proposition 5.3, if one policy in E�0
1	 is an optimal policy of CMDP��	, then every policy in E�0
1	 is optimal
as well. �

In the following lemmas, we abbreviate, and refer to a policy � as optimal if it is an optimal policy of
CMDP�D��		.

Lemma 5.2. Let q∗ ∈ �0
1	. If �q∗ is an optimal strictly 1-randomized policy, then the function D�q	
�=

D��q	 is strictly monotone in the interval q ∈ �0
1�.

Proof. The function D�q	 is continuous because the policy �q is continuous in q, and D��	 is continuous
in �. If D�q	 is not strictly monotone, then there exist q′ < q′′ such that D�q′	=D�q′′	. By Proposition 5.3,
each of the policies �q′ and �q′′ is optimal for CMDP��	, where � = D�q′	. By the uniqueness assumption
(Assumption 3.1), neither �q′ or �q′′ is deterministic. Hence 0< q′ < q′′ < 1.
Let #′ (resp. #′′) denote the occupation measure that corresponds to the policy �q′ (resp. �q′′ ). We first prove

that #′ �= #′′. Assume that �0 and �1 disagree in state s, and without loss of generality, assume that �0�s	= 0
and �1�s	= 1. By Assumption 2.1, both occupation measures #′ and #′′ assign positive probability to state s.
However, the ratios #′�s
0	/#′�s
1	 �= #′′�s
0	/#′′�s
1	.
On the other hand, since the support of #′ and #′′ are equal, it follows that the bases corresponding to #′

and #′′ are the same. Hence #′ and #′′ are different solutions of the system B̃ · # = (
b

�

)
, where B̃ is the basis

matrix. We consider two cases. If B̃ is invertible, then immediately we have a contradiction. If B̃ is not invertible,
then by Lemma 5.1, D��0	=D��1	= �. Therefore, both �0 and �1 are feasible policies of CMDP��	. On the
other hand, both �0 and �1 are optimal, hence C��0	= C��1	, a contradiction to the uniqueness assumption
(Assumption 3.1). �

Lemma 5.3. Let � ′ �= � ′′ denote two distinct optimal policies of CMDP��′	 and CMDP��′′	, respectively.
If � ′ and � ′′ are deterministic or strictly 1-randomized, then �′ �= �′′.

Proof. Assume for the sake of contradiction that D�� ′	 = D�� ′′	. Recall that by definition �′ = D�� ′	
and �′′ = D�� ′′	. Since both � ′ and � ′′ are optimal, it follows that C�� ′	 = C�� ′′	. If either � ′ or � ′′ is
deterministic, then the lemma follows from the uniqueness assumption. If both policies are strictly 1-randomized,
then let � ′ (resp. � ′′) be a convex combination of two deterministic policies �0 and �1 (resp. /0 and /1).
By Lemma 5.2, D increases along the edge between �0 and �1 (resp. /0 and /1). Without loss of generality,
D�/0	≤D��0	≤D�� ′	. It follows that Assumption 3.1 is violated for �=D��0	. �

5.4. Graph representation.
Definition 5.1 (Policy Graph). The policy graph is a graph G = �V 
E	, where V is the set of

deterministic policies, and E is the set of pairs of neighboring deterministic policies (i.e., policies that disagree
in exactly one state).
In the case of two actions k= 2, the policy graph is isomorphic to the n dimensional hypercube. In the general

case, the policy graph is isomorphic to the Cartesian product of n copies of the complete graph over k vertices.
We consider the edge ��0
�1	 between neighboring deterministic policies as a representation of all convex

combinations �q = �1− q	 · �0 + q · �1 of �0 and �1. In such a case, we say that �q belongs to the edge
��0
�1	.
Let 5 denote the set of deterministic or strictly 1-randomized feasible policies for CMDP��	, for all values

of �. Let 5 ∗ ⊆ 5 denote the subset of optimal policies in 5 . In light of Proposition 5.3, 5 ∗ consists of vertices
(i.e., deterministic policies) and edges (i.e., deterministic and strictly 1-randomized policies).

Lemma 5.4. The set 5 ∗ is a path in the policy graph G.
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Proof. Let G∗ denote the subgraph of G that consists of the vertices and edges in 5 ∗. The proof consists
of the following two stages: (1) prove that G∗ is connected and (2) prove that the degree of every vertex in G∗

is at most two.
Denote the connected components of G∗ by U1
U2
 � � � 
Us . By continuity, the image of the function D� 	

over each connected component is an interval. Denote the image of Ui by Ii. By Lemma 5.3, the intervals
I1
 � � � 
 Is are pairwise disjoint. By Proposition 5.4, the union of the intervals I1∪· · ·∪ Is is an interval. To avoid
a contradiction, we conclude that G∗ contains only a single connected component. Hence G∗ is connected, as
required.
If the degree of a vertex � is at least 3, consider three edges in 5 ∗ that are incident to �. By Lemma 5.2,

D��	 is strictly monotone as one travels along each of these edges incident to v. Moreover, for at least two
edges, the slope of D��	 as one approaches v has the same sign; namely, monotone increasing (or decreasing).
Two such edges in 5 ∗ contain two optimal policies � ′ �= � ′′ ∈ 5 ∗ such that D�� ′	 = D�� ′′	. This contradicts
Lemma 5.3. �

The next corollary follows from Lemmas 5.3 and 5.4.

Corollary 5.2. D��	 is strictly monotone along the path 5 ∗.

6. A general algorithm. In this section, we present a general algorithm for computing optimal policies of
irreducible MDPs that satisfy the uniqueness property. Although we cannot prove that the running time of this
algorithm is polynomial in general, in the next section, we prove strong polynomiality of a variant when the
coupling property holds.

6.1. Geometric interpretation of the algorithm. The algorithm is based on Lemma 5.4 that states that the
set 5 ∗ of optimal deterministic and strictly 1-randomized policies form a path in the policy graph. Consider the
polytope P generated by the deterministic occupation measures. We introduce a cost vector d. Let P� denote
the intersection of P with the hyperplane dT ·#= �. Let �min (resp. �max) denote the minimum (resp. maximum)
value of � for which P� is not empty. For each � ∈ ��min
�max�, the polytope P� contains a single occupation
measure #��	 that corresponds to a policy ���	 ∈ 5 ∗.
The algorithm assigns a zero-one cost vector d, so that �min = 0 and �max = 1. Moreover, it is trivial to find

the optimal deterministic policy � such that D��	= 0. Given a prefix of 5 ∗ ending in a deterministic policy �,
the algorithm finds the next deterministic policy / along 5 ∗ as follows. First, note that / must be a neighbor
of �. Namely, there exists a state i and an action j such that / =�i
 j . This limits the number of candidates for /
to nk. Second, by Corollary 5.2, D�/	 > D��	. Thus, if we depict the neighboring policies on a �C
D	-plane
(see Figure 1), then / is simply the policy with the smallest slope.
The algorithm ends when all neighbors / of � satisfy D�/	≤D��	. Thus the algorithm has reached the last

policy along 5 ∗.

C (�3)

C (�)

C (�2)

C (�1)

D (�) D (�3) D (�1) D (�2)

C (·)

D (·)

Figure 1. A prefix of 5 ∗ ends in a deterministic policy �.
Notes. The algorithm has to compute the next policy along 5 ∗ among the neighboring policies /1, /2, /3. The costs C�·	 and D�·	 of each
policy are depicted in the graph. The algorithm chooses the policy /3 because the segment between �D��	
C��		 and �D�/3	
C�/3		 has
the smallest slope.
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6.2. Notation. Given a deterministic policy �, we define the gradient 6i
 j as follows:

6i
 j

�= C��i
 j 	−C��	

D��i
 j 	−D��	
� (4)

The parameters in the definition of 6i
 j can be easily computed as follows. Recall that B� denotes the
projection of the columns of the matrix A on the pairs in I� (i.e., the basis matrix corresponding to the BFS
#�). For a vector #� , the projection to the coordinates in I� is denoted by #̃� . Since � is a deterministic policy,
by Proposition 5.1, the corresponding occupation measure #� when projected to I� is the unique solution for
B� · #̃� = b. Hence C��	 = c̃� · #̃� , D��	 = d̃� · #̃� , and the analogous computations hold for C��

i
 j 	 and
D��i
 j 	.

6.3. Algorithm description. The algorithm adds a new artificial cost function D��	 specified by a cost
vector d ∈ �0
1�nk. The MDP with the constraint D��	= � is denoted by CMDP��	. In the linear programming
formulation, LP��	 is the LP obtained by adding the constraint dT · #= � to LP. The algorithm computes the
set 5 ∗ of optimal (deterministic or strictly 1-randomized) policies for CMDP��	, for every value of �. This set
is found by computing 5 ∗. Finally, an optimal policy for the MDP is chosen as a deterministic policy in 5 ∗ with
minimum cost C�·	.
A listing of the algorithm appears as Algorithm 1. In line 1, the algorithm assigns zero-one costs d�i
 j	. For

each state, one (arbitrary) action is assigned zero cost, and the other actions are assigned unit cost. In line 2, the
initial policy is set. This policy simply chooses the zero cost action for each state. This initial policy � achieves
the minimum value for D��	. The path p begins with the initial policy as its starting point.
The algorithm builds the path p by adding a new edge in each iteration of the while loop. The last policy

(vertex) added to p is denoted by �. In each iteration of the while loop, the path p is augmented by a new edge
��
�i
 j 	. In line 4, this new edge ��
�i
 j 	 is chosen such that �i
 j	= argmin�6i
 j � ∀ �i
 j	such that D��i
 j 	 >
D��	�. In line 5, the new edge is added to the path p. In line 6, the new end point of p is updated. In lines 7–8,
the minimum cost policy along p is updated if necessary. In line 11, a minimum cost policy is returned.

Algorithm 1
A heuristic for finding an optimal policy for the MDP min�c · # � A · # = b�. We assume that the MDP is
irreducible and satisfies the uniqueness property.
(1) Define

d�i
 j	
�=
{
0 if j = 0

1 otherwise�

(2) Initialize

� ← �0
 � � � 
0	 {� chooses the “zero” action in each state}

opt ←� {best policy so far}

p ← ��� {path p starts with �}

(3) while exists �i
 j	 such that D��i
 j 	 >D��	, do
(4) �i
 j	← argmin�6i
 j � ∀ �i
 j	 such that D��i
 j 	 >D��	�
(5) add the edge ��
�i
 j 	 to p
(6) � ←�i
 j ��i
 j becomes the current end point of p}
(7) if C��i
 j 	 < C�opt	, then
(8) opt←�i
 j {opt is the best policy so far}
(9) end if
(10) end while
(11) return opt

6.4. Correctness. We now prove that Algorithm 1 finds an optimal policy. To prove this, we prove that the
algorithm computes 5 ∗, the path of optimal solutions of LP��	 (for all values of �) in the policy graph.

Theorem 6.1. The path p computed by the Algorithm 1 equals 5 ∗.
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Proof. We prove by induction on the number of iterations of the while loop that p is a prefix of 5 ∗ in each
iteration. Since the costs d�x
u	 are in �0
1�, it follows that for every policy / , D�/	 ≥ 0. Hence LP��	 is
feasible only if �≥ 0. Clearly, the initial policy �0 = �0
 � � � 
0	 satisfies D��0	= 0. We claim that the initial
policy is the only policy with D��	= 0. Consider an optimal policy � �= �0. Consider a state x and action u

for which ��x
u	 > 0 while �0�x
u	= 0. By the Assumption 2.1, #��x
u	 > 0. Since d�x
u	= 1, it follows
that D��	 > 0. We conclude that the initial policy is optimal for �= 0. Moreover, the initial policy is the end
point of the path 5 ∗ with smallest cost D�·	, and the induction basis holds.
The induction step is proved as follows. Let � denote the last policy added to p. Let �i
 j denote the next

policy added to p; namely, �i
 j	← argmin�6i
 j � ∀ �i
 j	 such that D��i
 j 	 > D��	�. Let �ı̂
̂ denote the next
policy along 5 ∗ after �. We wish to prove that �i
 j	= �ı̂
 ̂	.
Assume for the sake of contradiction that �i
 j	 �= �ı̂
 ̂	. By Corollary 5.2, D��ı̂
 ̂	 > D��	. Let D′ =

min�D��ı̂
 ̂	
D��i
 j 	�. Since the cost D�/	 is a continuous function of the policy / , the cost D′ is obtained in
two policies: (1) �1 along the edge between � and (2) �i
 j and �2 along the edge between � and �ı̂
 ̂ . For
example, �1 = �i
 j and �2 is a convex combination of � and �ı̂
 ̂ . The policy �2 is also an optimal policy.
However, by Proposition 5.5 and the definition of �i
 j	, it follows that C��1	 ≤ C��2	. This contradicts the
optimality of �2 (if C��1	 < C��2	) or the uniqueness of the solution (if C��1	=C��2	). Hence �i
 j	= �ı̂
 ̂	,
which completes the induction step.
We now prove that when the algorithm terminates, p cannot be augmented anymore, and hence p equals 5 ∗,

as required. Indeed, if p is a proper prefix of 5 ∗, then the cost D�·	 increases from � to the next deterministic
policy in 5 ∗. In this case, the algorithm would not have terminated yet because the set ��i
 j	� D��i
 j 	 >D��	�

is not empty. �

Corollary 6.1. Algorithm 1 computes an optimal policy of the MDP.

Proof. The MDP has an optimal policy �∗ that is deterministic. This policy is also in 5 ∗. By Theorem 6.1,
�∗ appears in the sequence of policies scanned by the algorithm. �

Let �5 ∗� denote the number of deterministic policies in 5 ∗.

Proposition 6.1. The complexity of Algorithm 1 is O��5 ∗� · n3 · k	.
Proof. In each deterministic policy (vertex along 5 ∗), the algorithm checks at most n ·k options for the next

policy. The running time of each check is dominated by matrix inversion. Matrix inversion is applied to a basis
matrix that is obtained from an adjacent basis; namely, a change in a single column. By the Sherman-Morrison
formula (Meyer [15]), the inverse matrix can be computed in time O�n2	. Thus the complexity of the algorithm
is O��5 ∗� · n3 · k	, as required. �

7. A strongly polynomial algorithm: When coupling property holds. For every deterministic policy / ,
let #min�/	

�=min�#/�i
 /�i		� i ∈X�. Similarly, #max�/	
�=max�#/�i
 /�i		� i ∈X�. Let #min

�=min/ #min�/	 and
#max

�= max/ #max�/	, where the minimum and maximum are taken only over deterministic policies. Assump-
tion 2.1 implies that #min > 0.
The algorithm uses a parameter R that satisfies

R≥ 1+#max
#min

� (5)

There is no need to precisely compute the right-hand side of Equation (5); instead, we use an upper bound
based on Assumption 2.1 as follows. Obviously, #max < 1. In the expected average cost model, we lower
bound #min by #̃min = pn

min, where pmin is the minimum nonzero transition probability in the MDP. This lower
bound holds simply by considering all paths of length n with nonzero transition probabilities to a given state. In
the discounted cost model, we lower bound #min by #̃min = �1−�	 ·�n−1 ·pn−1

min . The algorithm uses the following
value for R:

R
�=max

{
2

#̃min

 nk

}
� (6)
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7.1. Algorithm description. A listing of the algorithm appears as Algorithm 2. The algorithm works under
the additional assumption that the coupling property holds. The algorithm is a variation of Algorithm 1. The
only difference is in the definition of the new artificial cost constraint dT · #= �. This definition now relies on
the linear orders ≤i and the parameter R. The costs d�i
 j	 are exponential functions of i and j .
In line 1, the algorithm sorts the actions in each state; namely, it computes the linear orders ≤i over U for

each state i ∈X. In line 2, costs d�i
 j	 are assigned to each pair �i
 j	 ∈X ×U . In line 3, the initial policy is
set. This policy simply chooses the first action (according to the order ≤i) for each state i. This initial policy �
achieves the minimum value for D��	. The remaining lines are identical to corresponding lines in Algorithm 1.

Algorithm 2
A strongly polynomial algorithm for finding an optimal policy for the MDP min�c · # � A · #= b�. We assume
that the MDP is irreducible and satisfies both the uniqueness and coupling properties.
(1) Sort the actions for each state i ∈X according to the order ≤i. Let j

i
0 ≤i j

i
1 ≤i · · · ≤i j

i
k−1 denote the actions

sorted according to the order ≤i.

(2) Define d�i
 jil 	
�=Rk·�n−i	+l.

(3) Initialize

� ← �j00 
 � � � 
 j
n−1
0 	 {� chooses the “first” action in each state}

opt ←� {best policy so far}

(4) while exists �i
 j	 such that D��i
 j 	 >D��	, do
(5) �i
 j	← argmin�6i
 j � ∀ �i
 j	 such that D��i
 j 	 >D��	�

(6) � ←�i
 j

(7) if C��i
 j 	 < C�opt	, then
(8) opt←�i
 j {opt is the best policy so far}
(9) end if
(10) end while
(11) return opt

7.2. Correctness. The following lemma is used both for proving the correctness and running time of Algo-
rithm 2. Consider two neighboring deterministic policies � and / . By Lemma 5.2, it follows that the cost D�·	
is strictly monotone along the edge in the policy graph from � to / . The following lemma determines whether
D�·	 increases or decreases along the edge ��
 /	. The lemma relies on both Assumption 2.1 and the coupling
assumption.
For two actions j1 and j2, we say that j1 <i j2 if j1 ≤i j2 and j1 �= j2.

Lemma 7.1. Let � �= / denote two neighboring deterministic policies, i.e., / = �i
 j . Then, ��i	 <i /�i	 if
and only if D��	 <D�/	.

Proof. We first prove that ��i	 <i /�i	 implies that D��	 < D�/	. The proof is based on a coupling
argument and the exponential growth of d�x
u	, as x is closer to the initial state 0. By definition,

D�/	−D��	= ∑
x∈X
u∈U

d�x
u	 · �#/�x
u	−#��x
u		� (7)

We partition this difference into the following three parts:

:1
�=∑

x<i

∑
u∈U

d�x
u	 · �#/�x
u	−#��x
u		�

:2
�=∑

x>i

∑
u∈U

d�x
u	 · �#/�x
u	−#��x
u		�

:3
�= ∑

u∈U
d�i
 u	 · �#/�i
 u	−#��i
 u		�

Since ��i	 <i /�i	, the coupling property states that #��x
u	 ≤ #/�x
u	, for every x < i and every u ∈ U .
Therefore, :1 ≥ 0.
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We now bound :2 as follows. Note that, for every x > i and u ∈U , it follows that d�x
u	≤Rk·�n−i	−1. Hence

:2 ≥
∑
x>i

∑
u∈U

d�x
u	 · �0−#��x
u		

≥−#max · �n− i	 · k ·Rk · �n−i	−1

>−Rk · �n−i	


where the last line follows from #max < 1 and R≥ kn> k · �n− i	.
We now bound :3 as follows. Denote the index of ��i	 and /�i	 in the order ≤i, as l��	 and l�/	, respectively.

The assumption ��i	 <i /�i	 implies that 0≤ l��	 < l�/	 < k. Since � and / are deterministic, it follows that

:3 = d�i
 j	 ·#/�i
 j	−d�i
��i		 ·#��i
��i		

≥Rk · �n−i	 · �#min ·Rl�/	 −#max ·Rl��		

≥Rk · �n−i	


where the last line follows from R≥ �1+#max	/#min and l�/	≥ l��	+1. Note that the second line requires that
#/�i
 j	 > 0. Indeed, Assumption 2.1 implies that #/�i
 j	 > 0.
It follows that :1+ :2+ :3 > 0−Rk · �n−i	 +Rk · �n−i	 = 0, as required.
The converse direction is proved as follows. By contraposition, D��	 < D�/	 implies that ��i	≤i /�i	. We

rule out equality (namely, ��i	= /�i	) since � �= / and / =�i
 j . �

Corollary 7.1. The initial policy �0 = �j10 
 � � � 
 j
n
0 	 in Algorithm 2 is an optimal policy of CMDP��0	 for

�0
�=D��0	. Moreover, LP��	 is not feasible for �<�0.

Proof. Consider the policy / of minimum cost D�·	 in 5 ∗. By Lemma 5.2, / is a deterministic policy.
Suppose, for the sake of contradiction, that / �=�0. Let i denote a state for which �0�i	 �= /�i	. By the definition
of �0, it follows that �0�i	 <i /�i	. Let � = /i
�0�i	. Note that � and / satisfy the premises of Lemma 7.1. Hence
D��	 <D�/	, contradicting the minimality of D�/	. It follows that �0 is the unique policy in 5

∗ whose cost is
D��0	, as required. �

Theorem 7.1. Algorithm 2 returns an optimal deterministic policy of MDP if the coupling property holds.

Proof. The proof follows the proof of Theorem 6.1 and Corollary 6.1. The only modification, based on
Corollary 7.1, is the justification that the initial policy is an end point of 5 ∗. �

7.3. Running time.

Proposition 7.1. If the coupling property holds, then �5 ∗� ≤ n · k.
Proof. By Corollary 5.2, the cost D�·	 increases along 5 ∗. Let � immediately precede / along 5 ∗. Suppose

/ =�i
 j . By Lemma 7.1, ��i	 <i /�i	. This implies that the length of the path is bounded by n · k. �

Corollary 7.2. The complexity of Algorithm 2 is O�k2 · n4	.
Proof. Follows directly from Propositions 6.1 and 7.1. �

8. Discussion. We presented an algorithm for computing an optimal policy of an irreducible MDP. A vari-
ation of this algorithm runs in strongly polynomial time if the MDP satisfies the coupling property, e.g., a con-
trolled discrete time M/M/1 queue. The algorithm is based on two assumptions: irreducibility and uniqueness.
The uniqueness property is shown in Lemma 3.1 to hold with high probability if the cost function is ran-

domly perturbed. Therefore, if the MDP does not satisfy the uniqueness property, then the need for a random
perturbation implies that the algorithm is a randomized (-approximation algorithm.
The irreducibility assumption of the MDP (i.e., Assumption 2.1) is used several times in the proofs to show

that the occupation measure is positive for every state. In the discounted cost model (i.e., �< 1), irreducibility
can be replaced with the more relaxed assumption that, for every deterministic policy, every state is reachable
from the initial state with positive probability.

Appendix A. Uniformization of a birth-death process. Uniformization (Beutler and Ross [2], Serfozo
[19], Tijms [20]) is a technique that transforms a continuous-time Markov process into a discrete one, while
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preserving the occupation measure. In the case of a controlled Markov process, uniformization also preserves
the optimality of policies and their costs. We apply uniformization to transform a controlled continuous time
birth-death process (Kleinrock [10]) (i.e., one-dimensional queue) to a discrete MDP.
The queue dynamics are determined by service completions, which are independent, exponentially distributed

random variables with rates )�i
u	 that depend on the state i and the action u, and an independent Poisson
arrival process with rate ; (that does not depend on the state or the action). Equivalently, the interarrival times
are exponentially distributed with rate ;.
We now use the following fact. Given two independent exponential random variables X
Y with rates a and b

resp. and a number c > a+ b, we can construct the two variables as follows. Choose a Poisson process with
rate c. When the process jumps, throw an independent three-sided die. With probability a/c claim that X
occurred. With probability b/c claim that Y occurred, and with probability �c− a− b	/c neither occurred—in
which case we repeat. This gives the same probabilistic behavior as the original variables.
Now, denote by vi�u	 the rate by which the queue leaves state i if the selected action is u. To apply the

previous argument, set vi�u	= ;+)�i
u	 as the total rate in state i. Let v=maxi
 u�vi�u		. The transition rates
of the uniformized process are now independent of the state and of the actions chosen in each state, and are
equal to v. Once a transition occurred, its type is determined according to

P�j � i
 u	=




;

v
for j = i+ 1


)�i
 u	

v
for j = i− 1


1− ;+)�i
u	

v
for j = i


(A1)

with the appropriate modifications at i= 0 and i= n−1. We have obtained a process that shares the probabilistic
description of the original, except that self-loops were introduced. In the new process, times between events
(including self-loops) are independent and identically distributed (exponential with rate v).
To obtain a discrete time process, we observe the process at jump times (including times of self-loops).

Because interjump times are i.i.d., we can simply count the number of jumps, where the transition probabilities
are determined by Equation (A1), and obtain a discrete-time process. The properties of the interjump times
imply that, under any deterministic policy, the occupation measure of the original process agrees with that of
the discrete-time process, and, in particular, all cost functionals agree as well.

Appendix B. Proof that the coupling property holds.
Proof of Lemma 4.1. We prove the lemma for the expected average cost model. We use the following

abbreviated notation. Fix a deterministic policy �. For each state x, let #�x	 denote the occupation mea-
sure for state x under the policy �; namely, #�x	

�= ∑
u∈U #��x
u	. Let #′�x	

�= ∑
u∈U #�i
 j �x
 u	. Let

p�x	
�= P�x− 1 � x
��x		 and q�x	

�= P�x + 1 � x
��x		. Similarly, let p′�x	
�= P�x − 1 � x
�i
 j �x		 and

q′�x	
�= P�x+ 1 � x
�i
 j �x		. For state 0, let p�0	

�= P�0 � 0
��0		, and for state n − 1, let q�n − 1	 �=
P�n− 1 � n− 1
��n− 1		.
We claim that the following holds, for every state x≥ 1:

#�x	= q�x− 1	 · q�x− 2	 · · ·q�0	
p�x	 ·p�x− 1	 · · ·p�1	 ·#�0	� (B1)

The proof of Equation (B1) is similar to the analytic solution of the equilibrium probabilities of continuous-
time birth-death queuing systems (Kleinrock [10]). We prove Equation (B1) by induction on x. The basis for
x= 1 is equivalent to #�1	 ·p�1	= q�0	 ·#�0	. Indeed, the first constraint of LP implies that

#�0	 ·p�0	+#�1	 ·p�1	= #�0	 ·p�0	+#�0	 · q�0	�
This is, in fact, the balance equation (Kleinrock [10], Tijms [21]) that compares the probability of transitions
entering state 0 with the probabilities of the transitions emanating from state 0.
Assume that Equation (B1) holds for x≤ k. The induction step for x= k+ 1 uses the LP constraint for state k

(i.e., the balance equation for state k). Namely,

#�k− 1	 · q�k− 1	+#�k+ 1	 ·p�k+ 1	= #�k	�p�k	+ q�k		�
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Rearranging, we obtain

#�k+ 1	= 1

p�k+ 1	 ·
(
#�k	�p�k	+ q�k		−#�k− 1	 · q�k− 1	)�

Dividing #�k	/#�k− 1	, and substituting according to Equation (B1) gives #�k	 · p�k	 = #�k− 1	 · q�k− 1	.
Therefore,

#�k+ 1	= 1

p�k+ 1	 · �#�k	 · q�k		

= q�k	 · q�k− 1	 · · ·q�0	
p�k+ 1	 ·p�k	 · · ·p�1	 ·#�0	


which completes the proof of Equation (B1).
Our goal is to prove that if ��i	 ≤i j , then #��x	 ≤ #�i
 j �x	, for every x < i. Let >�x	

�= �q�x − 1	·
q�x−2	 · · ·q�0		/�p�x	 ·p�x−1	 · · ·p�1		. Similarly, let > ′�x	 denote the above ratio with respect to the policy
�i
 j .
We claim that for every state x, >�x	≥ > ′�x	. Indeed, for x < i, >�x	= > ′�x	 because the ratio differs only

when x ≥ i. For x = i, it follows that >�x	/> ′�x	 = p′�i	/p�i	 ≥ 1 since ��i	 ≤i j . For x > i, it follows that
>�x	/> ′�x	= �p′�i	/p�i		 · �q�i	/q′�i		≥ 1.
Recall first that since # is an occupation measure, it follows that

∑
x∈X #�x	= 1. Hence, by Equation (B1),

1= ∑
x∈X

#�x	= #�0	 ·∑
x∈X

>�x	

1= ∑
x∈X

#�x	= #′�0	 ·∑
x∈X

> ′�x	�

Since
∑

x∈X >�x	 ≥
∑

x∈X > ′�x	, it follows that #�0	 ≤ #′�0	. For every state x < i, we have >�x	 = > ′�x	,
hence by Equation (B1), it follows that #�x	≤ #′�x	, as required. �

proof of Lemma 4.2. We use the same notation as in the proof of Lemma 4.1. We claim that the following
holds, for every state x≥ 1:

#�x	= qx

p�x	 ·p�x− 1	 · · ·p�1	 ·#�0	� (B2)

The proof of Equation (B2) is by induction on x. The basis for x= 1 is equivalent to #�1	 · p�1	= q · #�0	.
Indeed, it holds because of the balance equation (Kleinrock [10], Tijms [21]):

#�0	 ·p�0	+#�1	 ·p�1	= #�0	 ·p�0	+#�0	 · q
that compares the probability of transitions entering state 0 with the probabilities of the transitions emanating
from state 0. Note that this balance equation does not hold in the discounted cost model.
Assume that Equation (B2) holds for x ≤ k, the induction step for x = k+ 1 uses the balance equation for

state k. Namely,

#�k− 1	 · q+#�k	 ·P�k � k
��k		+#�k+ 1	 ·p�k+ 1	= #�k	�p�k	+P
(
k � k
��k		+ q

)
�

Rearranging, we obtain

#�k+ 1	= 1
p�k+ 1	 ·

(
#�k	�p�k	+ q	−#�k− 1	 · q)�

By dividing Equation (B2) for #�k	 and #�k− 1	, it follows that #�k	 ·p�k	= #�k− 1	 · q. Therefore

#�k+ 1	= 1

p�k+ 1	 · �#�k	 · q	

= q�k+1	

p�k+ 1	 ·p�k	 · · ·p�1	 ·#�0	


which completes the proof of Equation (B2).
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Our goal is to prove that if ��i	 ≤i j , then #��x	 ≤ #�i
 j �x	 for every x < i. Let >�x	
�= qx/�p�x	·

p�x− 1	 · · ·p�1		. Similarly, let > ′�x	 denote the above ratio with respect to the policy �i
 j .
We claim that for every state x, >�x	≥ > ′�x	. Indeed, for x < i, >�x	= > ′�x	 because the ratio differs only

when x≥ i. For x≥ i, it follows that >�x	/> ′�x	= p′�i	/p�i	≥ 1 since ��i	≤i j .
Recall first that since # is an occupation measure, it follows that

∑
x∈X #�x	= 1. Hence, by Equation (B2),

1= ∑
x∈X

#�x	= #�0	 ·∑
x∈X

>�x	


1= ∑
x∈X

#�x	= #′�0	 ·∑
x∈X

> ′�x	�

Since
∑

x∈X >�x	 ≥
∑

x∈X > ′�x	, it follows that #�0	 ≤ #′�0	. For every state x < i, we have >�x	 = > ′�x	,
hence by Equation (B2), it follows that #�x	≤ #′�x	, as required. �
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