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1. Introduction. One of the common technical assumptions in existing large deviations
theory for jump Markov processes is that jump rates are bounded below, away from zero
(Dupuis and Ellis [5], Ignatiouk-Robert [9], Shwartz and Weiss [13]). This is not merely
a technical assumption: if the rates may go down to zero, the process may get stuck at a
point, or it may or may not be possible to reach certain regions. We illustrate these issues
below through examples. From a technical point of view, this condition is required to obtain
smoothness of the local rate function.
However, in many applications this condition is violated. In this paper, we prove the large

deviations principle for the sample paths of a wide class of such models, under the basic
scaling of (2.2). Under our conditions, the usual Markovian integral representation of the
rate function continues to hold, with the same variational formula for the integrand, as in
the case with rates bounded away from zero. We allow the boundary defined by the region
where some rates go to zero to be fairly general; in contrast with existing large deviations
theory which deals only with “flat” boundaries, our boundaries are quite general.
Applications for which rates are not bounded away from zero fall roughly into two cate-

gories. In the first, the rates are proportional to the occupancy of the system, and thus go to
zero when the system empties. In the second, a control is designed to avoid, say, overflows.
“Soft controls” are characterized by continuous jump rates, and these controls may have
rates become zero. Another example of a soft control is when additional processing power
may be gradually added to a system when it grows beyond a certain threshold. Here are
some specific examples of these applications.
Example A. In an M/M/� queue, the service rate is linear in the queue size, so that as

the queue empties, the rate goes to zero. In this case, it is not possible to continue reducing
the queue size: the rate diminishes as we approach a boundary of the state space. This type
of behavior is one of our main motivations, as there are many multidimensional models
exhibiting this behavior (Mandjes and Weiss [11]). To obtain the scaling (2.2), scale the
space variable by n and make the arrival rate n�.
Example B. Consider an M/M/1 queue scaled by n: arrivals occur at rate n�, services

at rate n�, and the queue size x�t	 is scaled to zn�t	 = x�t	/n. Suppose that there is an
auxiliary M/M/� server, also with parameter �, that kicks in when the scaled queue size
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zn�t	 > 1, and that each service of this auxiliary server kicks out a pair of customers.
The rate of departure of pairs is thus � · �zn�t	− 1	 whenever zn�t	 > 1 and 0 otherwise.
Because the rate of jumps of size (−2) diminishes to zero at zn = 1, this case falls outside the
current theory. One key feature of this model is that the set of possible jump directions (the
positive cone spanned by the jump directions) does not change as the jump rate diminishes
to zero.
Example C. Consider a two-queue system with “soft priority” to queue 1. We suppose

that the two queues behave like independent M/M/1 queues, with arrival rate 0�5 and service
rate 1, as long as the (scaled) size of queue 1 is below 1. When the first queue is larger
than 1, the server of queue 2 enters a processor sharing mode, so that the service rate to
queue 1 increases linearly with queue size until its queue size is 2, and the rate remains
at 2 when the first queue is larger, while service rate at queue 2 decreases linearly with the
size of queue 1 until no service is offered at all. In this case, the service rate at queue 2
goes down and is 0 on 
�x� x1 ≥ 2�. In contrast with Example A, this region can be entered
with positive probability, so that it is not delineated by a boundary. In contrast with our
other examples, we do not develop a theory that covers this case, although the methods we
develop suffice for the analysis of simple models of this type.
Example D. We describe a simplified model of connection admission control (CAC),

based on an idea by Tse [15]. Suppose that customers arrive at an infinite-server queue with
Poisson rate n�. Arrivals may be turned away (blocked), according to rules given in the
next paragraph. Accepted customers depart the queue at rate �. We let q�t	 represent the
number in the system at time t. Customers who are accepted (not blocked) have two states,
represented by 0 and 1. Accepted customer i moves from xi = 0 to xi = 1 with rate �, and
from xi = 1 to xi = 0 with rate �. The bandwidth customer i uses at time t is xi�t	; the
total bandwidth in use at time t is thus b�t	 �=∑q�t	

i=1 xi�t	.
We now state the problem. Suppose that the capacity of the system is nC, so that there

is trouble if
∑

i xi�t	 > nC. We try to ensure that this happens with small probability by
accepting connections only when the scaled system state �zn�t	 �= 1/n�b�t	� q�t		 is in a
fixed region G. For some fixed �> 0, we define the probability that a connection is accepted
by

��accept	=



1 if �zn�t	 ∈G and d��zn�t	� �G� > ��

�1/�	dist��zn�t	� �G� if �zn�t	 ∈G and d��zn�t	� �G�≤ ��

0 otherwise�

We may try to design the set G so that the cheapest rate function for a path from �zn�0	
to the set b�t	/n = C is the same for all starting points �zn�0	 ∈ �G. In conclusion, we
have described a Markov model of CAC that fits into the theory we develop in this paper,
although we do not carry out the analysis and design of the appropriate region G for this
model.
Example E. This example is to show some potential pitfalls in the theory of diminishing

rates. Consider a pure birth process with ��x	= �x�. This process moves to the right and,
because ��0	= 0, if x�0	 < 0 is an integer, then x�t	≤ 0 for all t. Using the formulas for
the local rate functions that hold true when the rates are bounded below, a formal calculation
(detailed in §7) of the rate function I�r	 for the path r�t	 = t − 0�5, t ∈ �0�1�, yields
I�r	 <�, implying that ��process≈ r�t		≈ e−nI�r	 > 0. It is clear that the probability of
the process following near this path is exactly 0, so the formal calculation of the rate is
incorrect. However, if the process x�t	 starts with a noninteger value, then the probability is
strictly positive, and it turns out that in this case the formal calculation is correct, although
we will not detail that straightforward calculation in this paper. In more generality, if the
rates ��x	 are bounded below, then the sequence of processes with rates �n�x	= n��x	+1
is exponentially equivalent to the case with �n�x	= n��x	 so that, on the large deviations



Shwartz and Weiss: Large Deviations with Diminishing Rates
Mathematics of Operations Research 30(2), pp. 281–310, © 2005 INFORMS 283

scale, their behavior is identical. However, for the decreasing rate case described above, it
leads to completely different behavior, because now it becomes possible to cross the x= 0
barrier. The upshot is that the form of the rate function we derive is in some sense less
robust than it is under the usual condition that the rates are bounded away from 0.
We note that our analysis holds for processes confined to a convex set by having jump

rates, in directions heading out of the set, diminish to zero at the boundary, as in Example D.
Thus we establish, for the first time, a sample-path large deviations principle in the case of
curved boundaries. Previous published work (Shwartz and Weiss [13, Chapter 8], Dupuis
and Ellis [5], Dupuis et al. [7], Ignatiouk-Robert [9]) dealt only with flat boundaries; there is
some unpublished work dealing with curved boundaries with some restrictions. Our general
approach is based on Shwartz and Weiss [13]; indeed, we use this as the source of many
of our lemmas, and sometimes prove theorems by giving only the changes necessary to use
arguments in Shwartz and Weiss [13].
In general, there is no exponential equivalence between processes with log-bounded rates

and those whose rates may vanish, as Example E clearly shows. In fact, it is natural to
approximate a process with rates that go to zero by imposing a small lower bound, say !,
on the rates, and there is an obvious coupling between these two processes. However, it is
not hard to see that this coupling does not provide an exponential approximation. Therefore,
we resort to the more technical approach of following the steps of Shwartz and Weiss [13].
Our approach turns the problem of estimating the frequency or manner of occurrence of

a rare event into a variational problem. Such problems are not necessarily easy to solve,
although many one-dimensional problems have been, and some authors (e.g., Mandjes and
Ridder [10]) have solved some specific multidimensional models. The relationship between
our finite-time approach and steady-state statistics is given by the Freidlin-Wentzell theory,
given for diffusion processes in Freidlin and Wentzell [8], and for queues in Shwartz and
Weiss [13, Chapter 6]. There are many other approaches to sample-path large deviations;
see, for example, Dupuis and Ellis [6] or Puhalskii [12]. The literature on non-sample-
path large deviations is vast. The most relevant early references for the types of models
we address are Botvich and Duffield [2], Courcoubetis and Weber [3], and Simonian and
Guibert [14], which include tail estimates in steady state.
This paper is organized as follows. In §2, we set up the notation and describe the problem

as well as our main results: Theorem 2.1 for processes with boundaries, where some jump
rates go to zero at the boundary, and Theorem 2.2 for processes with diminishing rates but
where, at each point, the jump directions associated with positive rates span �d. Corol-
lary 2.1 in §2 shows that these two results can be combined to cover a large class of models
exhibiting small rates both near boundaries and in the interior. Finally, in Corollary 2.4 we
remove the technical assumption that the set of interest is compact, to obtain our results
under the weakest assumptions. This last extension is a consequence of Corollary 2.3, a
result of independent interest, on the exponential tightness of models with rates that grow
at most linearly.
In §3, we develop some preliminary results. In §4, we prove the large deviations upper

bound for the case that rates diminish at a boundary. In §5, we establish the corresponding
lower bound. In §6, we state and prove the large deviations principle when some rates
become zero in the interior of the region for models such as Example B in the introduction.
In §7, we give a simple sufficient condition for the rate function to be finite for paths that

approach a boundary; this shows that many boundaries may be reached with probability
that decreases to zero at an exponential rate, as opposed to a superexponential rate. This
condition is also virtually necessary in the one-dimensional case. Section 8 summarizes our
results and sketches open problems. Appendix A contains a technical lemma that allows us
to extend Lipschitz continuous jump rates from regions that are unions of convex sets to all
of �d. Appendix B contains an example illustrating the type of processes we consider and
shows how to verify a technical assumption.
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2. Assumptions and main results. We study jump Markov processes with boundaries
where some jump rates become zero. The structure of the processes is simple and is detailed
first. The structure of the boundaries of the regions of interest is more complicated and is
deferred for a few paragraphs. Using the notation of Shwartz and Weiss [13], our model of
jump processes is specified through k jump directions 
�ej�kj=1 and their respective Poisson
jump rates 
�j��x	�, which are defined for all �x in some set G (see Assumption 2.1). We
assume that the jump rates are Lipschitz continuous functions and, without loss of gen-
erality, that the positive cone (defined in (2.3)) spanned by the 
�ej� is �d. We call such
a process x�t	. Previous studies have assumed that the jump rates are uniformly bounded
away from 0; the sole novelty of this paper is the relaxation of that condition.
We scale the process x�t	 in space and time to zn�t	 as follows. All jump rates are

multiplied by a scaling parameter n, and all jump sizes are divided by n; in other words,
for zn�t	, jump �ej becomes �ej/n, and occurs at rate n�j . The generators for the original and
scaled process are thus given, respectively, by

�f ��x	 �=∑
j

�j��x	�f ��x+ �ej	− f ��x		� (2.1)

�nf ��x	 �=∑
j

n�j��x	
(
f

(
�x+ �ej

n

)
− f ��x	

)
� (2.2)

We now begin our description of the boundaries with some notation and definitions. We
denote by xj the jth coordinate of a vector �x, by �S the boundary of a set S, by So the
interior of S, by B�x� r	 the open ball of radius r > 0 centered at x, and by d��x� �y	 the
Euclidean distance between �x and �y. Given a set of vectors 
�uj�, the positive cone spanned
by the vectors is

�
�uj�
�=
{
�v� there exist �j ≥ 0 with �v=∑

j

�j �uj

}
� (2.3)

The cone generated by the positive jump rates at �x is denoted by
�x

�=�
{�ej � �j��x	 > 0

}
� (2.4)

To motivate our assumptions, suppose G is bounded and convex; then it as well as its
boundary are compact. Therefore, they can be covered with a finite number of open balls,
and in particular, we can achieve this covering with some balls centered on the boundary,
and the rest having no intersection with the boundary. Moreover, at each point of �G we
can fit a cone which is, at least locally, contained in G: more precisely, we say that G has
an interior cone property if there are numbers !> 0, �> 0 (independent of �x), such that for
every �x ∈ �G, there is a vector �v such that for each t ∈ �0� !	, we have B��x+ t�v��t	⊂G.

Assumption 2.1. The set G is compact, the closure of its interior. There exist positive
+�!�,��0��, vectors �vi, and open balls Bi so that

(i) 
Bi = B��xi� ri	� i= 1� - - - I1� covers �G and �xi ∈ �G.
(ii) 
Bi = B��xi� ri	� i= 1� - - - I� covers G with �xi ∈ �G, i≤ I1 and �xi ∈Go, i > I1.
(iii) G satisfies an interior cone condition with parameters ! and �. The vectors �v for the

interior cone may be taken as constant, �vi, in each region Bi. Moreover, if d��x� �G	 < ,,
then d��x+ t�vi� �G	 > +t and is monotone increasing for 0≤ t ≤ !.
(iv) For any �x ∈G, we have B��x��0	∩G⊂ Bi for some i.

To illustrate that these assumptions are quite weak, we consider the following class.
A set S is called star-like with respect to a point x ∈ S if for any point y ∈ S the closed line
segment between x and y lies in S.

Lemma 2.1. Suppose that G is compact and the closure of its interior, and that there
exists a ball B ⊂G so that G is star-like with respect to each x ∈ B. Then Assumption 2.1
holds.
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In particular, any compact convex set with nonempty interior satisfies the assumptions of
the lemma.
Proof. The first statement holds because G is compact and contains a ball. Because the

boundary is compact, we can cover �G with balls B centered on the boundary. Cover the
interior with balls contained in Go. Now extract a finite cover, and (i)–(ii) are established.
Take a ball B��x0� �	, �≤ 2, contained in B. Without loss of generality we may assume that

maxi ri < �/2. Suppose that �x ∈ Bj . Then, the convex hull of Bj ∪B��x0� �	 is contained in G,
and so the first part of (iii) follows. For the second part, take �vj = ��x0 − �xj	/�2��x0 − �xj�	.
The last part of (iii) follows from the first because there is a minimal angle to the (finite
number of) cones. Finally, (iv) follows by compactness: assume the contrary and take a
sequence of points for which the largest ball is of size 2−n. Then, the limit point cannot
belong to any Bi, a contradiction. �

A second property that holds easily when G is convex is that we can extend the jump
rates from being defined on G to being defined on �d while maintaining their Lipschitz
continuity, as follows. Because G is convex, then for each point �x �∈G, there is a unique
point p��x	 ∈ �G that is closest to G: it is the projection of �x on G. The definition of �j��x	
can therefore be extended to �d by setting �j��x	 �= �j�p��x		. In Appendix A, we show that
if the �i��x	 are Lipschitz continuous for �x ∈G, then they are Lipschitz when extended in
this way.
The choice of vectors �vi in Assumption 2.1(iii) is obviously not unique. Below we make

the assumption that this choice can be made so that the vectors are consistent with the
directions of increase of the diminishing rates.
The following assumption concerns the case where rates diminish near a boundary.

Assumption 2.2. The rates and jump directions satisfy the following:
A. There is a constant K� such that ��j��x	−�j��y	� ≤K�� �x− �y�. Moreover, the rates can

be extended to a � neighborhood of G, so that the Lipschitz property continues to hold.
B. For each �x ∈ �G, there is an !1 > 0 so that �y ∈ �x together with ��y� < !1 implies

�x+ �y ∈G.
C. �i��x	 > 0 for all i and �x ∈ Go. Moreover, ,, !, and �vi of Assumption 2.1 can be

chosen so that

�vi ∈�
{
�ej � inf�x∈Bi

�j��x	 > ,
}

and if �x ∈ Bi, d��x� �G	 < , and �j��x	 < ,, then �j��x+ ��v	 is monotone increasing in �
for 0<�< !.
D. �
�ej�=�d�

Note that Assumptions 2C and 2D together show that �x ∈ Go implies �x = �d.
Appendix B contains a nontrivial example of a process satisfying the assumptions and
sketches how to verify Assumption 2.2C.
When rates diminish in the interior, Assumptions 2.2B and 2C are not relevant, and

Assumption 2.2D is replaced with

Assumption 2.3. �x =�d for all �x.
This assumption is used for Theorem 2.2, which does not require all the parts of Assump-
tion 2.2.
Note that our assumptions allow the process to jump out of G; see Appendix B for a

worked example. However, by Assumption 2.2, at any given point in G—including the
boundary—if the jump size is small enough, then one jump will not cause the process to
exit G. In particular, it is not possible to jump from a point in �G in a direction parallel to
�G in directions where G is strictly convex. Finally, note that Assumptions 2.2A and 2B
imply that rates for jumps out of G must decrease to 0 as the boundary is approached.
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Lemma 2.2. Let G=⋃
Gi�1≤ i≤ k, where each Gi is a convex compact set. Suppose

that the Gi satisfy the property that any intersection of collections of Gi is either empty
or is the closure of its interior. Then, Assumption 2.1 holds for G. Furthermore, if the first
part of Assumption 2.2A holds, then the second part does as well (Lipschitz extension).

Proof. The first claim follows from reasoning like that of Lemma 2.1, detailed below.
The second part is proved in Appendix A.
Because any nonempty intersection of Gi is convex and is the closure of its interior,

this intersection satisfies the interior cone condition by Lemma 2.1. Consider any point
y ∈ �G. The intersection of all Gi containing y is nonempty. Thus, y satisfies the interior
cone condition. For any such y, there exists a ��y	 such that the distance between y and
any Gi with y �Gi is greater than ��y	 (because all the Gi are closed). Now we can use a
single ball contained in

⋂
y∈Gj

Gj , as in Lemma 2.1, to construct a vector v�y	 that serves
as a uniform interior cone direction for starting points near y (nearer than ��y	/2, say).
We are now in a position to use the compactness of the set G to extract a finite subcover
of neighborhoods that have uniform interior cones. The increasing distance property and
single Bi property (part iv) now follow as in the proof of Lemma 2.1. �

Note that in our example of the nonrobustness of the rate function (Introduction,
Example E), the set G is the union of the convex sets �−��0� and �0��	 which do not
satisfy the intersection property above. The result fails for this case, because for the ball
containing 0 there can be no �v satisfying Assumption 2.1(iii). Consequently, our theory
does not apply (which it should not, because Theorem 2.1 does not hold for this case).
We state one more note on where our assumptions apply. Recall that the second part

of Assumption 2.2A follows from the first for convex sets by projection. It is not hard
to show that if there is a �0 so that for each �x ∈ �G there is a closed ball B��y��0	 with
B��y��0	 ∩G= �x, then the second part of Assumption 2.2A follows from the first, as we
can define projection locally.
For �x� �y ∈�d and measurable �r� �0� T �→G, define

1��x� �y	 �= sup
�2∈�d

(
� �2� �y�−∑

j

�j��x	�e� �2��ej � − 1	
)
� (2.5)

I�0�T ���r	 �=


∫ T

0
1��r�t	� �r ′�t		dt if �r�t	 is absolutely continuous,

� otherwise.
(2.6)

We can now state our main results. Let D denote the space of bounded, right-continuous
functions from �0� T � to �d, possessing left-hand limits, and let Ds denote the space D
endowed with the sup norm topology. (Note that Corollary 2.2 shows that, under the present
scaling, we may use either the sup norm topology or the Skorohod J1 topology.) For any
measurable set S in Ds , denote

I�0�T ��S	
�= inf
I�0�T ���r	� �r ∈ S� �r�0	= �x��

where the dependence on �x is suppressed. Our main result concerning rates that diminish
toward a boundary is

Theorem 2.1. Let Assumptions 2.1 and 2.2 hold and consider the sequence 
�zn� of
processes taking values in Ds . This sequence satisfies the large deviations principle with
rate function I�0�T �. That is, for each T > 0, closed set C ∈Ds , and open set O ∈Ds , and
each point �x ∈G,

lim sup
n→�

1
n
log�x

(�zn ∈C
)≤−I�0�T ��C	� (2.7)

lim inf
n→�

1
n
log�x

(�zn ∈O
)≥−I�0�T ��O	� (2.8)
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Moreover, the nonnegative function I�0� T � is a good rate function, meaning its level sets

�r� I�0� T ���r	≤ �� �x ∈G� are compact for each �.

Suppose now that G = �d; the process has no boundaries. When the rates diminish in
the interior without changing the positive cone of jump direction, we have

Theorem 2.2. Let Assumptions 2.2A and 2.3 hold and consider the sequence 
�zn� of
processes taking values in Ds . This sequence satisfies a large deviations principle with good
rate function I�0�T �.

The two results can be combined as follows. The assumptions of Theorem 2.1 are imposed
near the boundary, while the assumptions of Theorem 2.2 are imposed away from the
boundary. Thus, rates may go to zero in the interior, but the cone can only change on the
boundary.

Corollary 2.1. Let B be an open set so that �B ⊂ Go. Let Assumptions 2.1, 2.2A,
and 2.2B hold in G, let Assumption 2.2C hold in G\B, and Assumption 2.3 hold for �x ∈ �B.
Consider the sequence 
�zn� of processes taking values in Ds . This sequence satisfies a large
deviations principle with good rate function I�0�T �.

Proof. Use Theorems 2.1 and 2.2 in each region separately. Then, connect the results
exactly as in the proof of Lemma 4.3: see also the comments at the end of the proof of the
lower bound. �

Comment. As in Shwartz and Weiss [13], we move freely between a jump process and its
piecewise linear interpolation—which is obtained by interpolating linearly every sample path
between jump points—without changing notation. These two processes are exponentially
equivalent under the sup norm as their distance at any time is at most one jump. We
therefore work with interpolated processes, which are piecewise linear (and, in particular,
Lipschitz continuous) and for which the notion of compactness is easier to handle.

Corollary 2.2. Theorems 2.1, 2.2, and Corollary 2.1 hold as stated if we endow the
space D with the Skorohod J1 topology.

Proof. Consider the linearly interpolated version of the process. The identity map from
Ds to D with the Skorohod topology is continuous. Therefore, by the contraction principle,
the theorem holds with the same rate function. Because the distance between the jump
process and the interpolated process is at most 1/n, the two are exponentially equivalent
under the Skorohod J1 metric, and the result is established. �

Corollary 2.3, a result of independent interest, shows that linear growth rates guarantee
exponential tightness. This implies that is suffices to prove the upper bound for compact sets,
namely, to establish the weak large deviations principle. Thus, the compactness assumption
in Assumption 2.1 is not necessary: it suffices that the assumptions hold for bounded subsets
of G.

Lemma 2.3. Assume that the rates �i��x	 have linear growth: �i��x	≤K�1+��x�	. Then,
uniformly for �x in compact sets,

lim
r→� lim sup

n→�

1
n
log�x

(
sup
0≤t≤T

��zn�t	�> r

)
=−�� (2.9)

Proof. Fix b0 and a point �x with � �x� ≤ b0. Define a process yn by setting yn�0	= b0
and having yn increase by Ke = maxj � �ej � with every jump of �zn. Then, because yn�t	 is
increasing,

sup
0≤t≤T

��zn�t	� ≤ yn�T 	

n
� (2.10)

Now take a collection of independent Yule processes xi, which are pure birth processes,
with xi�0	= 1 and jump rates K1xi, where K1

�=K�kKe. We couple yn to this collection in
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the sense that y jumps whenever one of the xi jumps, so that

yn�t	≤ b0+Ke

n∑
i=1

xi�t	� n≥ b0� (2.11)

Using Shwartz and Weiss [13, Corollary 14.14], it follows that there exists a good rate
function 1T so that

1T
(
eK1T

)= 0� lim
m→�1T �am	=� (2.12)

for all a > 0, and such that 1T �a	 is the rate function for xi�t	. That is, for each a > eK1T ,
we have

�

( n∑
i=1

xi�t	≥ ap

)
≤ e−n1T �a	� (2.13)

Therefore,

lim sup
n

1
n
log�x

(
sup
0≤t≤T

��zn�t	�> r

)
≤ lim sup

n

1
n
log�x

( n∑
i=1

xi�t	 >
�r − b0	n

K2

)
(2.14)

= −1T

(
r − b0
K2

)
� (2.15)

which tends to −� as r →�. �

Note that Assumption 2.2A implies the condition of Lemma 2.3. From this we obtain
exponential tightness as follows.

Corollary 2.3. If �i��x	 ≤ K�1+ ��x�	 for all i, then the 
�zn� are exponentially tight.
Consequently, it suffices to prove the large deviations estimates for bounded sets, uniformly
in the initial conditions over compact sets.

Proof. Given �> 0, by Lemma 2.3 there is a r� so that

lim sup
n

1
n
log�x

(
sup
0≤t≤T

��zn�t	�> r�

)
≤−� (2.16)

for all initial conditions �x in a bounded set. But then, because the rates are Lipschitz, they are
bounded over the region ��zn�t	� ≤ r�. Therefore, by Shwartz and Weiss [13, Lemma 5.58],
the 
�zn� are exponentially tight. Thus, by Dembo and Zeitouni [4, Lemma 1.2.18(a)], it
suffices to prove the upper bound for compact (and, in particular, bounded) sets. By Shwartz
and Weiss [13, (5.31–5.32)], it suffices to prove the lower bound on balls: however, all paths
in a ball are by definition bounded. �

Corollary 2.4. Let G be a closed set and �i��x	 ≤ K�1+ ��x�	 for all i. Assume that
there are Rk → � and open Bk ⊂ Go so that the conditions of Corollary 2.1 hold with
Bk replacing B, G ∩ B�0�Rk	 replacing G, and with �G ∩ B�0�Rk	 replacing �G. Then,
Theorems 2.1, 2.2, and Corollary 2.1 hold.

Note that the constants in Assumptions 2.1 and 2.2 need not be uniform: they may depend
on Rk. Because it thus suffices to derive our results in the case that G is compact, we shall
do so because this simplifies the technicalities. We shall therefore assume henceforth that
G is bounded and so �̄ �=maxj sup�x �j��x	 <�.
Lemma 2.4. There exists a continuous monotone “scale function” s��	 such that

s�0	= 0, s��	 > 0 for any �> 0, and for any �x ∈G, we have

�i��x	≥ s�d��x� �G		 for all i�

Proof. Take s��	 �= inf
�i��x	� i: �x� d��x� �G	≥ ��. The properties follow by continuity
of �i��x	 and compactness of G. �
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3. Preliminaries. This section collects some preliminary definitions and estimates. We
use an alternative form of 1 in many of the proofs. Let

f ����	 �=∑
j

�j −�j +�j log
�j

�j

� (3.1)

K�y
�=
{
�� �j ≥ 0�

∑
j

�j �ej = �y
}
� (3.2)

Note that, by definition, K�y is nonempty if and only if �y ∈�x.

Lemma 3.1 (Shwartz andWeiss [13, Theorem 5.26]). 1�x�y	= inf
f �����x		��∈K�y�.

Note that if �j�x	 = 0, then it plays no role in the definition of 1. Further, because f
is to be minimized, if �j�x	 = 0, the corresponding �j is necessarily 0, too, so that the
j component again plays no role. The lemma also means that either both expressions are
finite, or both are infinite.

Lemma 3.2 (Shwartz and Weiss [13, Lemma 5.20]). There exists a constant ; such
that for all �x and all �y ∈��x, there exists �a such that

�y =
k∑

i=1
ai �ei� ai ≥ 0�

∣∣�a∣∣≤ ;
∣∣�y∣∣ �

Lemma 3.3. Fix �. The function f �u���x		 is nonnegative, strictly convex in � for
�j ≥ 0 with compact level sets. For y in �x the following hold: The function f has a
minimum f ∗��y	 over K�y , attained at a unique point �∗��y	, so that f ∗��y	 = f ��∗��y	��	.
Both the minimum f ∗ and �∗ are continuous in �y. In addition, given B, there are constants
C0�C1�C2, and D so that for all ��i�<B,

��∗� ≤C0 for ��y� ≤D� (3.3)

��∗� ≤C1��y� for ��y�>D� (3.4)

��∗� ≥C2��y�� (3.5)

Proof. The function 1− x + x logx is nonnegative and strictly convex for x ≥ 0, as
seen by differentiation. Level sets are compact because the function grows super-linearly.
Existence of a minimum now follows because K�y is closed. Uniqueness follows from strict
convexity because K�y is a convex set.
The bound (3.3) is a consequence of Lemma 3.2 and the compactness of the level sets.

The second bound (3.4) follows from the same argument because f grows faster than
linearly in �. Finally, (3.5) is immediate from the definition of K�y .
Finally, we prove continuity of �∗, which in turn implies continuity of f ∗. Fix a point �y.

First, we claim that, given ! > 0 there exists a ��!	= O�!	 so that �yi ∈�x together with
��yi − �y�<��!	 implies

�yi = �1− !1	�y+
∑
j

aij �ej for some !1 <! and 0≤ aij ≤ !2 <!� (3.6)

For a proof assume the contrary. Then, there are �y and ! > 0 and a sequence �yi → �y for
which (3.6) does not hold. Let �∗��yi	 denote the minimizing points for f over Kyi

, so that

�yi =
∑
j

�∗
j �yi	�ej �

By (3.3), the collection 
�∗��yi	� is bounded. So, take a converging subsequence, and denote
the limit �∗. By taking further subsequences we may assume that for each j , the sequence
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�∗
j ��yi	 is monotone in i. So, fix 0<!1 <minj �

∗
j and note that

�yi =
∑
j

�∗
j ��yi	�ej (3.7)

= ∑
j��∗

j >0

�∗
j �ej +

∑
j

(
�∗

j ��yi	−�∗
j

)�ej (3.8)

= �1− !1	
∑

j��∗
j >0

�∗
j �ej +

∑
j

(
�∗

j ��yi	−�∗
j + !1�

∗
j

)�ej � (3.9)

By definition of !1, the coefficients in the first summand are positive. Consider the second
summand. If �∗

j > 0, then, for all large i, we have 0< ��∗
j ��yi	−�∗

j + !1�
∗
j 	 < !1 maxj �

∗
j .

If �∗
j = 0, then necessarily �∗��yi	 is monotone decreasing to zero and we have

0<�∗
j ��yi	−�∗

j + !1�
∗
j =�∗

j ��yi	→ 0�

Thus, an approximation as in (3.6) holds, and the claim is established.
To complete the proof of continuity, we retain the preceding notation. Let �∗��y	 be the

(unique) minimizing point at �y: we need to establish that �∗ = �∗��y	. But if not, then
using (3.6), set �ai =

∑
j aij �ej , and we have

f ��∗��yi	��	 ≤ f ��∗��y	�1− !i	+ �ai��	 (3.10)

≤ f ��∗��y	��	++i (3.11)

by continuity of f , and where +i → 0 as i→�. But because �∗ is not the minimum at �y,
f ��∗��yi	��	≤ f ��∗��y	��	++i ≤ f ��∗��	++i −,

so that for all large i, f ��∗��yi	��	≤ f ��∗��	−,/2. But this is a contradiction because by
the continuity of f , f ��∗��yi	��	→ f ��∗��	. �

We now establish that I�0� T �, as defined in (2.6), is a good rate function.

Theorem 3.1 (Shwartz and Weiss [13, Proposition 5.49 and Corollary 5.50]).
Assume that the �i��x	 are bounded and continuous. Then, for each �x, I�0� T ��·	 is a good
rate function under either the sup norm or the Skorohod J1 metric.

Proof. Identical to the proof in Shwartz and Weiss [13]; the additional assumption
(that the log�i are bounded) is not used in the proof (the original theorem was stated with
unnecessary conditions). �

Lemma 3.4 (Uniform Absolute Continuity: Shwartz and Weiss [13, Lemma 5.18]).
Assume that the �i��x	 are bounded, let I�0� T ���r	 ≤ K, and fix some ! > 0. Then, there is
a �, independent of �r , such that for any collection of nonoverlapping intervals


�tj � sj �� j = 1� - - - � J � with
J∑

j=1
sj − tj = �

in �0� T � with total length �, we have

J∑
j=1

��r�tj	− �r�sj	�<!�

Lemma 3.5. Assume that �i��x	≤ �̄ for all i and define Bi as in Assumption 2.1. Then,
for any T > 0, K > 0 there is a J such that if I�0� T ���r	 ≤ K, then there are 0 = t0 < t1 <
· · ·< tJ = T and ji so that �r�t	 ∈ Bji

� ti−1 ≤ t ≤ ti.

Proof. We first claim that there is an �> 0 such that for any �x ∈G there is an i such
that B��x��	⊂ Bi. This is easily proved by contradiction; if false, then there is a sequence
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of points �xj → �x with diminishing open balls; but the point �x is contained in the interior of
some Bj .
Now, for any path �r�t	 with I�0� T ���r	≤K, we break up the path according to the following

rules. We initially assign the ball Bi to the path at time 0 if B��r�0	��	 ⊂ Bi (we may
take any Bi that satisfies this constraint). We maintain the choice i until such time that
B��r�t	��/2	 �⊂ Bi. At this time, change to any Bj with B��r�0	��	 ⊂ Bj . By the uniform
absolute continuity of �r , Lemma 3.4, there is a minimum time < between any change in balls
Bi. So J = T /< suffices as a bound on the number of pieces. Note that at any switchover
time t between balls Bi and Bj we have that both �r�t	+ ��/4	�vi and �r�t	+ ��/4	�vj are
contained in Bi ∩Bj . �

4. Upper bound—boundary case. We prove the upper bound (2.7) along the same
general lines as Shwartz and Weiss [13, Theorem 5.54]. Here is a rough sketch of the main
idea of the proof, ignoring technicalities (some of which are commented on below). As in
Shwartz and Weiss [13], we show in Lemma 4.7 that it suffices to estimate the probability
that an approximation �yn of �zn (defined below) lies in a compact set of paths �. Paths in the
set � have a cost I larger than I�0�T ��C	; here C is the closed set of paths appearing in the
statement of the large deviations principle, Theorem 2.1. We stitch together local estimates,
over short segments of time, of the probability that �yn follows a segment of a path in �.
These estimates are obtained by approximating the process with a constant coefficient one,
essentially reducing the problem to estimates for random variables; see Shwartz and Weiss
[13, Lemma 5.61].
There are two additional difficulties to overcome in our setting, both technical. The first

is that the previous proof used the fact that shifting a path �r�t	 to �r�t	+ ��vi resulted in
a continuous change in the cost I�0� T ���r	. This is not true in the present case. A shift may
result in a path being outside the set G, thus having infinite cost. Another difficulty is that
the approximating functional 1�, used in the proof of the upper bound, is difficult to estimate
in the present case. Our solution is to make approximating functionals 1= and 1m that are
finite for all absolutely continuous paths in G. We then need to calculate how well these
functionals approximate 1, and to show that the requisite bounds obtain. The main technical
estimate we need is that every path �r , having approximating cost I=��r	, has a path �r1 at a
distance no more than !, with true cost I��r1	≈ I=��r	.
Although we shall use Assumptions 2.1 and 2.2, for the upper bound we do not need

Lipschitz continuity of the rates. For our proof it suffices that the rates are absolutely
continuous. Recall that a function f �x	 (possibly from one Euclidean space to another) is
absolutely continuous if and only if there exists !��	→ 0 as �→ 0 so that

I∑
i=1

�xi − yi�<� implies
I∑

i=1
�f �xi	− f �yi	�<!��	�

It follows immediately that Lipschitz functions are absolutely continuous, and that the com-
position of absolutely continuous functions yields an absolutely continuous function. To
emphasize this fact that a Lipschitz property is not required, we denote by K� the modulus
of continuity of the rates. Recall that for K���	 to be the modulus of continuity of all �i��x	
means ��i��x	−�i��y	� ≤K��� �x− �y�	, where K���	 is continuous and K��0	= 0.

Lemma 4.1. Under Assumptions 2.1 and 2.2C, there is a constant C such that for every
x ∈ �G and x ∈ Bi, i ≤ I1, and every + small enough, the cost of the linear path �r�t	 �=
x+ t�vi� 0≤ t ≤ +, is less than C+. In other words, with T = +,

I�0� T ���r	≤C+� (4.1)

Proof. By Assumption 2.2C, we can find a set of �ei and ai with
∑

i ai �ei = �v and with
�i��r�t		 > ,/2> 0 for all t ≤ +. The ai are bounded because �v is, by Lemma 3.2. So, by
the representation of 1 in Lemma 3.1, taking the �i = ai and �i as given yields a bound
on 1. �
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The proof of the upper bound in Shwartz and Weiss [13] uses an “approximate” rate
function I�: here we require several different approximations. The functional I= is defined
via the function g= as follows:

g=��x� �2	 �=
k∑

i=1
sup

�zi∈B���x	
��i��zi	�e� �2��ei� − 1	�� (4.2)

1=��x� �y	 �= sup
�2∈�d

�� �2� �y�− g=��x� �2		� (4.3)

and I=�0� T ���r	 is now defined like I�0� T ���r	, with 1= replacing 1. The functional I� was defined
in a similar manner (Shwartz and Weiss [13, Definitions 5.36–38]), but starting with

g���x� �2	 �= sup
�z∈B���x	

k∑
i=1

�i��z	
(
e� �2��ei� − 1

)
� (4.4)

The difference between g� and g= is that the supremum and sum are interchanged. In g=

there are many different �zi where each maximum is attained; in g� there is only one �z.
We are abusing notation a bit here; the terms labeled with a = are defined in terms of a
parameter �. Of course, we are supposing that the value of = is �, but the difference in
notation should make clear what we mean. Clearly, we have g=��x� �2	≥ g���x� �2	 for every �,
�x, and �2, so 1=��x� �y	≤ 1���x� �y	 and I=�0� T ���r	≤ I��0� T ���r	. We could have avoided the use of
I� entirely in this paper, except that there are many bounds available for it already, so instead
of having to prove all these bounds for I= separately, we will use them in conjunction with
the simple relationship between I� and I=.
The advantage of using I= instead of I� is that I= has a representation as a change of

measure as follows. Note that because �i is continuous and because the supremum is taken
for each i separately, g=��x� �2	 is the supremum over a convex set of 
�i� of a function
which is linear in the �i. Therefore,

1=��x� �y	 �= sup
�2∈�d

(
� �2� �y�−

k∑
i=1

sup
�zi∈B���x	

�i��zi	
(
e� �2��ei� − 1

))
(4.5)

= sup
�2∈�d

inf
�zi∈B���x	

(
� �2� �y�−

k∑
i=1

�i��zi	
(
e� �2��ei� − 1

))
(4.6)

= inf
�zi∈B���x	

sup
�2∈�d

(
� �2� �y�−

k∑
i=1

�i��zi	
(
e� �2��ei� − 1

))
(4.7)

= inf
�zi∈B���x	

inf
�∈Ky

k∑
i=1

(
�i��zi	−�i +�i log

�i

�i��zi	
)

(4.8)

=
k∑

i=1

(
�i��z∗i 	−�∗

i +�∗
i log

�∗
i

�i��z∗i 	
)
� (4.9)

where the �z∗i ∈ B���x	. Equation (4.5) is by definition. Equation (4.7) follows from the
min-max saddle point theorem, because the function in the definition of 1=��x� �y	 is concave
in �2 and linear, hence convex in the �i; furthermore, the infimum is taken over a bounded
convex set of �i. Equation (4.8) follows by taking a minimizing �zi, and Equation (4.9)
follows from the representation result Lemma 3.1 for 1��x� �y	.
For technical complexity, but to make easy proofs, we also define a function 1m as

follows. Define ��m by
�m
j ��x	 �=max
�j��x	�1/m�� (4.10)
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Define 1m and Im through (2.5)–(2.6) but using the modified rates �m
j ��x	. To complete this

sequence of definitions, we define the set of cheap paths in any of the metrics:

?�x�K	 �= 
�r�t	� �r�0	= �x� I�0� T ���r	≤K�� (4.11)

?=
�x �K	 �= 
�r�t	� �r�0	= �x� I=�0� T ���r	≤K�� (4.12)

?m
�x �K	 �= 
�r�t	� �r�0	= �x� Im�0�T ���r	≤K�� (4.13)

Lemma 4.2. Let Assumptions 2.1 and 2.2 hold. Fix i. For each T > 0, K > 0, and
0 < ! < K there is an 0 < +0 < ! such that for any 0 < + < +0, there is an m0 with the
following property. If m>m0 and if the path �r�t	 takes values in Bi with Im�0�T ���r	 <K−!,
then the path �r2�t	 �= �r�t	++�vi satisfies I�0�T ���r2	 <K.

Proof. Let �v= �vi,
11�t	= 1m��r�t	� �r ′�t		� (4.14)

12�t	= 1��r�t	++�v� �r ′�t		� (4.15)

�1i �t	= �m
i ��r�t		� (4.16)

�2i �t	= �i��r�t	++�v	� (4.17)

�∗
i �t	=�m�∗

i ��r�t	� �r ′�t		� (4.18)

where �m�∗ is optimal (see Lemma 3.3) for jump rates �m
i . We denote by �1�t	 the vector

with coordinates �1i �t	 and similarly for �
2 and �∗. By Lemma 3.1,

12�t	≤ f ��∗�t	��2i �t		�

Choose m0 > 1/+. Then, by continuity of �i,

��2i �t	−�1i �t	� ≤
1
m

+ ��2i �t	−�i��r�t		� ≤K��+	++ �=K ′
��+	�

Therefore,

12�t	− 11�t	 ≤
k∑

i=1
�2i �t	−�1i �t	+�∗

i �t	 log
�1i �t	

�2i �t	
(4.19)

≤ k ·K ′
��+	+

k∑
i=1

�∗
i �t	 log

�1i �t	

�2i �t	
� (4.20)

By Assumption 2.2C there exists a , > 0 such that if �i��x	 < ,, then �i��x++�v	≥ �i��x	.
Increase m0 so that (recall that s�+	 was defined in Lemma 2.4)

m0 >max
1/,�1/s�+	��

For the rest of the proof let m>m0. Then, if �i��r�t		 < ,, we have �1i �t	 < , and �2i �t	≥
�1i �t	. Therefore, if �i��r�t		 < ,, then log�1i �t	/�

2
i �t	 < 0. If, however, �i��r�t		 > ,, then

�i��r�t		= �1i �t	, and so, with �x= �r�t	,

log
�1i �t	

�2i �t	
= log

�i��x	
�i��x++�v	 (4.21)

≤ log
�i��x	

�i��x	−K��+	
(4.22)
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≤ log
,

,−K��+	
(4.23)

= log
1

1−K��+	/,
(4.24)

≤ 2K��+	

,
(4.25)

for K��+	 < ,/2, because log�1/�1−x		 < 2x for 0< x≤ 1/2. By Shwartz and Weiss [13,
Lemma 5.17] and Lemma 3.3 there exist constants C1�C3, and B1 such that if ��y� > B1,
then 1��x� �y	≥C3��y� log ��y� and ��∗� ≤C1��y�. So, if ��r ′�t	� ≥ B1, then using (4.19)–(4.25),

12�t	− 11�t	≤ kK ′
��+	+C1��r ′�t	�2K��+	

,
�

But by the estimate above, if ��r ′�t	� > B1, then ��r ′�t	� < 11�t	/�C3 log ��r ′�t	�	. Thus, if
��r ′�t	�>B1, we get

12�t	− 11�t	 ≤ kK ′
��+	+C

11�t	

C3 log ��r ′�t	�
2K��+	

,
(4.26)

≤ kK ′
��+	+C

11�t	

C3 logB1

2K��+	

,
� (4.27)

Now consider the case ��r ′�t	� ≤ B1. By Lemma 3.3, ��∗�t	� ≤K�B1 for some K�. Therefore,

12�t	− 11�t	≤ kK ′
��+	+K�B1

2K��+	

,
�

Putting together the estimates for large and small values of �r ′�t	, we obtain

12�t	− 11�t	≤
(
kK ′

��+	+K�B1

2K��+	

,
+C

11�t	

C1 logB1

2K��+	

,

)
� (4.28)

Therefore, if Im�0�T ���r	≤K− !, then

I�0�T ���r ++�v	≤K− !+ T

(
kK ′

��+	+K�B1

2K��+	

,
+ C�K− !	2K��+	

TC1 logB1,

)
� (4.29)

Thus, for small enough +, I�0� T ���r ++�v	≤K. �

Lemma 4.3. Suppose that Assumptions 2.1 and 2.2 hold. Let A be a compact set in G.
For each T > 0, K > 0, and 0<!<K there is an 0<+0 <! such that for any 0<+<+0

there is an m0 with the following property. For any x ∈A, m>m0, and any path �r�t	 with
�r�0	= �x and Im�0� T ���r	 <K−!, there is a path �r2�t	 with �r2�0	= �x, with I�0� T ���r2	 <K and
d��r� �r2	≤ !.

This lemma corresponds to Shwartz and Weiss [13, Lemma 5.48]. It is based on a direct
construction, having the path �r2 composed of a number of segments. The main segments
are made of shifted pieces of �r , using Lemma 4.2 to estimate the costs of the segments,
with the initial part of the path estimated by Lemma 4.1, and the segments stitched together
with the aid of Lemma 4.1 as well.
Proof. Given �r�t	 with �r�0	= �x and Im�0� T ���r	 <K−!, take J as defined in Lemma 3.5.

Recall from Assumption 2.1(iii) that there is a number �> 0 such that for any �x ∈ Bi, where
Bi is one of the boundary neighborhoods, then for small !, we have d��x+ !�vi� �G	≥ �!.
Clearly, �≤ 1.
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We now construct the path �r2 from �r using a parameter + that will be chosen later.
Let 0= t0� t1� - - - � tJ represent the switchover times of �r�t	, as in Lemma 3.5. Recall the
definition of � from the proof of Lemma 3.5. If B��r�0	��	⊂ Bi, where Bi is one of the
boundary neighborhoods (i ≤ I1, cf., Assumption 2.1(i)), then take �r2�t	 = �r�0	+ �vit for
0≤ t ≤ +. For +≤ t ≤ t1++, let �r2�t	= �r�t−+	++�vi. Then, for t1++≤ t ≤ t1+++3+/�,
let

�r2�t	= �r�t1	++�vi + �t− t1−+	�vj: (4.30)

here j is the index of the neighborhood Bj that �r�t	 switches to at time t1, as defined
in Lemma 3.5. Then, from time t1 + + + 3+/� until time t2 + + + 3+/� we let �r2�t	 =
�r�t − +− 3+�	+ +�vi + �3+/�	�vj . We continue in this fashion, with switchover k having
�r2�t	 following a linear path of length +�3/�	k−1 in direction �vk, followed by a segment
parallel to �r�t	. Note that we need not include the paths of length +�3/�	k−1 in direction
�vk if Bk is not a boundary neighborhood.
There are three things to check about this path. First, if + is small enough, does �r2�t	

stay within ! of �r�t	? Second, does �r2 remain in G? Third, does it satisfy I�0� T ���r2	≤ K?
If all three items hold, then the lemma will be proved. These estimates are hardest if all
the paths of type +�3/�	k−1 in direction �vk are included, so we assume without loss of
generality that they are.
The first thing is easy to verify. Because Im�0� T ���r	 < K − ! by assumption, �r�t	 is uni-

formly absolutely continuous, so by choosing + small enough, we can ensure that the time
shifts introduced in the definition of �r2 do not cause the paths to differ by more than !/2.
Furthermore, the number of segments J is bounded, so the difference introduced in the
segments +�3/�	k adds up to less than !/2 if + is chosen small enough.
For the second point, this is the reason we chose 3/� as a multiplier. By definition of �,

the point �r2 + +�3/�	k�vk is at least �+�3/�	k from �G. Because 3/� > 3, the sum of all
the previous shifts has total length less than �+�/2	�3/�	k. Therefore, the point is at least
�+�/2	�3/�	k from �G when the kth shift is finished. The beginning of the shift also occurs
in the interior of G by construction, whenever the total shifts are of length less than �/4.
This demonstrates that �r2 ∈G when + is small enough.
For the third point, we assume that + has been chosen small enough to satisfy the first

two points, and note that, after the initial time +, the path �r2�t	 remains at least �+/2 away
from �G. By Lemma 4.1, there is a uniform constant C ′ such that for 0≤ t ≤ +,

I�0� t���r2	≤C ′t� (4.31)

We use this estimate on every +�3/�	k path; the total cost is linear in +, so can be made less
than !/2. Lemma 4.2 enables us to bound the cost of each other segment of �r2 uniformly
as no more than !1�+	 plus the Im-cost of the corresponding segment �r , where !1�+	 goes
to 0 with +. Choose + small enough so that !1�+	≤ !/2J . Then, choose m large enough so
that Lemma 4.2 applies. Then, the total additional cost is bounded by !/2 for the segments
of �r2. This concludes the estimate, and hence the proof. �

Lemma 4.4. Under the assumption of bounded continuous �i, given ! > 0, there exists
an m0 > 0 such that for all positive m>m0 there exists a �0 > 0 such that for all �< �0,

1m��x� �y	≤ !+ �1+ !	1=��x� �y	� (4.32)

Proof. We consider separately the cases ��y�>B and ��y� ≤ B. Choose positive B�C so
that 1��x� �y	 > CB logB for all �x and all �y > B; this is possible by Shwartz and Weiss [13,
Lemma 5.17].
If ��y�>B, then, using (4.9) and the reasoning leading to Equation (4.25),

1m��x� �y	− 1=��x� �y	≤K���	

(
k+ 2C1=��x� �y	

,C1 logB

)
� (4.33)

Therefore, by choosing � small enough, we can make the right-hand side of (4.33) smaller
than !/3.
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Now, if ��y� ≤ B, take � as the optimal jump rate for �=��x	. We have �i ≤ CB for all i.
Then,

1m��x� �y	− 1=��x� �y	 ≤ ∑
i

�m
i ��x	−�=

i ��x	+�i log
�=
i ��x	

�m
i ��x	

(4.34)

≤ k�K���	+ 1/m	+∑
i

�i log
�=
i ��x	

�m
i ��x	

� (4.35)

If �i��x	 ≤ 1/m − K���	, then �=
i ��x	 ≤ 1/m, so, because �m

i ��x	 ≥ 1/m for each �x,
log��=

i ��x	/�m
i ��x		≤ 0. Furthermore, if �i��x	 > 1/m−K���	, then

log
�=
i ��x	

�m
i ��x	

≤ log
1/m+K���	

1/m
≤mK���	� (4.36)

Hence, by choosing � small enough so that kmK���	 < !/3, we obtain, for ��y� ≤ B,
1m��x� �y	−1=��x� �y	 < !/3. Combined with the result of the previous paragraph, this finishes
the proof. �

Corollary 4.1. Assume that the �i are bounded and continuous. Given !, K, and
T > 0 there exists an m0 > 0 such that for all positive m>m0, there exists a �0 > 0 so that
�< �0 and I=�0� T ���r	≤K− ! imply Im�0� T ���r	≤ I=�0� T ��r	+ !.

Corollary 4.1 and Lemma 4.3 combine to give the following:

Corollary 4.2. Suppose that Assumptions 2.1 and 2.2 hold. Given K > 0 and ! > 0,
there exists a �> 0 such that

?=
�x �K− !	⊂ 
�r� d��r�?�x�K		≤ !�� (4.37)

The proof of this corollary is immediate, by using !/2 to replace !, and choosing a large
enough m. (Specifically, if �r ∈ ?=

�x �K − !	, then, by Corollary 4.1, �r ∈ ?m
�x �K − !/2	. By

Lemma 4.3, there is an �r2 within !/2 of �r satisfying I�0� T ���r2	≤K.) �

Corollary 4.2 shows that, by choosing � and + small enough,

d��r�?�y�K− 4!		 > +/2 implies d��r�?=
�y �K− 4!−+/4		 > +/4� (4.38)

We now state two technical lemmas in measure theory that are used in the proof of
Lemma 4.7. Lemma 4.5 is used only for the proof of Lemma 4.6. We let Leb�A	 denote
the Lebesgue measure of a set A.

Lemma 4.5. Let u�t	 be a nonnegative, absolutely continuous function on �0� T �. Then,
given �> 0, there exists an + > 0, a set A⊂ �0� T �, and a finite collection 
Ci� of intervals
so that Leb�A	 < � and, for each i, either inf
u�t	� t ∈Ci� > + or u�t	= 0 for all t ∈Ci\A.
Proof. If u�0	 > 0, set t1

�= inf
t > 0� u�t	= 0�. Then, by continuity inf
u�t	� 0≤ t ≤
t1−�/2� > 0, and so it suffices to establish the result when u�0	= 0. By a similar argument
we may assume u�T 	= 0.
Given t, if u�t	 > 0, then by continuity there exists an open interval Ot containing t so

that u�s	 ∈Ot for all s ∈Ot and u�s	→ 0 as s→ �Ot . Let mt
�= sup
u�s	� s ∈Ot�. Because

u is absolutely continuous, there is a finite number of disjoint open intervals with mt > 1/m.
Therefore, there exists a countable collection 
Oi� of disjoint open intervals so that u�t	 > 0
if and only if t ∈Oi for some i. Fix N large so that

Leb
{ �⋃

N+1
Oi

}
<

�

2
� (4.39)
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For i≤N , let �Ci ⊂Oi be a closed interval such that

Leb
Oi\ �Ci�≤
�

2N + 1
�

Let Ci be the finite collection of closed intervals that cover �0� T �\⋃i
�Ci and let

A �=
{ �⋃

N+1
Oi

}
∪
{ N⋃

i=1
Oi\ �Ci

}
�

Then, by construction, Leb�A	 < � and u�t	 = 0 on t ∈ Ci\A. Because there are only a
finite number of �Ci, we obtain by continuity inf
u�t	� t ∈ �Ci for some i� > + > 0. �

For vectors �2� ��, and �y in �d, define

1� �2� ��� �y	 �= ��2� �y�−∑
j

�j

(
e� �2��ej � − 1

)
� (4.40)

Our next result extends Shwartz and Weiss [13, Lemma 5.43] to the case of rates that are
not bounded below, but under the assumption that they are absolutely continuous.

Lemma 4.6. Assume that the �j��x	 are bounded and absolutely continuous. Then, for
any �r with I�0�T ���r	 <� and any !> 0, there exists a step function �2 so that

∫ T

0
1� �2�t	� ����r�t		� �r ′�t		dt ≥ I�0�T ���r	− !�

Proof. Because by definition

1� �2�t	� ����r�t		� �r ′�t		≤ 1��r�t	� �r ′�t		�
it suffices to establish the result outside a set of small measure: this approximation and the
extension of the step function over this set are derived in the proof of Shwartz and Weiss
[13, Lemma 5.43].
We claim that given �, there is a partition of �0� T � into a finite collection of intervals

Ci and a set A with Leb�A	 < � so that the lemma holds on each Ci\A. Then, the result
follows by patching together the step function and dealing with A as above. In the rest of
the proof we establish this claim.
Fix j and apply Lemma 4.5 to the absolutely continuous function �j��r�t		 with �/k. We

then obtain a collection 
C
j
i � Aj� 1 ≤ j ≤ k� 1 ≤ i ≤ N� so that either �j��r�t		 = 0 for

all t ∈ C
j
i \Aj or �j��r�t		 > +j > 0 for all t ∈ C

j
i . Set A

�=⋃
j A

j and + = minj +j . Then,
Leb�A	 < � and + > 0. Fix a subset �⊂ 
1� - - - � k�. Using intersections of the sets C

j
i we

obtain a finite collection of intervals C�
i with the following properties:

�j��r�t		= 0� t ∈C�
i \A for all j ∈ �� (4.41)

�j��r�t		 > +� t ∈C�
i for all j �∈ �� (4.42)

In particular, �j��r�t		 > + for t ∈C�
i . Now fix i and � and consider the process on C�

i with
rates and jump directions 
�j��x	� �ej� j �∈ ��. For this process, the assumptions of Shwartz
and Weiss [13, Lemma 5.43] hold. Moreover, if we denote the local rate function for this
process by 1�, then, by definition, 1���r�t	� �r ′�t		= 1��r�t	� �r ′�t		 for t ∈ C�

i \A. Thus, our
claim is established and the proof is concluded. �

Now we state and prove that the analogue of Shwartz and Weiss [13, Proposition 5.62]
holds for I=. By Shwartz and Weiss [13, Lemma 5.61], under our continuity assumptions, if
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C is a compact set in �d and �2�t	 is a fixed step function, then for any �> 0 and compact
set �⊂��M	 of functions �r�t	 with �r�0	 ∈C,

lim sup
n→�

1
n
log��x��yn ∈��x	≤− inf

�r∈��x
I��0� T ���r� �2	�

where ��x
�= 
�r ∈ �� �r�0	 = �x�. Note that I= > I�; therefore, we have, under the same

assumptions, that

lim sup
n→�

1
n
log��x��yn ∈��x	≤− inf

�r∈��x
I=�0� T ���r� �2	� (4.43)

Lemma 4.7. Assume that the �i��x	 are bounded and absolutely continuous, and C is a
compact set in �d. Then, for each K > 0, �> 0, and !> 0,

lim sup
n→�

1
n
log��x

(
d
(�yn�?=

�x �K	
)
>!

)≤−�K− !	

uniformly in �x ∈C.

The proof of this lemma follows exactly the proof of Shwartz and Weiss [13,
Lemma 5.62], with the following two exceptions. First, the step function �2�t	 is the one
defined in Lemma 4.6. Second, every superscript � is replaced by the corresponding =. This
is obvious throughout the proof, with the help of (4.43). �

We now state and prove the large deviations upper bound for our process. Recall that for
a set F of paths, I�x�F 	= inf�I�0� T ���r	� �r�0	= �x� �r ∈ F 	.

Theorem 4.1. Suppose that Assumptions 2.1 and 2.2 hold. Let F be a closed set in
�Dd�0� T ��dd	, and let �x be a point in G. Then,

lim
�y→�x

lim sup
n→�

1
n
log��y��zn ∈ F 	≤−I�x�F 	� (4.44)

where the points �y are in F ∩G.

Proof. Fix a closed set F , and let K = I�x�F 	. Suppose for now that K <�; the same
proof will work for K =�, but some arguments need minor modifications. By Shwartz and
Weiss [13, Lemma 5.63], for given ! there is a � so that if �x− y�<�, I�y�F 	≥K− !.
Let

C = ⋃
y∈B���x	∩G

{
?�y�K− 4!	

}
� (4.45)

F� = 
�r ∈ F � ��r�0	− �x� ≤ ��� (4.46)

Then, C is a compact set. Note that C∩F� =�. By Shwartz and Weiss [13, Theorem A.19],
there is a number + > 0 such that d�C�F�	= +.
Define the random path �yn�t	 as the linear interpolation of �zn�t	 with time spacing T /n;

that is, at times jT /n for j = 0� - - - � n, �yn�t	= �zn�t	, and �yn�t	 is linear in between these
points. In Shwartz and Weiss [13, Lemma 5.57] states that, for each ! > 0, uniformly in �x
in bounded sets,

lim sup
n→�

1
n
log��x�d��zn� �yn	 > !	=−�� (4.47)

Now,

��y��zn ∈ F 	 = ��y��zn ∈ F�	 (4.48)

≤ ��y�d��yn� F�	 < +/2	+��y�d��yn� �zn	≥ +/2	� (4.49)
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Equation (4.47) shows that the second term on the right-hand side of this inequality is
negligible.
If �r�0	= �y, then, by definition of +,

d��r� F�	 < +/2 implies d��r�?�y�K− 4!		 > +/2� (4.50)

Therefore, by Equation (4.38) and Lemma 4.7,

lim sup
n→�

1
n
log��y�d��yn� F�	 < +/2	 (4.51)

≤ lim sup
n→�

1
n
log��y

(
d
(�yn�?=�K− 4!−+/4	

)≥ +/4
)

(4.52)

≤−�K− 4!−+/4	 (4.53)

uniformly in �y in a compact set. Therefore,

lim sup
n→�

1
n
log��y��zn ∈ F 	≤−�K− 4!−+/4	

whenever ��y − �x� ≤ �. Because ! and + can be made arbitrarily small, the theorem is
proved. �

5. Lower bound—boundary case. Our approach to the proof of the lower bound,
Equation (2.8), is mainly standard. Every path �r in an open set O can be surrounded by
a “sausage,” a neighborhood of �r , that is entirely contained in O. If we can show that the
probability that �zn lies in this sausage is about exp�−nI�0� T ���r		, then the lower bound will
be proved, for if we take a sequence of �r whose I functions are approximately minimal
in O, then we find that the probability that �zn ∈ O is at least the probability that �zn ∈ the
sausage around �r , which is about exp�−nI�0� T ���r		.
The novelty in the proof is a twofold estimate. The first step is to show that, for any path �r

that lies entirely in a single neighborhood Bi (see Assumption 2.1(i)), the probability that �zn
is near �r is approximately exp�−nI�0� T ���r		. This is done by showing that the path �r +��vi,
which lies strictly away from the boundary, has rate function I��r + ��vi	 ≈ I��r	. Then,
because the �j��x	 are bounded away from zero on this path, existing lower bound theory
shows that the probability of �zn being near this new path is at least exp�−nI��r + ��vi		.
Using I��r +��vi	≈ I��r	 proves the result for such paths �r . The second step is to show that
every path �r with finite cost I�0� T ���r	 can be decomposed into a finite number of pieces �rj ,
each of which lies entirely within a ball Bj , and that the endpoints of the shifted pieces
�rj + ��vj can be connected with asymptotically negligible cost. This is mostly the same as
Lemma 4.3.

Lemma 5.1. Let Assumptions 2.1 and 2.2 hold. Suppose that �r�t	 is a path contained
in a single Bi with I�0� T ���r	 < �. Let �r��t	 = �r�t	 + ��vi, where �vi is the direction in
Assumption 2.1(iii) for the region Bi. Then,

lim sup
�→0

I�0� T ���r�	≤ I�0� T ���r	� (5.1)

Proof. This is proved in exactly the same way as Lemma 4.2. Let 11�t	= 1��r�t	� �r ′�t		
and 12�t	 = 1��r��t	� �r ′��t		. Then, letting ���t	 be the optimizing set of jump rates for the
path �r , we have the equivalent of (4.19):

12�t	− 11�t	≤ k ·K ′
��+	+

k∑
i=1

�∗
i �t	 log

�1i �t	

�2i �t	
�

The same reasoning as in Lemma 4.2 then leads to a bound like (4.28), which immediately
leads to the result. �
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Lemma 5.2. Suppose that Assumptions 2.1 and 2.2 hold. Using the notation therein, fix
i, T > 0, and a path �r�t	 which takes values in Bi such that I�0� T ���r	=K <�. Then (with
�r�0	= �x),

lim
�↓0

lim inf
n→�

1
n
log�x

(�zn�t	 ∈ B��r� �	)≥−I�0� T ���r	� (5.2)

Proof. Let �v = �vi be the direction of the interior cone (see Assumptions 2.1 and 2.2)
of Bi and let Ki be the constant such that for �x ∈ Bi, we have d��x + t�v� �G	 ≥ Kit for t
small. Denote by +̃ the modulus of continuity of �r and set +�a	 = max
+̃�a	�a� so that
+−1�a	≤ a.
Now, fix � and set t� = +−1��/3	. Then, t� ≤ � and for t ≤ t�,

sup
0≤t≤t�

�t · �v− �r�t	� ≤ t� · ��v� ++�t�	≤
2�
3
� (5.3)

Therefore, for 0<�<Ki/6,

�x

(�zn ∈ B��r� �	)≥ �x

(��zn�t	− t · �v� ≤ ��� 0≤ t ≤ t�� �zn ∈ B��r� �	)� (5.4)

where the last ball is around the restriction of �r to �t�� T �. Now, let r��t	
�= �r�t	+ t��v be a

function on �t�� T �. Then, on this time interval

sup
t�≤t≤T

��r�t	− �r��t	� ≤
�

3

and, moreover, d��r��t	� �G	 ≥ Ki�. Therefore, for any function �u on that time interval,
��u− �r�� ≤ Ki�/2 implies that ��u− �r� ≤ 2�/3 and d��u�t	� �G	 ≥ Ki�/2. Now, let B�

�=
B��x+ t��v���	 and let �ry� be the shift of �r� so that �ry� �t�	= �y. Then,

�x��zn ∈ B��r� �		 ≥ �x���zn�t	− t · �v� ≤ ��� 0≤ t ≤ t�	

× inf
y∈B�

�y��zn ∈ B��ry� �Ki�/2		� (5.5)

where the last ball contains paths on �t�� T �. Now, the first term is bounded below by
the probability that, over 0 ≤ t ≤ t�, the rates for jumps in directions outside the cone of
Assumption 2.2C are zero, while the rates for jumps in directions within the cone are such
that the process proceeds with speed one. However, the second condition satisfies a standard
large deviations lower bound, and so

lim inf
n→�

1
n
log�x���zn�t	− t · �v� ≤ ��� 0≤ t ≤ t�	≥−Ct� (5.6)

for some constant C. Now consider the second probability in (5.5). Because the paths in
B��ry� �Ki�/2	 are bounded away from the boundary uniformly in �y ∈ B�, we have by Shwartz
and Weiss [13, Theorem 5.51], that the large deviations lower bound holds uniformly over
�y ∈ B� (where uniformity is the usual sense of analysis). Therefore,

lim inf
n→�

1
n
log inf

y∈B�

�y��zn ∈ B��ry� �Ki�/2		 (5.7)

≥− inf
y∈B�

inf
I�t�� T �� �w	� �w ∈ B��ry� �Ki�/2	� (5.8)

≥− I�t�� T ���r�	 (5.9)

≥− I�0� T ���r�	 (5.10)

≥− I�0� T ���r	� (5.11)

where the final inequality comes from Lemma 5.1. Thus, the result follows from (5.6)–
(5.7). �
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Proof of the Lower Bound of Theorem 2.1. Using Lemma 5.2 the proof of the
lower bound is almost identical to that of Lemma 4.3, and so we only give a sketch of
the proof. Given a path �r with I�0� T ���r	=K <�, we break the path into J segments and
use the shift-and-stitch argument of Lemma 4.3. Lemma 5.2 shows that the shifted path
provides a good approximation for the rate and a lower bound for the probabilities, and that
the probabilities of the shifts are bounded below (on the exponential scale) by an arbitrarily
small constant. This establishes the lower bound. �

6. Interior zeros. In this section, we state and prove a large deviations principle for
processes that have rates that may become zero in the interior of the region G, not at a
boundary. Our main assumption about these processes is that the cone ��x of jump directions
of the process does not change, but remains �d for all �x. This is a strong assumption. But the
result is strong, too: under Lipschitz continuity of the jump rates �i��x	, the large deviations
principle holds, with the usual rate function. This is, therefore, a strict generalization of the
large deviations principle proved in Shwartz and Weiss [13, Chapter 5] where the assumption
is that the logarithms of the jump rates are bounded, which itself implies ��x = �d for all
�x. Combined with the results for rates that diminish towards a boundary, we obtain a fairly
general theory of diminishing rates, Corollary 2.1.
We state our theorem for Lipschitz continuous jump rates and processes that have no

boundaries. But, using the exponential tightness argument of Corollary 2.3, we give proofs
only for bounded regions and bounded Lipschitz jump rates. Our proofs are based very
heavily on the arguments in Shwartz and Weiss [13]. Rather than reproduce those arguments,
we give only the lemmas and arguments needed to extend the previous proof to the present
case.
We begin with some notation. For �> 0, we define

��
i ��x	 �=

{
�i��x	 if �i��x	 > ��

0 otherwise.
(6.1)

We define ��
�x as the positive cone spanned by the �ei with corresponding ��

i ��x	 > 0. Let
� D��x	= 
i� �i��x	 > D�, so that � 0��x	= 
i� �i��x	 > 0�. Also, for a set � of indices, we let
��x��	 be the positive cone spanned by 
�ei� i ∈���i��x	 > 0�.

Lemma 6.1. Suppose that Assumption 2.3 holds, and that the �i��x	 are continuous.
Then, for every R<�, there exist �> 0 and D > 0 such that for � �x� ≤R, we have a set ���x	
with the following property. Every �z ∈ B��x��	 has �i��z	 > D� i ∈���x	, and ��z����x		=�d.

Note. We use this D in following lemmas and proofs.
Proof. This follows easily from compactness. The set S consisting of �x such that at

least one �i��x	= 0, is closed. Therefore, the set of such �x that satisfy � �x� ≤ R is compact.
Cover each point �x in S with an open ball with radius � chosen so that the minimal rate
of �i��z	� i ∈ � 0��x	� �z ∈ B��x��	 is at least half the minimal rate of �i��x	� i ∈ � 0��x	. By
assumption, ��x = �d, so ��z�� 0��x		= �d for all �z ∈ B��x��	. Choose a finite subcover of
such balls 
B��xj� �	�. Call the resulting union of these sets U . Then,

inf
�i��z	� �z ∈ B��xj� �j	� i ∈� 0��xj	�
�= + > 0

by construction. Then, for �x �U , �i��x	 > 0. In fact, there is a positive bound, which without
loss of generality we take to be + such that �i��x	 ≥ + for all �x� � �x� ≤ R� �x � U , because
this set is closed and the rates are continuous and not equal to 0. Now set D = +/2. The
proof is concluded by showing that there is a � so that for each �x ∈U ,

B��x��	∩U ⊂ B��xj� �j	 for some j: set ���x	=���xj	 (6.2)

or d��x� �U	≤ �: set ���x	= 
1� - - - � J �� (6.3)
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The first case, Equation (6.2), obviously satisfies the statement of the lemma. In the
second case, Equation (6.3), because the rates are continuous over a compact set, they are
uniformly continuous, and we choose � so that the rates change by at most +/2 over the �
ball. We establish the claim by contradiction; assume the contrary. Then, there is a sequence
�xi and �i ↓ 0 so that �xi ∈U and the ball B��xi� �i	 is not contained in any B��xj� �j	. Take a
converging subsequence with limit �x. Then, if �x ∈U , we obtain a contradiction, because U
is a finite union of balls, so that, for large i, the ball around �xi must be in some B��xj� �j	.
If �x is on the boundary of U , then for large i, �xi is within � of �U . �

We define ��∗��x� �y	 as the unique optimizer for f � ��� ��	; that is, �� causes 1��x� �y	 =
f � ��� ����x		, with �y =∑

i �i �ei. We define ��∗
���x� �y	 to be the optimizer for rates ��. We also

define 1���x� �y	 (not to be confused with 1�!) to be the rate function with jump rates ��.

Lemma 6.2. Suppose that Assumption 2.3 holds and that the �i are continuous. The
maximizing �2 in the definition of 1 is bounded uniformly in � �x� ≤R and ��y� ≤C.

Proof. The proof is similar to Shwartz and Weiss [13, Lemma 5.21]. By Lemma 6.1,

max
� �2� �ei�� i ∈� D��x	�≥ �� �2�
for some �> 0 that depends only on R. Let �2n be a maximizing sequence. Representing �y
as in Lemma 3.2, and using Lemma 6.1,

1��x� �y	 = lim
n→���2n� �y�−

k∑
i=1

�i��x	�e� �2n��ei� − 1	 (6.4)

≤ lim
n→���2n�C − De�� �2n� +

k∑
i=1

�i��x	� (6.5)

However, the last sum is bounded and the function ax+c−ex diverges to �−�	 as x→�.
Because 1 is nonnegative, we conclude that � �2n� must be bounded for large n, where the
bound depends only on R�C�D, and � D . �

Corollary 6.1. Suppose that Assumption 2.3 holds and that the �i are continuous. For
each B, there exists a C such that for all � �x� ≤ B and all ��y� ≤ B,

1��x� �y	≤C� (6.6)

Proof. In Shwartz and Weiss [13, Theorem 5.26 and Exercise 5.30] show that the
optimizing �∗ can be represented as �∗

i = �ie
� �2∗��ei�, where �2∗ is the optimizing �2 in the

definition of 1. Therefore, because Lemma 6.2 shows that �2∗ is bounded for bounded �y, we
have �∗

i /�i is bounded for bounded �y. Therefore, for optimizing �∗, there is a constant u
such that

�i −�∗
i +�∗

i log
�∗

i

�i

≤ �iu� � (6.7)

Lemma 6.3. Suppose that Assumption 2.3 holds and that the �i��x	 are continuous. Then,
for each B and ! > 0, there exists a � > 0 such that for all ��y� ≤ B, �x� ∈ B��x��	, and
�y� ∈ B��y��	, we have

�1��x� �y	− 1���x�� �y�	�<!�

Proof. By Lemma 3.1,

1��x� �y	 �= inf
�∈Ky

( k∑
i=1

�i��x	−�i +�i log
�i

�i��x	
)

(6.8)

≤ inf
�∈Ky

( ∑
i� ��

i >0

��
i ��x	−�i +�i log

�i

��
i ��x	

)
+ ∑

i� ��
i =0

�i (6.9)

≤ 1���x� �y	+ k�� (6.10)
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where the first inequality holds because the infimum is taken over a smaller set, where
��
i = 0 implies �i = 0. We claim that to conclude the proof it suffices to establish that

1���x�� �y�	≤ 1��x� �y	+ !� (6.11)

because using (6.8) and interchanging the roles of �x� �y with �x�� �y� in (6.11) and then
using (6.8) again, we get

1���x�� �y�	 ≥ 1��x�� �y�	− k� (6.12)

≥ 1���x� �y	− k�− ! (6.13)

≥ 1��x�� �y�	− 2k�− !� (6.14)

The difficulty in demonstrating (6.11) is that the ��∗
� might be very different from the ��∗.

But we can bound this difference, using the property that ��x =�d for all �x. Let � D��x	 be
the set of i with �i��x�	≥ D for all �x� near �x; see Lemma 6.1. Note that for each �, there is
a uniformly bounded vector �� with �i = 0 for i �� D��x	, such that∑

i

��∗
i + ��i	�ei = �y�� (6.15)

There may be some nonzero components of the �i for i � � D��x	. However, by
Lemma 3.3, because �y� is bounded, for any + > 0 we may choose � small enough such that
if any of the ��

i = 0, then by continuity, �i < +. Take

�v� =
∑
i��

�∗
i �ei� (6.16)

Then, �v� ∈��
�z for all �z ∈ B��x��	, so by Lemma 3.2 we may write

�v� =
∑
i∈�

ai �ei (6.17)

for some ai ≥ 0, �ai� ≤ ;�. Therefore, we may write

�y� =
∑
i∈�

��∗
i + ai + ��i	�ei� (6.18)

We have

1��x�� �y�	≤
∑
i∈�

�i��x�	−�∗
i − ai − ��i + ��∗

i + ai + ��i	 log
�∗

i + ai + ��i

�i��x�	
� (6.19)

Note that
1��x� �y	=∑

i

�i��x	−�∗
i +�∗

i log
�∗

i

�i

� (6.20)

Both �� and �a are of size �, so the difference between corresponding terms in the sums
(6.19) and (6.20) can be bounded by terms that go to zero with �. Furthermore, by definition
of � , �i��z	≥ D for all �z near �x. This finishes the estimates. �

Proof of Theorem 2.2. The large deviations upper bound follows from these argu-
ments based on the argument in Shwartz and Weiss [13]. The key theorem there is Theo-
rem 5.64. It is based on Lemmas 5.57, 5.58, 5.63, 5.62, and 5.48 there. Lemmas 5.57 and
5.58 require only bounded rates �i, and Lemma 5.63 requires bounded continuous rates, so
these three lemmas continue to hold. Lemma 5.62 is based on Lemma 5.43, which required
log-bounded rates, but is established without the lower bound on the rates in our Lemma 4.6,
which requires only absolutely continuous jump rates �i. Finally, in Shwartz and Weiss
[13, Lemma 5.48] is based on Lemma 5.35 there, which also requires log-bounded rates.
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Our new Lemma 6.3 replaces Lemma 5.35. So, under the assumption that the �i��x	 are
bounded, absolutely continuous, and that ��x = �d for all �x, the large deviations upper
bound is proved.
The large deviations lower bound follows even more directly. Assuming that the rates

�i��x	 are bounded and Lipschitz continuous, so that Kurtz’s theorem (Shwartz and Weiss
[13, Theorem 5.3]) applies, essentially the same proof of the lower bound in Theorem 5.51,
goes through. The only place that log-boundedness is used is in Corollary 5.53 there, and
using Lemma 6.3 it is easily seen to hold without that assumption. Using Lemma 6.3, we
see that the rate function 1��x� �y	 is jointly continuous in �x and �y over bounded regions.
Approximating jump rates with ��

i makes a small (�) difference in the rate function; this can
be made arbitrarily small. So, under the assumption that the �i��x	 are bounded, Lipschitz
continuous, and that ��x =�d for all �x, the large deviations lower bound is proved. �

7. Reachability of the boundary. We now provide a simple condition for showing that
a point �x ∈ �G may be reached with a finite cost (hence, exponentially nonzero probability)
via a path from the interior of G. We state a sufficient condition that is far from necessary;
nevertheless, it is general enough to cover many cases of interest. For the one-dimensional
case, we prove that a similar condition is also necessary. Recall that s��	 is the scale
function defined in Lemma 2.4.

Lemma 7.1. Assume that the rates �i are bounded and let Assumption 2.2C hold. Fix
�x ∈ �G. If ∫ �

0
log

1
s�t	

dt <� (7.1)

for some �> 0, then I�0� T ���r	 <� for some �r with �r�T 	= �x.
Proof. For convenience we shift time. Let �r�t	 be a path with the following properties:

�r�0	= �x; for some c > 0 and t0 < 0, we have d��r�t	� �G	 > c�t� for t0 ≤ t ≤ 0; and, for some
C > 0, ��r ′�t	�< C for almost all t ∈ �t0�0	. Because ��r ′�t	�< C for almost all t ∈ �t0�0	,
by Lemma 3.3, �i ≤ C0, where �i�t	 is the optimal change of measure for 1��r�t	� �r ′�t		.
Because we assume d��r�t	� �G	 > c�t� for t0 ≤ t ≤ 0, we have from (3.1) that

1��r�t	� �r ′�t		≤C +C log
1

s�d��r�t	� �G		
� (7.2)

because both �i and �i are bounded. But d��r�t	� �G	 > c�t�. Therefore,
1��r�t	� �r ′�t		≤C +C log

1
s�ct	

� (7.3)

This proves the result. �

Note that the condition for reachability holds for any polynomially decreasing scale
function, because

∫ 1
0 1/�logx

j	dx <�. In particular, in the case of an infinite server queue,
where the rates decrease linearly to zero at the boundary, the boundary may be reached
in finite time at finite cost. Note also that the condition is tight under the assumption that
��r ′�t	�<C: the linear rate of approaching the boundary is optimal under this bound, as can
be seen by a change of variable argument.
In the case of one-dimensional processes, the condition on reachability is virtually neces-

sary as well as sufficient. This result is interesting enough that we detail it here. We suppose
without loss of generality that the boundary is x= 0, and that the interior of G is contained
in x > 0. Let ��x	 denote the sum of the jump rates in negative directions, and G�x	 denote
the sum in positive directions. We consider a path r�t	= b−at for t ∈ �0� T = b/a�, where
we suppose that �0� b� ∈G.

Lemma 7.2. Consider the one-dimensional case. Let Assumption 2.2C hold. Assume that
the rates �i are bounded and that at least one rate of jump away from the boundary is
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bounded away from 0. Then the boundary can be reached by the path r�t	= b− at with
finite cost under the following condition:

I�0� T ��r	 <� if and only if
∫ b

0
log

1
��x	

dx <�� (7.4)

Proof.

1�r� r ′	= sup
2

(
− a2−∑

i

�i�r	�exp�2ei	− 1	
)
� (7.5)

Let �+ be the i with ei > 0, and let �− be the i with ei < 0. Differentiating (7.5) with
respect to 2 and setting the result equal to zero, we see

− a− ∑
i∈�+

�i�r	eie
2ei − ∑

i∈�−
�i�r	eie

2ei = 0� (7.6)

or, equivalently, ∑
i∈�−

�i�r	�−ei	e
2ei = a+ ∑

i∈�+
�i�r	eie

2ei � (7.7)

Both sides of (7.7) are positive, consisting of all positive terms. As r → 0, we have �i�r	→ 0
for all i ∈�−. Therefore, we have 2→−� as r → 0; recalling that for at least one j ∈�+

we have �j�0	 > 0, we see that the rate at which 2 →−� as r → 0 is bounded below,
independent of a.
Let

h �=min
i∈�− �ei� and H �=max

i∈�− �ei�� (7.8)

!�r	 �= ∑
i∈�+

�j�r	eie
2ei � (7.9)

Then, !�r	→ 0 as r → 0, because 2→−� as r → 0. By (7.7), we have

��r	he2h ≤ a+ !�r	≤��r	He2H (7.10)

(recall that ��r	=∑
i∈�− �i�r	). Therefore, for each �> 0, when r is close enough to zero,

by using (7.10) to bound 2, we obtain

1�r� r ′	≤ a

h
log

a+ !�r	

�h
+�+G+ �� (7.11)

1�r� r ′	≥ a

H
log

a+ !�r	

�H
+�+G− �− a+ !�r	

h
: (7.12)

the last term on the right of (7.12) is derived from (7.7) by the estimate∑
i

�i�r	e
2ei ≤ a+ !�r	

h
�

Therefore,

I�0� T ��r	 =
∫ T

0

(
log

a

��r�t		
+O�1	

)
dt (7.13)

=
∫ b

0

(
log

1
��r	

+O�1	
)
dt� (7.14)

This shows that I�0� T ��r	 is finite if and only if (7.14) is. �

8. Conclusion. We have shown that the usual sample-path jump Markov large devia-
tions theorem and rate function remain unchanged even when jump rates tend to zero in
some cases. The cases include the very important one of infinite server queues, as well
as the case where the positive cone of jump directions does not change. Moreover, while
existing theories that include boundaries assume flat boundaries, the boundaries here are
quite general.
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However, our understanding of diminishing rate is not complete, as illustrated in
Example C in the introduction. Moreover, a theory combining diminishing rates with dis-
continuous rates, even with flat boundaries, or finite level boundaries, is still lacking.

Appendix A. Extensions to nonconvex sets. In §2, we claimed that it is possible to
extend the rates �i�x	 from x ∈ G to x ∈ �d when G is convex, in such a way that the
extended rates are Lipschitz continuous (below Lemma 2.1). We now establish this for a
more general class of sets. Let G be a closed set that is the union of a finite number of
closed convex sets Gj . We do not assume that the Gj are compact. We use the following
notation. For any point x, denote by yj�x	 the projection of x onto Gj .

Lemma A.1 (Contraction). For any x� z, and j ,

�yj�x	− yj�z	� ≤ �x− z� � (A.1)

Proof. Obvious, but can be made precise as follows. The only nontrivial case is where
both are outside Gj . But then,

�x− yj�z	�2 > �x− yj�x	�2+ �yj�x	− yj�z	�2 (A.2)

because the angle xyj�x	yj�z	 is necessarily larger than 90 degrees. Write the symmetric
expression and sum up to obtain the result. �

Lemma A.2 (Continuity). Let f be a Lipschitz function on G with Lipschitz constant
Lf . Define the function g through

g�x	=




f �x	 for x ∈G�∑J
j=1�d�x� yj�x	�	

−1f �yj�x		∑J
j=1�d�x� yj�x	�	−1

for x �∈G�
(A.3)

Then, g is continuous.

Proof. Fix an arbitrary point x and note that it suffices to prove continuity locally at x.
This is obvious if x is in the interior of G or in the interior of its complement. Because G
is closed, the only case to consider is how g changes between the boundary and an outside
point. So let 
xn� be a sequence of points outside G converging to x ∈ G. Suppose first
that x ∈Gj , but x �∈Gk� k �= j . Then, by Lemma A.1, yj�xn	→ yj�x	= x. Because Gk is
closed, we have d�yk�xn	� x	 > !k ≥ !> 0 for some !, all k �= j , and all n large. Continuity
then follows because 
f �xn	� is bounded. In the general case, by reordering the indices we
may assume that, for some 1, x ∈Gj for all j ≤ 1 and x �∈Gj for all j > 1. Because f is
Lipschitz and yj�x	= x, Lemma A.1 gives

f �yj�xn		= f �x	+ !jn� �!jn� ≤ Lf �xn − x� for j ≤ 1� (A.4)

while obviously,

�f �yj�xn		− f �x	� ≤K for some K� for j > 1� (A.5)

By definition, for some !> 0, we have, for all large n,{
d�xn� yj�xn		→ 0� j ≤ 1� and

d�xn� yj�xn		 > !� j > 1�
(A.6)
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Let dn
�=minj 
d�xn� yj�xn		�. Then, 0<dn�d�xn� yj�xn	�	

−1 ≤ 1, and

lim
n→�dn�d�xn� yj�xn	�	

−1!jn = 0 for j ≤ 1� (A.7)

lim
n→�dn�d�xn� yj�xn	�	

−1K = 0 for j > 1� (A.8)

Therefore,

lim
n

g�xn	 = lim
n

∑J
j=1 dn�d�xn� yj�xn	�	

−1f �yj�xn		∑J
j=1 dn�d�xn� yj�xn	�	

−1 (A.9)

= lim
n

∑1
j=1 dn�d�xn� yj�xn	�	

−1f �x	∑1
j=1 dn�d�xn� yj�xn	�	

−1 (A.10)

= f �x	� (A.11)

Thus, g�x	 is continuous at each point x. �

We now turn to a proof of Lipschitz continuity. This, again, is a local property.

Lemma A.3 (Lipschitz). Under the conditions of Lemma A.2, g as defined in (A.3) is
Lipschitz continuous with Lipschitz constant Lf .

Proof. It suffices to prove Lipschitz continuity with constant Lf locally at x for each
point x. This holds by definition for x in the interior of G, and we next establish the result
for x in the interior of its complement. So, fix such a point x and define

! �= 1
2
min
d�x� z	� z ∈G�� (A.12)

so that by our assumption ! > 0. Fix an arbitrary 0 < � < 1/2 and a point z such that
d�z� x	 < �!. Then, d�z�G	 > !. Because x is fixed it will be convenient to denote
qj

�= �d�x� yj�x	�	
−1. Without loss of generality we assume that f �x	� f �yj�x		� f �z	, and

f �yj�z		 are all positive (this amounts to a shift by a constant, and does not influence
continuity properties). Now by Lemma A.1,

d�x� yj�x	� ≤ d�x� z�+d�z� yj�z	�+d�yj�z	� yj�x	� (A.13)

≤ d�z� yj�z	�+ 2!� (A.14)

so that, because d�x�G	 > !,

1
d�z� yj�z	�

≤ 1
d�x� yj�x	�− 2!�

(A.15)

≤ qj�1+ 2�	� (A.16)

Exchanging the roles in the triangle inequality, we conclude that

qj�1− 2�	≤ 1
d�z� yj�z	�

≤ qj�1+ 2�	� (A.17)

But then,

g�x	− g�z	 =
∑J

j=1 qjf �yj�x		∑J
j=1 qj

−
∑J

j=1�d�z� yj�z	�	
−1f �yj�z		∑J

j=1�d�z� yj�z	�	−1
(A.18)

≤
∑J

j=1 qjf �yj�x		∑J
j=1 qj

−
∑J

j=1 qj�1− 2�	f �yj�z		∑J
j=1 qj�1+ 2�	

(A.19)
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≤
∑J

j=1 qj�f �yj�x		− f �yj�z		�∑J
j=1 qj

+
∑J

j=1 qjf �yj�z		∑J
j=1 qj

(
1− 1− 2�

1+ 2�

)
(A.20)

≤ Lf d�x� z	+max
j


�f �yj�z		�� ·
4�

1+ 2�
� (A.21)

Exchanging the roles of x and z, we obtain in exactly the same way,

g�z	− g�x	≤ Lf d�x� z	+max
j


�f �yj�x		�� ·
4�

1+ 2�
� (A.22)

Because � was arbitrary, the Lipschitz continuity is established.
It remains to consider the case where x is on the boundary of G. So, fix a direction z:

if x+ + · z is in G for all + small, then there is nothing to prove. We need only consider
the case where x+ + · z is in the (open) complement of G for all 0 < + ≤ +0. So, fix an
arbitrary !. By Lemma A.2, we can find a � and a point u in the complement of G (actually,
on the line segment �x� x++0z	) so that

�g�x	− g�u	� ≤ !� (A.23)

d�x�u	≤ !d�x� z	� (A.24)

By the Lipschitz property for points in the complement of G, we conclude that

�g�x	− g�z	� ≤ �g�x	− g�u	� + �g�u	− g�z	� (A.25)

≤ !+Lf d�u� z	 (A.26)

≤ !+Lf �1+ !	d�x� z	� (A.27)

Because ! is arbitrary, the result is established. �

Appendix B. An example. Consider the region

G= 
�x� y	� 0≤ x≤ 1�0≤ y ≤ 1� x+ y ≤ 1�5��

As pictured in Figure 1, we take jump directions

�e1 = �1�0	� �e2 = �−1�0	� �e3 = �0�1	� �e4 = �0�−1	� �e5 = �−1�1	�
We suppose that the jump rates are as follows. Let

t�x� y	=min�1− x�1�5− y− x	:

t�x� y	 represents a distance from the point �x� y	 to the right boundaries of G (the ver-
tical and slanted lines). Similarly, t�y� x	 represents a distance from �x� y	 to the upper
boundaries of G. Now we define jump rates as follows:

�1��x	= t�x� y	� �2��x	= x� �3��x	= t�y� x	� �4��x	= y� �5��x	= x�1− y	�

Note that our assumptions allow the process to jump out of G. For example, suppose that
�zn�0	= �1/2�1/4	. Then, for every odd n, the process can exit G. Take n= 3. Then, two
jumps in a row in direction 1 lead �zn�t	 first to �5/6�1/4	, then to �7/6�1/4	; the associated
jump rates are 1/2 and 1/6, respectively. Now the process is outside G. As detailed in
Appendix A, we can extend the jump rates of �zn to all of �n by taking the rates to be those at
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Figure 1. Illustration of the example.

the projection of �zn on G; that is, as the rates of the point closest to �zn in G. Continuing with
our example, from �7/6�1/4	 (which projects to �1�1/4		 the process can take a jump in
direction 3 to �7/6�7/12	, with rate 3/4. Now the process can take two jumps in direction 5,
from �7/6�7/12	 to �5/6�11/12	 and then to �1/2�5/4	, with rates 1/2 and 15/98 (the
points project to �1�1/2	 and �5/7�11/14	, respectively). From �1/2�5/4	 the process can
jump only to the left or down (directions 2 or 4); the reader may explore how far it may
travel before returning to the interior of G.
We claim that the process thus described satisfies all our assumptions. The only part of

this claim that is not immediate is Assumption 2C. For this we need to make direction
vectors �v at each corner point (labeled A through E in Figure 1) that make the small jump
rates that exist near each corner increase monotonically as we move in directions parallel
to the vectors. (We also need to check the flat portions of the boundaries, but this is easy
given the corner point calculations.) The appropriate vectors are pictured in each corner.
Specifically, at point A we use vector �1�1	, at point B we use vector �−1�1	, at point C
we use vector �−1�0	, at point D we use vector �0�−1	, and at point E we use vector
�1�−1	. The reader may check easily that these vectors cause monotone increases in the
small jump rates: at point A the small rates are �2, �4, and �5; at point B the small rates
are �1 and �4; at point C the small rates are �1 and �3; at point D the small rates are �1,
�3, and �5; and at point E the small rates are �2, �3, and �5.
To work just one example (they all work the same way), consider a point �x= �x� y	 near

point A = �0�0	. Then,

�2��x+��v	= x+��

�4��x+��v	= y+��

�5��x+��v	= �x+�	�1− y−�	= x�1− y	+��1− y− x	−�2:

it is clear that these functions are all monotone increasing in � for small values of x, y,
and �.
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