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Abstract

This paper addresses the problem of dynamic decision making in an uncertain and competitive
environment. A decision maker (player 1) faces a system about which he has some (parametric)
uncertainty, and which is affected also by the actions of other agents. We focus on a worst-case
analysis from the viewpoint of player 1, using the simplified model of a repeated matrix game
with lack of information on one side, where single-stage rewards are random but announced,
and perfect observations are assumed. Certain ideas from the field of stochastic adaptive control
are used to formulate performance criteria in a non-Bayesian setting, and to devise appropriate
control strategies. The basic performance measure is the total reward accumulated by player 1
over all stages played; the purpose of player 1 is to guarantee that his expected total reward will
be “close” to what he could guarantee under complete information. The present paper considers
adaptive decision strategies of the Certainty Equivalence type, based on a (modified) Maximum
Likelihood estimator, and studies their asymptotic (long-term) performance. A sequel paper will
be devoted to “asymptotically optimal” strategies.
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1 Introduction

This paper studies certain aspects of dynamic decision making under uncertainty and competition,
and extends some ideas from stochastic adaptive control to this setting. Basically, we place ourselves
in the position of a decision maker (player 1), facing a dynamic system on which he has incomplete
information. The system is influenced also by the actions of other agents (collectively represented
here as a single agent, player 2). Taking a worst-case view, we assume that player 2 is doing his
best to obstruct us. We also assume that player 1 is non-Bayesian, in the sense that no prior
probabilities are prescribed on his initial uncertainty. At the focus of our interest stands the issue of
learning, namely the temporal reduction of initial uncertainty, which is made possible by observing
the system’s response to the players’ actions.

We consider the simplest system dynamics, where a fixed single-stage decision problem is repeated
in time. The single-stage problem is a parameter-dependent zero-sum matrix game with random
rewards, specified by the following elements:

(a) finite action sets I and J for player 1 and 2, respectively;
(b) a finite set of parameters Θ;
(c) a finite set A ⊂ IR of possible rewards;
(d) for each (θ, i, j) ∈ Θ × I × J , a probability distribution pθ,i,j over A.

A parameter θ0 ∈ Θ is first selected (by Nature), followed by the repeated play of the matrix game
which corresponds to θ0. Thus, at each stage t ≥ 1, player 1 and player 2 choose actions it and
jt respectively, and the reward (payoff) at to player 1 is determined according to the probability
distribution pθ0,it,jt

. Player 1 does not know the true parameter θ0, but assumes (a worst-case
assumption) that player 2 does know it. Perfect observations of actions and rewards are assumed, so
that the action of each player at time t may depend on the entire history sequence {is, js, as; s < t}.

The model just described belongs to the general class of repeated games with incomplete in-
formation. These games offer a convenient framework for the isolation and examination of various
aspects of learning and information in dynamic conflict situations. They have been extensively stud-
ied within the classical Bayesian framework for incomplete-information games, typically under the
limiting expected average payoff criterion. See, e.g., [20, 24, 5] for surveys of this field.

In this paper we focus on the (long-run) total reward, which a refinement of the average criterion.
This, together with the non-Bayesian approach, distinguishes the present work from the mainstream
of existing research on repeated games with incomplete information. Furthermore, we are concerned
only with the case of perfect observations. The approach taken here is closer in spirit to that of
non-Bayesian adaptive control ([12, 13, 15]), and is indeed based on certain ideas and methods from
that field.

Let us next introduce the performance criterion for player 1. Generally speaking, player 1 wishes
to secure a large total reward over all stages played. Assume for the moment that the game proceeds
for n stages, with players 1 and 2 using strategies σ and τ , respectively. One may then compute the
total (n-stage) expected reward Rσ,τ

n (θ0), and a reasonable objective for player 1 is to maximize that
quantity. Unfortunately, he knows in advance neither player 2’s strategy τ nor the true parameter
θ0, so that further specifications are required to make this goal meaningful.

As already mentioned, with respect to player 2 we adopt a worst-case approach, namely we assume
that his strategy would be the least favorable one to player 1. (Note however that any strategy of

2



player 2 is subject to the information structure described above; in particular, a player’s action
cannot depend on the other’s action at the same stage, since actions are chosen simultaneously.)
This leaves the issue of the unknown parameter. Here a direct worst-case approach is inappropriate,
since it fails to bring out fully the learning potential of player 1. The basic approach taken here
is to use the “complete information performance” (i.e., the expected total reward that player 1
could guarantee if he knew θ0) as a reference point for the actual performance, and require that
the difference between the two should be small for all possible values of θ0. This approach is well
suited to problems where learning and adaptation are key issues, and seems most natural when the
complete information performance may indeed be closely approached.

To specify the complete information performance, note that had θ0 been known, then player
1 could secure at each stage an expected total reward which equals v(θ0), the (maximin) value of
the matrix game with parameter θ0. Thus, in n stages player 1 could secure nv(θ0). Obviously,
in the incomplete information game he can only come close to this level. Define then the relative
loss (also known as regret) for player 1 as the difference between this and the actual expected total
reward, namely Lσ,τ

n (θ0) := nv(θ0) − Rσ,τ
n (θ0). We shall henceforth refer to this quantity simply as

the loss. Maximization of the loss over all strategies τ of player 2 yields the worst-case loss, denoted
Lσ

n(θ0). The long run performance of player 1 may now be measured in terms of the asymptotic rate
of increase of the worst-case loss (e.g. linear, sub-linear, logarithmic, bounded, etc.). An efficient
strategy for player 1 must guarantee a low rate of increase for all possible values of the true game
parameter.

Implicit in this performance measure are certain assumptions concerning the time horizon n.
Formally, this measure is defined for an infinitely repeated game. Indeed, the rate of increase of the
loss is computed for a fixed strategy σ, which must be pre-specified for all stages t ≥ 1. Practically,
it is relevant to the case where the time horizon is very long, and not precisely known to player 1.
However, in accordance with our worst-case approach, we do not preclude player 2 from having this
information, so that his worst-case strategy is allowed to depend on the time horizon n (cf. eq. (2.3)
below).

The total loss criterion is a refinement of the expected average reward criterion, and in fact
supplies rates of convergence for the latter. Indeed, an “ideal performance” with respect to the
average criterion requires only that the worst-case loss would be o(n); a much refined result, namely
O(log n), will be obtained here. We note that if rewards are not observed, then a convergence rate of
O(n−1/2) of the average reward to the value of the game (in a Bayesian setting) cannot be improved
upon in general ([26]); our results clearly imply that with perfect observations this rate is O(log n/n)
at most. Other relevant results concerning the average criterion may be found in [6] and [19], which
consider a completely uninformed non-Bayesian player and non-random rewards, and also in [17].
For a related problem of statistical games against nature see [25] and references therein.

What are the strategic problems that confront player 1? Obviously, he may use the observed
game history to estimate, in a statistical sense, the true game parameter. We are then confronted
with the dual role of control: actions which are good for (statistical) information acquisition may be
inefficient in terms of rewards, and vice-versa. On top of this, the effect of player 2 on both aspects
should be considered. In particular, the information content of the observations depends also on
player 2’s actions, and player 1 may not be able to guarantee consistent estimation of the true game
parameter. This implies that player 1 cannot isolate the problem of information acquisition (probing),
as is possible in comparable adaptive control problems ([13, 15, 16, 1]). Instead, he should rely on
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inter-relations between information and reward, in trying to guarantee that, no matter what player
2 may do, low information will be compensated by high enough reward as to make this information
immaterial. This theme will be dominant in the following analysis.

Our formulation of the performance criterion is closely related to that of [16], where a theory
of asymptotic total reward optimality is presented for the statistical Bandit Problem. These results
have been extended to various adaptive control models, e.g. [1, 2, 3]. In particular, our game model
reduces to that of [1] if player 2 is removed. Asymptotic optimality results in that vein will be
presented for the game model in a sequel paper [23].

In the present paper we shall focus on some relatively simple strategies, which are intuitively
appealing and easy to implement, study their performance, and identify conditions under which
they perform well. These strategies are based on the Certainty Equivalence principle, where a point
estimator of the true parameter is substituted in a complete-information optimal control law. First,
we consider a strategy which is based on the Maximum Likelihood Estimator (MLE). It turns out
that performance is poor in general, in that the loss might increase linearly in time. However, certain
conditions are provided which ensure a bounded loss (which is of course the best possible “rate of
increase”). These results are related to the “closed loop identification problem” which arises in
the adaptive control of Markov chains ([13, 15]). Motivated by an idea of [14], we then consider
a Certainty Equivalence strategy with a modified estimator, the value-biased MLE. Considerable
improvement in performance is obtained: here the loss is O(log n) at the most and, moreover, a
bounded loss is guaranteed under weaker conditions than before.

The paper is organized as follows. The next section describes the model. Section 3 develops
some preliminary results required in the analysis. Sections 4 and 5 consider Certainty Equivalence
strategies which are based on the MLE and value-biased MLE, respectively, and Section 6 is devoted
to the proof of Theorem 5.2. The paper ends with some concluding remarks in Section 7.

Notation: P(I) denotes the set of probability vectors over the finite action set I, and P(J ) denotes
the set of probability vectors over J . An element x = (xi) of P(I) is referred to as a “mixed action”,
and similarly for y ∈ P(J ). For any I × J matrix M = {M(i, j)} , let M(x, y) denote the averaged
(expected) value of M with respect to the mixed actions x and y, namely

M(x, y) =
∑

i,j

xiM(i, j)yj . (1.1)

The mixed notations M(i, y) and M(x, j) will also be used, with similar interpretation. For pos-
itive sequences {fn} and {gn} , we write fn = o(gn) if lim supn(fn/gn) = 0, and fn = O(gn) if
lim supn(fn/gn) < ∞. Finally, 1{ · } denotes the indicator function.

2 The Model

Let G(θ) denote the matrix game corresponding to the parameter θ ∈ Θ, as described in (a) to (d)
above. The repeated game Γ∞ proceeds as follows. At stage 0, Nature chooses an element θ0 ∈ Θ
(“the true parameter”). This choice is told to player 2, but not to player 1. Then, at each stage
t = 1, 2, · · · : player 1 and player 2 simultaneously choose actions it ∈ I and jt ∈ J , respectively.
Consequently, the reward at ∈ A to player 1 is chosen according to the probability distribution
pθ0,it,jt

(·). At the end of each stage, both players observe the actions (it, jt) and the reward at.
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Perfect recall of past information is assumed. Rewards accumulate to form the total n-stage reward
sn =

∑n
t=1 at.

A strategy for each player is a (possibly randomized) rule for choosing his actions at each stage.
Since perfect recall is assumed, it follows by the Kuhn-Aumann theorem ([4]) that one can restrict
attention (at least as far as the reward sequence distribution is concerned) to behavioral strategies,
where randomizations are performed independently at each stage. Formally, a (behavioral) strategy
for player 1 is a collection of maps σt : Ht → P(I), t = 1, 2, ... , where Ht denotes the set of all

possible observed histories ht = {is, js, as}
t−1
s=1 up to stage t. Thus xt

4
= σt(ht) is the randomized

action of player 1 at stage t. Strategies of player 2 are defined similarly except that they are allowed
to depend explicitly on the true parameter θ0. A strategy of player 2 is denoted by τ , his strategy set
by T , and his randomized action at stage t is denoted yt. Let P σ,τ

θ0
and Eσ,τ

θ0
denote the probability

measure and the expectation induced by the triplet (θ0, σ, τ) on the sample space H∞.

Let Aθ(i, j) =
∑

a∈A a pθ,i,j(a) denote the expected reward in the matrix game G(θ) given actions
i and j. The value of G(θ) is given by

v(θ)
4
= max

x∈P(I)
min

y∈P(J )
Aθ(x, y) = min

y∈P(J )
max

x∈P(I)
Aθ(x, y) , (2.1)

where the notation (1.1) is used.

We now turn to the performance measure for player 1. For each strategy pair (σ, τ), θ0 ∈ Θ and
n ≥ 1 define the loss:

Lσ,τ
n (θ0) = Eσ,τ

θ0

(

nv(θ0) −
n
∑

t=1

at

)

. (2.2)

Maximizing over all strategies of player 2 yields the worst-case loss:

Lσ
n(θ0) = max

τ
Lσ,τ

n (θ0) . (2.3)

As motivated in the introduction, the asymptotic rate of the loss will be used as a performance
measure for player 1. Thus, we are interested in a strategy σ of player 1 which guarantees a “low”
rate (in n) for every possible θo.

We define now some additional quantities that will be used in the sequel. The one-stage loss is
defined as

dθ(i, j) = v(θ) − Aθ(i, j) . (2.4)

Note that dθ(i, j) may be negative. Denote D̂ = maxθ,i,j dθ(i, j). The loss may be expressed in terms
of the one-stage loss as follows:

Lσ,τ
n (θ0) = Eσ,τ

θ0

n
∑

t=1

dθ0
(it, jt) = Eσ,τ

θ0

n
∑

t=1

dθ0
(xt, jt) . (2.5)

These relations follow by using the definition (2.4) of dθ0
and applying appropriate conditioning to

each term separately.

Let X∗
θ denote the (closed convex) set of optimal (maximin) randomized actions of player 1 in

the matrix game G(θ), and let Y ∗
θ denote the set of optimal (minimax) randomized actions of player

2. Let I∗
θ ⊂ I denote the set of relevant actions for player 1 in G(θ), namely the set of actions which
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are given positive probability by some optimal randomized action x∗ ∈ X∗
θ . Similarly define J ∗

θ as
the set of relevant actions for player 2. Let x∗(θ) be an arbitrary point in the relative interior of X∗

θ ,
which we fix for the rest of the paper. Note that i ∈ I∗

θ if and only if x∗(θ)i > 0. It follows from
Theorems 3.1.2 and 3.1.16 in [21] that J ∗

θ is exactly the set of actions which minimize the expected
reward against x∗(θ), that is

dθ(x
∗(θ), j)

4
= v(θ) − Aθ(x

∗(θ), j) = 0 for j ∈ J ∗
θ , (2.6)

dθ(x
∗(θ), j) < 0 for j 6∈ J ∗

θ . (2.7)

Another important quantity is the information divergence between pθ,i,j and pθ′,i,j, defined as

Îθ,θ′(i, j) =
∑

a∈A

pθ,i,j(a) log
pθ,i,j(a)

pθ′,i,j(a)
(2.8)

(where 0 log 0
4
= 0). The information divergence, also known as the cross-entropy or Kullback-Leibler

distance, is a well known measure of statistical distinguishability between probability distributions,
and arises naturally as the expected log-likelihood ratio. It is easily verified ([10]) that Îθ,θ′(i, j) ≥ 0,

and Îθ,θ′(i, j) = 0 if and only if pθ,i,j = pθ′,i,j. Since Î may be infinite, it will be convenient to define
a “truncated” version:

Iθ,θ′(i, j) =
∑

a∈A

pθ,i,j(a)min{M0, log
pθ,i,j(a)

pθ′,i,j(a)
} . (2.9)

Here Mo > 0 is a large enough constant so that Îθ,θ′(i, j) > 0 implies Iθ,θ′(i, j) > 0 (such a constant
obviously exists since the sets Θ,I,J ,A are finite). It follows that 0 ≤ Iθ,θ′(i, j) ≤ Mo, and

Iθ,θ′(i, j) = 0 if and only if pθ,i,j = pθ′,i,j . (2.10)

3 Preliminaries: Controlled I.I.D. Processes

This section develops some results which in essence will be used to bound the deviation of the log-
likelihood ratio from its (conditional) mean. These results are derived within a general “controlled
i.i.d. process”, whose exact relation to the repeated game model is indicated in Lemma 3.1 below.

We consider the following controlled process, which is similar to a one-player version of the
repeated game. Let U denote the action space, and Z the state space. For each u ∈ U , let q(·|u) ∈
P(Z) be a probability distribution over Z, and let r : Z → IR be the reward function. At each stage
t ≥ 1, the controller chooses an action ut ∈ U , the state zt ∈ U is randomly chosen according to
q(·|ut), and a one-stage reward rt = r(zt) is collected. A control policy π is a sequence of mappings
πt : Ht → P(U), which associate with each observed history sequence ht = (u1, z1, · · · , ut−1, zt−1) a
probability distribution over U . (Since the sets U and Z are not necessarily finite, some measurability
conditions are required for the above description to induce a well defined stochastic process. Thus,
assume that U,Z are measurable sets, q : U → P(Z) and πt : Hn → P(U) are transition probabilities,
where Ht is endowed with the product σ-algebra, and r is a Borel-measurable function.) Let Π denote
the set of control policies.
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Let Ru denote a random variable distributed as the one-stage reward given action u ∈ U (i.e.
Ru = r(Zu) where Zu ∼ q(·|u) ), and let Ru denote its expected value: Ru = E(Ru) =

∫

Z r(z)q(dz|u) .
Define also the total n-stage reward Sn =

∑n
t=1 rt . The following conditions are imposed throughout:

Assumption 3.1

(i) The reward function r is bounded: |r(z)| ≤ R̂, z ∈ Z.

(ii) Ru ≥ 0, u ∈ U .

(iii) There exists a constant Co > 0 such that E(R2
u) ≤ CoRu for every u ∈ U .

Item (ii) requires the expected reward to be non-negative. The essence of (iii) is that if Ru is small,
then so is (the second moment of) Ru.

The next lemma and remark summarize the required correspondence between this model and the
repeated game model.

Lemma 3.1 Let θ0, θ ∈ Θ be fixed parameters. Consider the following definition:

ut = (xt, jt), zt = (it, jt, at),

r(z) = min{Mo, log
pθ0,i,j(a)

pθ,i,j(a)
} ∀z ≡ (i, j, a) ,

where Mo is the same as in (2.9), and we arbitrarily define r(z) = 0 if pθ0,i,j(a) = 0. Then Assump-
tion 3.1 is satisfied.

Remark: Under this definition, we have

Sn =
n
∑

t=1

min{Mo, log
pθ0,i,j(a)

pθ,i,j(a)
}

4
= Λ̃n(θ0, θ) ,

(the “truncated log-likelihood ratio”), and Ru =
∑

i xiIθ0,θ(i, j) = Iθ0,θ(x, j) for u = (x, j) [cf. (2.9)].
Note that we identify the action u with (x, j), instead of just (i, j). This will enable to apply the
results of this section to bound certain expressions that contain Iθ0,θ(x, j).

Proof: The reward function r(z) is obviously bounded since Z = I × J × A is a finite set. Also,
Ru ≡ Iθ0,θ(x, j) ≥ 0. To establish the remaining part (iii) of Assumption 3.1, consider first the finite
set Uo = {(i, j) : i ∈ I, j ∈ J }, taken as a subset of U by embedding pure actions in randomized
ones. For every u = (i, j) there exists a positive constant Cu such that E(R2

u) ≤ CuRu . This follows
since E(R2

u) ≤ R̂2 < ∞, Ru = Iθ0,θ(i, j) ≥ 0, and, by (2.10), Ru = 0 implies Ru ≡ 0. Since Uo

is finite, it follows that E(R2
u) ≤ CoRu for some constant Co and all u ∈ Uo. But then, for every

u = (x, j) ∈ U ,
E(R2

u) =
∑

i

xiE(R2
(i,j)) ≤ Co

∑

i

xiR(i,j) = CoRu .

The next lemma is required in the proof of Lemma 3.3, the latter being the main result of this
section.

Lemma 3.2 There exist constants λ > 0, µ > 0 such that:

(i) E(e−λRu) ≤ 1 − µRu , u ∈ U (3.1)

(ii) sup
π∈Π

Pπ{Sn ≤ −K} ≤ e−λK , ∀K ≥ 0 . (3.2)
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Proof:

(i) For every u ∈ U we have E(e−λRu) |λ=0 = 1,

d

dλ
E(e−λRu) |λ=0 = −E(Ru) = −Ru ≤ 0 (3.3)

and, by Assumptions 3.1(i) and 3.1(iii),

d2

dλ2
E(e−λRu) = E(R2

u e−λRu) ≤ E(R2
ue|Ru|)

≤ eR̂ E(R2
u) ≤ (Co eR̂)Ru, ∀λ ∈ [0, 1] . (3.4)

Therefore, a second order power-series expansion of E(e−λRu) around λ = 0 yields

E(e−λRu) ≤ 1 − λRu +
λ2

2
(Co eR̂)Ru, 0 ≤ λ ≤ 1 , (3.5)

and the result follows with λ = (Co eR̂)−1, µ = λ/2.

(ii) Let λ > 0 be the constant for which (3.1) holds. Since 1{β ≤ 0} ≤ e−λβ for every β ∈ IR, then

Pπ{Sn ≤ −K} ≤ Eπ e−λ(Sn+K) = e−λK Eπ(
n
∏

t=1

e−λrt) . (3.6)

Now, by standard Dynamic Programming arguments applied to multiplicative cost functionals
(e.g. [7, p.66]), it follows that

Eπ(
n
∏

t=1

e−λrt) ≤ [sup
u

E(e−λRu)]n ≤ 1 (3.7)

where the last inequality follows from (3.1).

Lemma 3.3 Let {βn} be an o(n) positive non-decreasing sequence such that βn → ∞. Let Sn =
∑n

t=1 Rut
. Then

(i) There exists a constant Q < ∞ such that: sup
π

Eπ

(

∞
∑

t=1

Rut
1{St−1 ≤ 0}

)

≤ Q .

(ii) lim sup
n→∞

1

βn
sup

π
Eπ

(

n
∑

t=1

Rut
1{St−1 ≤ βn}

)

≤ 1 .

(iii)
∞
∑

n=1

sup
π

Pπ{Sn ≥ ηn, Sn ≤ βn} < ∞ , ∀η > 0 .

(iv)
∞
∑

n=1

sup
π

Pπ

{

n
∑

t=1

Rut
1{St−1 ≤ βn} ≥ ηn

}

< ∞ , ∀η > 0 .
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(v) For any α > 0, ε > 0, there exists a constant Q = Q(α, ε) < ∞ such that

Eπ

∞
∑

t=1

Rut
1{St−1 ≥ (1 + ε)βt − α, St−1 ≤ βt} ≤ Q, ∀π ∈ Π .

Proof:

(i) Let λ > 0, µ > 0 be as in Lemma 3.2(i). Note that 1{St−1 ≤ 0} ≤ e−λSt−1 , so it suffices to
prove that the bound

Jn
1

4
= sup

π
Eπ

{

n
∑

t=1

Rut
e−λSt−1

}

≤ Q (3.8)

holds for some Q < ∞ and every n. Fixing n > 1, define for every 1 < m ≤ n :

Jn
m = sup

π
Eπ

{

n
∑

t=m

Rut
exp(−λSt−1

m )

}

(3.9)

where St−1
m =

∑t−1
k=m rk for t > m, and Sm−1

m = 0. Further define Jn
n+1 = 0. Then, for every

1 ≤ m ≤ n,

Jn
m = sup

π
Eπ







Rum
+ e−λrm

n
∑

t=m+1

Rut
exp(−λSt−1

m+1)







= sup
π,u

Eπ







Ru + e−λRu

n
∑

t=m+1

Rut
exp(−λSt−1

m+1)







= sup
u
{Ru + E(e−λRu)Jn

m+1} (3.10)

(which is in essence just the optimality principle of Dynamic Programming). Hence, by
Lemma 3.2(i),

Jn
m ≤ sup

u
{Ru + (1 − µRu)Jn

m+1} = Jn
m+1 + sup

u
{Ru(1 − µ Jn

m+1)} . (3.11)

Since 0 ≤ Ru ≤ R̂, it follows that Jn
m ≤ Jn

m+1 + R̂, and also that Jn
m ≤ Jn

m+1 if Jn
m+1 ≥ µ−1.

Since Jn
n+1 = 0, this clearly implies that Jn

m ≤ R̂ + µ−1, and in particular Jn
1 ≤ R̂ + µ−1.

(ii) Let 0 < ε < 1 be fixed. Then, recalling that 0 ≤ Ru ≤ R̂,

Jn
4
=

n
∑

t=1

Rut
1{St−1 ≤ βn}

=
n
∑

t=1

Rut
1{St−1 ≤ βn, St−1 > (1 − ε)St−1}

+
n
∑

t=1

Rut
1{St−1 ≤ βn, St−1 ≤ (1 − ε)St−1}

≤
n
∑

t=1

Rut
1{St−1 <

βn

1 − ε
} +

n
∑

t=1

Rut
1{St−1 ≤ (1 − ε)St−1}

≤
βn

1 − ε
+ R̂ +

n
∑

t=1

Rut
1{St−1 ≤ (1 − ε)St−1} . (3.12)
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(The last inequality follows from the definition of St.) In order to bound the last term, define
a modified reward function: r′(z) = r(z) − (1 − ε)Ru . Denoting all quantities related to r′

by a prime, it follows that R
′
u = εRu, and S′

t = St − (1 − ε)St. Note further that the model
assumptions are satisfied for this modified reward function: in particular, r′ is bounded, and

E(R′
u)2 ≤ E(R2

u) ≤ Co Ru = (ε−1Co)R
′
u . (3.13)

Therefore, by item (i) of the present lemma,

Eπ

n
∑

t=1

Rut
1{St−1 ≤ (1 − ε)St−1} = ε−1Eπ

n
∑

t=1

R
′
ut

1{S′
t−1 ≤ 0} ≤ ε−1Q(ε) . (3.14)

Combining (3.12) and (3.14) gives

lim sup
n→∞

1

βn
sup

π
Eπ(Jn) ≤ lim sup

n→∞

1

βn

(

βn

1 − ε
+ R̂ + ε−1Q(ε)

)

=
1

1 − ε
. (3.15)

The required result then follows by letting ε → 0.

(iii) Define, as in the proof of (ii), a modified reward function r′(z) = r(z) − 1
2 Ru. Then, for every

π ∈ Π and η > 0,

Pπ

{

Sn ≥ ηn, Sn ≤ βn

}

≤ Pπ

{

Sn −
1

2
Sn ≤ βn −

1

2
ηn

}

≤ Pπ

{

S′
n ≤

(

βn −
1

2
ηn

)}

≤ exp

(

−λ′
(

1

2
ηn − βn

))

4
= αn (3.16)

holds for some λ′ > 0, where the last step follows by Lemma 3.2(ii) applied with the modified
reward function. Since βn = o(n), then {αn} is summable and (iii) follows.

(iv) For every π ∈ Π and η > 0,

Pπ

{

n
∑

t=1

Rut
1{St−1 ≤ βn} ≥ ηn

}

≤ Pπ

{

∃m, 1 ≤ m ≤ n, s.t. Sm ≥ ηn, Sm−1 ≤ βn

}

≤
n
∑

m=1

Pπ

{

Sm−1 ≥ ηn − R̂, Sm−1 ≤ βn

}

≤ nαn exp(λ′R̂/2) , (3.17)

where the last inequality follows exactly as in (3.16), with αn and λ′ as defined there. Since
the sequence {nαn} is summable, the result follows.

(v) Define, as in the proof of (ii), a modified reward function: r′(z) = (1 + ε) r(z) − Ru . Then

Jn
4
=

n
∑

t=1

Rut
1{St−1 ≥ (1 + ε)βt − α, St−1 ≤ βt}

≤
n
∑

t=1

Rut
1{(1 + ε)St−1 − St−1 ≤ α}

= ε−1
n
∑

t=1

R
′
ut

1{S′
t−1 ≤ α} . (3.18)
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Now EπJn can be bounded by applying the proof of (i) to the process with this modified reward
function. Indeed note that for any λ > 0,

EπJn ≤ ε−1eλαEπ

n
∑

t=1

R
′
ut

e−λS′
t−1 .

Comparing this expression with (3.8), it follows that for some finite λ′ and Q′,

EπJn ≤ ε−1eλ′αQ′ 4
= Q < ∞ ∀π, n .

4 Certainty Equivalence with the MLE

We consider in this section a simple strategy that is based on the Certainty Equivalence principle
and the Maximum Likelihood Estimator (MLE). This means that player 1 computes at each stage
the MLE of the unknown parameter θo, and then plays the optimal action in the matrix game which
corresponds to this estimate. This strategy may give rise to poor performance in general, as indicated
at the end of this section. However, we shall provide sufficient conditions, related to the interplay of
information and reward in our model, which guarantee a bounded loss even for this simple strategy.

The MLE of θ0 just prior to stage t ≥ 1 is given by:

θ̂t = arg max {λt−1(θ) : θ ∈ Θ} , (4.1)

where

λt−1(θ) =
t−1
∏

s=1

pθ,is,js
(as) (4.2)

is the likelihood function. To define θ̂t uniquely, we assume that ties in (4.1) are decided according

to some fixed ordering of Θ; also, let λ0(θ)
4
= 1. For every θ0, θ ∈ Θ, define the log-likelihood ratio:

Λt(θ0, θ) = log
λt(θ0)

λt(θ)
=

t
∑

s=1

log
pθ0,is,js

(as)

pθ,is,js
(as)

, (4.3)

and the “truncated” log-likelihood ratio:

Λ̃t(θ0, θ) =
t
∑

s=1

min{M0, log
pθ0,is,js

(as)

pθ,is,js
(as)

} , (4.4)

where M0 > 0 is the same constant as in (2.9). Note that, by definition of the MLE,

θ̂t = θ =⇒ Λt(θ0, θ) ≤ 0 . (4.5)

The following strategy σ̂ of player 1 will be considered in this section:

Strategy σ̂: xt = x∗(θ̂t), where θ̂t is the MLE defined in (4.1).

11



Control policies of this type, namely Certainty Equivalence with the MLE, have been well studied
in the context of stochastic adaptive control (e.g. [18, 8, 9, 13, 15]). Performance of these schemes is
often hampered by the closed-loop identification problem: the prescribed control signals may be in-
adequate for efficient identification, and poor performance might result. These observations have led
to two research directions. The first is to specify appropriate identifiability conditions on the system
which ensure “optimal” performance, (see the above-mentioned references on adaptive control). The
second is to consider modifications of the basic policy which alleviate the need for such conditions;
this will be further discussed in the next section.

We now proceed to formulate an identifiability–type condition which guarantees bounded loss for
the strategy σ̂. For each θ0 ∈ Θ, define the following conditions (recall that Iθ0,θ is the information
divergence defined in (2.9)):

Condition C1(θ0): For every θ and j, Aθ0
(x∗(θ), j) < v(θ0) implies Iθ0,θ(x

∗(θ), j) > 0 .

Condition C1: C1(θ0) is satisfied for every θ0 ∈ Θ.

Condition C1 essentially requires low rewards to be “compensated” by the information content
of the observed signals. This should hold for all (optimal) actions of the form x∗(θ), which is just the
set of actions which player 1 might employ under the stratey σ̂. Further disussion of this condition
is deferred to the end of the section.

It will be useful to express this condition in terms of the one-stage loss. Recalling the definition
of dθ in (2.4), C1(θ0) reads: For all θ and j, dθ0

(x∗(θ), j) > 0 implies Iθ0,θ(x
∗(θ), j) > 0 . Since Iθ0,θ

is non-negative and both Θ and J are finite sets, this implies (actually equivalent to) that for some
M < ∞:

dθ0
(x∗(θ), j) ≤ M Iθ0,θ(x

∗(θ), j), ∀ θ, j . (4.6)

We then have the following result.

Theorem 4.1 Assume that player 1 is using the strategy σ̂.

(i) If C1(θ0) is satisfied, then lim supn→∞ Lσ̂
n(θ0) < ∞ .

(ii) Thus, if C1 is satisfied, then the loss is bounded for every θ0 ∈ Θ.

Proof: The idea of the proof is to upper-bound the loss by the information content of the data
(quantified by the information divergence) over the times when the MLE is different from the true
parameter (see (4.6), (4.8) below). To bound the latter, we rely on the observation that large
information steers the estimator towards the true parameter.

Recalling (2.5), and noting that xt = x∗(θ̂t) under σ̂, it follows that for every θ0 and every
strategy τ of player 2:

Lσ̂,τ
n (θ0) = Eσ̂,τ

θ0

n
∑

t=1

dθ0
(x∗(θ̂t), jt). (4.7)

Consider a fixed θ0 such that C1(θ0) is satisfied. By optimality of x∗(θ0) in G(θ0) we have

dθ0
(x∗(θ0), j) ≤ 0 for every j. Using this and (4.6) in (4.7) gives (with E standing for Eσ̂,τ

θ0
):

Lσ̂,τ
n (θ0) = E

n
∑

t=1

∑

θ∈Θ

dθ0
(x∗(θ), jt)1{θ̂t = θ}
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≤ E
n
∑

t=1

∑

θ 6=θ0

dθ0
(x∗(θ), jt)1{θ̂t = θ}

≤ M
∑

θ 6=θ0

E
n
∑

t=1

Iθ0,θ(x
∗(θ), jt)1{θ̂t = θ}

= M
∑

θ 6=θ0

E
n
∑

t=1

Iθ0,θ(xt, jt)1{θ̂t = θ} . (4.8)

Recall that Λn(θ0, θ) is the log-likelihood ratio (4.3). By (4.5) we have

1{θ̂t = θ} ≤ 1{Λt−1(θ0, θ) ≤ 0} , (4.9)

so that, noting that Iθ0,θ ≥ 0,

Lσ̂,τ
n (θ0) ≤ M

∑

θ 6=θ0

E
∞
∑

t=1

Iθ0,θ(xt, jt)1{Λt−1(θ0, θ) ≤ 0} . (4.10)

We now proceed to upper-bound the expressions

F τ (θ)
4
= Eσ̂,τ

θ0

∞
∑

t=1

Iθ0,θ(xt, jt)1{Λt−1(θ0, θ) ≤ 0} (4.11)

for each θ 6= θ0, by employing Lemma 3.3(i) and the correspondence indicated in Lemma 3.1. For
that purpose two adjustments are required. First, we have to “replace” Λt−1(θ0, θ) with its truncated
version Λ̃t−1(θ0, θ) (see (4.5)), in order to comply with the required correspondence. Second, we shall
have to extend the strategy set of player 2 in order to comply with the “controlled i.i.d. model” of
Section 3.

Note first that Λ̃t−1(θ0, θ) ≤ Λt−1(θ0, θ) by its definition, so that

F τ (θ) ≤ F̃ τ (θ)
4
= Eσ̂,τ

θ0

∞
∑

t=1

Iθ0,θ(xt, jt)1{Λ̃t−1(θ0, θ) ≤ 0} , (4.12)

and it suffices to upper-bound F̃ τ (θ). Now, since the strategy of player 1 is fixed, player 2 can be
regarded as a single controller (maximizer) in (4.12). However, since xt = x∗(θ̂t) depends on the
process history, then player 2 is not facing a “controlled i.i.d. process”. Let us therefore extend the
original set T of strategies available to player 2 by letting him choose at each stage t both jt, as
before, and also xt ∈ P(I). Denote this extended strategy set by Π. Lemma 3.3(i) can now be
applied, which gives

F τ (θ) ≤ F̃ τ (θ) ≤ sup
τ∈T

F̃ τ (θ) ≤ sup
π∈Π

F̃ π(θ) ≤ Q(θ) < ∞, ∀ τ ∈ T . (4.13)

Combining (4.10), (4.11) and (4.13) yields

Lσ̂,τ
n (θ0) ≤ M

∑

θ 6=θ0

Q(θ) < ∞, ∀ τ, n ,
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and (i) is proved. Since (ii) follows immediately from (i), the proof is complete.

Discussion: We conclude with a few remarks concerning the results of this section and their
implications.

Condition C1 is not strictly an identifiability condition, since it does not guarantee for player 1
the ability to identify (i.e., consistently estimate) the true parameter. For example, player 2 may
still have a “non-revealing” action j0 under which all games are indistinguishable, i.e. Iθ0,θ(x, j0) = 0
for all x and θ. Condition C1 does not preclude such “information hiding”, but guarantees that it
will be compensated by large enough rewards.

The proposed strategy σ̂ might perform poorly when condition C1 is not satisfied. Let θ be a
parameter which violates C1(θ0), which means that for some action j′ we have

(i) Aθ0
(x∗(θ), j′) < v(θ0), and (ii) Iθ0,θ(x

∗(θ), j′) = 0 . (4.14)

Assume that at some stage t the MLE θ̂t equals θ, so that xt = x∗(θ) by definition of σ̂, and that
player 2 chooses action j′ thereafter. Then the MLE estimator may get “stuck” on θ, since by (ii) the
likelihood ratio between θ0 and θ will not change. At the same time, (i) implies that the reward at
each stage will be lower than the value v(θ0). This situation may thus persist, leading to an average
reward lower than v(θ0) (equivalently, to a loss which increases as O(n)).

To remedy this problem, the following fact will be crucial: any parameter θ which violates C1(θ0)
must have a value lower than that of θ0, i.e. v(θ) < v(θ0). Indeed, let θ be such that (4.14) is satisfied.
Then,

v(θ) ≤ Aθ(x
∗(θ), j′) = Aθ0

(x∗(θ), j′) < v(θ0) , (4.15)

where the the equality follows from (4.14)(ii).

To summarize: if condition C1 is not satisfied, then the MLE may get “stuck” on a wrong
parameter θ, while the loss increases linearly. However, this is possible only if θ satisfies v(θ) < v(θ0).
This observation holds the key to the improved strategy of the next section.

5 Certainty Equivalence: Value-Biased MLE

In this section we introduce a class of strategies that guarantee a loss of O(log n) at most. Moreover,
bounded loss is guaranteed here under weaker conditions than those of the previous section. These
strategies are based on a modified estimator, which takes into account the reward structure of the
model. The simple Certainty Equivalence structure is however maintained.

As indicated at the end of the previous section, a basic problem of the MLE-based strategy is
that the estimator may adhere to parameters with a lower value than that of the true parameter. To
prevent that, a certain bias will be introduced in the estimator in favor of parameters with high value.
Naturally, this bias has to be delicate enough so that the identification capability of the estimator
will not be destroyed.

The biasing method proposed here relies on the introduction of confidence levels in the estimator.
Instead of just the MLE, which is the single parameter that maximizes the likelihood function,
consider the set of parameters which nearly maximize the likelihood function (to within a prescribed
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time-varying threshold, or confidence level). We shall refer to this set as the likely parameters set.
The estimator is then chosen as the member of this set which has the highest value.

The value-biased scheme is closely related to the cost-biased MLE algorithm, introduced in [14]
in the context of adaptive control of Markov chains with the average cost criterion. There the bias
is introduced by adding a cost-dependent term to the likelihood function; we shall comment on this
biasing method at the end of the section. Several adaptive control algorithms have been proposed
which incorporate confidence levels in the estimation scheme (e.g. [11, 9, 16, 1]), but not for the
purpose of cost related biasing which is crucial here.

Let {Kn, n ≥ 1} be a sequence of positive numbers, such that

(i) Kn ↑ ∞, Kn ≥ 1

(ii) log Kn = o(n) (5.1)

(iii)
∞
∑

n=1

K−1
n < ∞ .

A specific example, which gives the “lowest” rate in Theorem 5.1 below, is Kn = n1+ε with ε > 0.

Let θ̂t be the MLE (4.1), and further define the likely parameters set:

Θ̂t =

{

θ ∈ Θ : Λt−1(θ̂t, θ)
4
= log

λt−1(θ̂t)

λt−1(θ)
≤ log Kt

}

, (5.2)

which is the set of parameters which bring the log-likelihood function to within log Kt of its maximum.
The value-biased maximum likelihood estimator is given by:

θt = arg max
{

v(θ) : θ ∈ Θ̂t

}

; (5.3)

if there are several parameters with maximal value, we select among them one with maximal likeli-
hood λt−1(θ). This is an important rule, which leads to the relation (5.6) below.

The following strategy will be considered in this section.

Strategy σ̄: xt = x∗(θt) , where θt is the value-biased MLE (5.3).

Before presenting the main results, we state some basic properties of the proposed estimator. By
definition of θt, the following implications hold (for every θ0 ∈ Θ):

v(θt) < v(θ0) =⇒ θ0 6∈ Θ̂t =⇒
λt−1(θ̂t)

λt−1(θ0)
> Kt . (5.4)

Furthermore, since θt ∈ Θ̂t and Λt(θ0, θt) ≤ Λt(θ̂t, θt) ,

Λt−1(θ0, θt) ≤ log Kt . (5.5)

Finally, by the tie-breaking rule for parameters with equal values,

v(θt) = v(θ0) =⇒ Λt−1(θ0, θt) ≤ 0 . (5.6)

The following lemma, a consequence of (5.4), indicates that the biasing scheme indeed achieves
its purpose.
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Lemma 5.1

(i) Eσ,τ
θ0

∞
∑

t=1

1{θ0 6∈ Θ̂t} ≤ Q1 for some finite constant Q1 and all σ, τ .

(ii) Consequently, Eσ,τ
θ0

∞
∑

t=1

1
{

v(θt) < v(θ0)
}

≤ Q1 for all σ, τ .

Proof:

(i) Let σ, τ be arbitrary strategies. Then

Eσ,τ
θ0

∞
∑

t=1

1{θ0 6∈ Θ̂t} =
∞
∑

t=1

P{θ0 6∈ Θ̂t}

=
∞
∑

t=1

P{λt−1(θ̂t)/λt−1(θ0) > Kt}

≤
∑

θ 6=θ0

∞
∑

t=1

P{λt−1(θ)/λt−1(θ0) > Kt} .

Now, as is well known the likelihood ratio {λt(θ)/λt(θ0)} is a positive martingale with expected
value 1. It then follows by Markov’s inequality that:

Eσ,τ
θ0

∞
∑

t=1

1{θ0 6∈ Θ̂t} ≤
∑

θ 6=θ0

∞
∑

t=1

1

Kt
, (5.7)

which is finite by the choice (5.1) of {Kt}.

(ii) From (5.4) it follows that 1
{

v(θt) < v(θ0)
}

≤ 1{θ0 ∈ Θ̂t}, and (ii) is therefore implied by (i).

Lemma 5.1 implies roughly that the biased estimator θn will equal a parameter with a value lower
than that of the true parameter not more than a finite number of times. Thus, the effect of such
parameters of lower value is no longer significant. Note however that the biasing scheme introduces
a new potential problem: Since the estimator is biased towards parameters with higher value, it may
favor those over the true parameter, even when the unbiased likelihood function is maximized by the
true parameter. The main issue in following analysis will be to bound the loss associated with this
effect.

We are now in a position to present the first main result of this section.

Theorem 5.1 For every θ0 ∈ Θ there exists a constant β(θ0) such that

lim sup
n→∞

1

log Kn
Lσ̄

n(θ0) ≤ β(θ0) . (5.8)

Thus, under strategy σ̄ the worst-case loss is O(log Kn) at most. In particular, if we choose Kn =
n1+ε, with ε > 0, then the loss is O(log n) at most.
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The proof of Theorem 5.1 proceeds through some lemmas. We assume in the following that θ0

is fixed. Define for future reference the the following three sets which are, respectively, the set of
parameters with value higher than θ0, same value as θ0, and the union of the first two:

H(θ0) = {θ ∈ Θ : v(θ) > v(θ0)} (5.9)

S(θ0) = {θ ∈ Θ : θ 6= θ0, v(θ) = v(θ0)} (5.10)

H0(θ0) = {θ ∈ Θ : θ 6= θ0, v(θ) ≥ v(θ0)} . (5.11)

Lemma 5.2 There exists a constant M < ∞ such that dθ0
(x∗(θ), j) ≤ M Iθ0,θ(x

∗(θ), j) holds for
every j and every θ ∈ Θ which satisfies v(θ) ≥ v(θ0).

Proof: Since Θ and J are finite sets and Iθ0,θ is non-negative, it is enough to show that v(θ) ≥ v(θ0)
and Iθ0,θ(x

∗(θ), j) = 0 together imply dθ0
(x∗(θ), j) ≤ 0 . Indeed, Iθ0,θ(x

∗(θ), j) = 0 implies that
Aθ0

(x∗(θ), j) = Aθ(x
∗(θ), j) (cf. (2.10)), and since x∗(θ) is optimal in the game matrix Aθ, we get

dθ0
(x∗(θ), j)

4
= v(θ0) − Aθ0

(x∗(θ), j) = v(θ0) − Aθ(x
∗(θ), j) ≤ v(θ0) − v(θ) ≤ 0 . (5.12)

Lemma 5.3 For every θ with v(θ) > v(θ0):

lim sup
n→∞

1

log Kn
max
τ∈T

Eσ̄,τ
θ0

n
∑

t=1

Iθ0,θ(xt, jt)1 {Λt−1(θ0, θ) ≤ log Kn} ≤ 1 .

Proof: Follows from Lemma 3.3(ii), by using exactly the same considerations that were used to
bound (4.11).

Proof of Theorem 5.1: By (2.5) and the definition of σ̄:

Lσ̄,τ
n (θ0) = Eσ̄,τ

θ0

n
∑

t=1

dθ0
(xt, jt) = Eσ̄,τ

θ0

n
∑

t=1

dθ0
(x∗(θt), jt) . (5.13)

Now,

n
∑

t=1

dθ0
(x∗(θt), jt) =

n
∑

t=1

dθ0
(x∗(θt), jt)

[

1{v(θt) < v(θ0)} + 1{v(θt) ≥ v(θ0)}
]

≤ D̂
n
∑

t=1

1{v(θt) < v(θ0)} +
∑

θ∈H0(θ0)

n
∑

t=1

dθ0
(x∗(θ), jt)1{θt = θ} , (5.14)

where D̂ is an upper-bound on dθ0
, H0(θ0) is defined in (5.11), and dθ0

(x∗(θ0), j) ≤ 0 was used. We
next bound the last term in (5.14). From Lemma 5.2, the control law xt = x∗(θt) and (5.5), it follows
that for every θ ∈ H0(θ0),

dθ0
(x∗(θ), jt) 1{θt = θ} ≤ M Iθ0,θ(x

∗(θ), jt) 1{θt = θ}

= M Iθ0,θ(xt, jt) 1{θt = θ} (5.15)

≤ M Iθ0,θ(xt, jt) 1{Λt−1(θ0, θ) ≤ log Kt} .
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Therefore

n
∑

t=1

dθ0
(x∗(θt), jt) ≤ D̂

n
∑

t=1

1{v(θt) < v(θ0)}

+ M
∑

θ∈H0(θ0)

n
∑

t=1

Iθ0,θ(xt, jt)1{Λt−1(θ0, θ) ≤ log Kt} . (5.16)

The proof now follows by taking the expectation and applying Lemma 5.1(ii) and Lemma 5.3.

The proof supports the following heuristic explanation for Theorem 5.1. As already noted,
Lemma 5.1 implies that the effect of parameters with lower value than v(θ0) on the loss may be ig-
nored. Consider then the effect of parameters with a higher value than v(θ0). The biased estimator
would prefer such parameters over θ0 – unless the observations provide sufficient statistical informa-
tion to overcome the bias. Let θ be a parameter with v(θ) > v(θ0), and assume that θt = θ at some
stage, so that xt = x∗(θ). Now, the basic information–loss relation of Lemma 5.2 implies that any
(positive) loss incurred at that stage is accompanied by a proportional information for discriminating
between θ0 and θ. Thus, if the loss over the times {t ≤ n : θt = θ} builds up to O(log Kn), so does
the information for discriminating θ0 and θ, and this information is just sufficient to overcome the
bias so that θ is ruled out by the estimator. Consequently, this loss cannot exceed O(log Kn).

We turn now to formulate conditions under which the strategy σ̄ guarantees a bounded loss.
Essentially, an additional information–loss relation will be required to hold under the optimal ac-
tion x∗(θ0); this provides an additional “source of information” for discriminating between θ0 and
parameters with higher value.

Recall that H(θ)
4
= {θ′ : v(θ′) > v(θ)} . For each θ0 ∈ Θ, define

Condition C2(θ0): For every θ ∈ S(θ0) (i.e. for every parameter with the same value as θo), the
following condition C3(θ) holds:

C3(θ): For each j ∈ J , either (i) Aθ(x
∗(θ), j) > v(θ) , or (ii) minθ′∈H(θ) Iθ,θ′(x

∗(θ), j) > 0 .

Condition C2: Condition C2(θ0) holds for every θ0 ∈ Θ.

Note that condition C2 is equivalent to: C3(θ) holds for all θ.

Theorem 5.2 Assume that player 1 uses strategy σ̄.

(i) If C2(θ0) is satisfied, then
lim sup

n→∞
Lσ̄

n(θ0) < ∞ . (5.17)

(ii) Consequently, if C2 is satisfied, then the worst-case loss is bounded for every θ0 ∈ Θ.

The proof of this result is presented in the next section. Here we compare condition C2 with condition
C1 of the previous section. It should first be noted that for a given θ0, conditions C1(θ0) and C2(θ0)
are not comparable, since the first pertains to parameters with lower value than that of θ0, while
the second to parameters with higher value. However, it will next be established that the global
condition C2 is weaker than C1, thus implying that strategy σ̄ guarantees a bounded loss under
weaker conditions than those required for σ̂.
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Lemma 5.4 C1 implies C2.

Proof: We shall prove that if C2 is not satisfied, then C1 is not satisfied; more specifically, if C2(θ0)
is not satisfied for some θ0, then C1(θ

′) is not satisfied for some θ′ ∈ H(θ0). Assume then that
C2(θ0) is not satisfied. This means that for some θ ∈ S(θ0), j ∈ J and θ′ ∈ H(θ) = H(θ0), we have
(i’) Aθ(x

∗(θ), j) = v(θ), and (ii’) Iθ,θ′(x
∗(θ), j) = 0, which imply that

Aθ′(x
∗(θ), j) = Aθ(x

∗(θ), j) = v(θ) < v(θ′) . (5.18)

But (5.18) and (ii’) together imply that C1(θ
′) is not satisfied.

An alternative biasing scheme:

We now consider briefly an alternative biasing method, where the estimator is the maximizer of
a biased likelihood function. A similar method was employed in [14].

Let {w(θ) : θ ∈ Θ} be a set of real numbers which are increasing in v(θ), i.e. w(θ) > w(θ′) if
and only if v(θ) > v(θ′). Let δ = min{|w(θ)−w(θ′)| : w(θ) 6= w(θ′)} denote the minimal separation
between these numbers, and let {kn} be a positive sequence such that (compare (5.1)): (i) kn ↑ ∞,
(ii) log kn = o(n), (iii)

∑∞
n=1 k−1

n < ∞ . The value-biased MLE is now defined as

θ̂b
t = arg max

θ∈Θ
(kt)

w(θ)λt−1(θ) (5.19)

where λt−1(θ) is the likelihood function (4.2). The Certainty Equivalence strategy based on this
estimator is xt = x∗(θ̂b

t ).

The main results of this section, viz. Theorems 5.1 and 5.2, remain valid under this strategy (with
log Kn replaced by log kn). This is easily verified by noting that this estimator satisfies properties
similar to (5.4)–(5.5), which are the key properties of the estimator θt.

We note, however, that the two biasing schemes are not completely equivalent. The estimator θt

effectively provides a uniform bias to all the parameters in H(θ0), while in the estimator θ̂b
t the bias

necessarily increases with v(θ). The uniform biasing property will prove to be of critical importance
in [23], where an “asymptotically optimal” strategy is constructed based on the estimator θt.

6 Proof of Theorem 5.2

We now present the proof of Theorem 5.2. First we summarize the basic information–loss relations
required here, in addition to those of Lemma 5.2.

Lemma 6.1 There exist positive constants M, δ such that, for every θ0 ∈ Θ and j ∈ J :

(i) dθ0
(x∗(θ), j) ≤ −δ + MIθ0,θ(x

∗(θ), j) for every θ ∈ H(θ0) := {θ : v(θ) > v(θ0)}.

(ii) If C2(θ0) holds then dθ0
(x∗(θ0), j) ≤ −δ + M minθ′∈H(θ0) Iθ0,θ′(x

∗(θ0), j) .

(iii) For every θ, if v(θ) equals v(θ0) and C2(θ) is satisfied, then

dθ0
(x∗(θ), j) ≤ −δ + MIθ0,θ(x

∗(θ), j) + M min
θ′∈H(θ0)

Iθ0,θ′(x
∗(θ), j) .
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Proof: Since Iθ0,θ0
(x, j) ≡ 0, then (ii) is a special case of (iii) for θ = θ0. It is therefore only required

to prove (i) and (iii). Since Θ and J are finite sets and Iθ0,θ(x, j) ≥ 0 for all θ, x, j, it is sufficient to
establish the following claims (i’) and (iii’):
(i’) For every θ ∈ H(θ0), Iθ0,θ(x

∗(θ), j) = 0 implies dθ0
(x∗((θ), j) < 0.

(iii’) If v(θ) = v(θ0) and C2(θ) holds, then Iθ0,θ(x
∗(θ), j) = minθ′∈H(θ0) Iθ0,θ′(x

∗(θ), j) = 0 implies
dθ0

(x∗(θ), j) < 0.

Claim (i’) follows exactly as in the proof of Lemma 5.2, where in the last line the strict inequality
v(θ0)−v(θ) < 0 may now be used. To establish (iii’), we assume that the assertions there are satisfied,
and show that dθ0

(x∗(θ), j) < 0. Noting (2.10), Iθ0,θ(x
∗(θ), j) = 0 implies that Iθ0,θ′(x

∗(θ), j) =
Iθ,θ′(x

∗(θ), j) for all θ′, and in particular for all θ′ ∈ H(θ0). Note that H(θ) = H(θ0) since v(θ) =
v(θ0). Therefore

min
θ′∈H(θ)

Iθ,θ′(x
∗(θ), j) = min

θ′∈H(θ0)
Iθ0,θ′(x

∗(θ), j) = 0 . (6.1)

By C2(θ) this implies that Aθ(x
∗(θ), j) > v(θ), so that

dθ0
(x∗(θ), j)

4
= v(θ0) − Aθ0

(x∗(θ), j) = v(θ) − Aθ(x
∗(θ), j) < 0 . (6.2)

Remark: Lemma 6.1 reflects the following relations between one-stage loss and information. Item (i)
implies that for xn = x∗(θ) with θ ∈ H(θ0), player 1 obtains either positive Iθ0,θ-information (i.e.,
information for discriminating between θ0 and θ), or a negative loss (i.e. expected reward higher
than v(θ0)). Item (ii) means that for xn = x∗(θ0), player 1 obtains either positive Iθ0,θ-information
for every θ ∈ H(θ0), or a negative loss. Item (iii) may be interpreted similarly.

Consider henceforth a fixed θ0 ∈ Θ and a fixed strategy τ of player 2. Let H(θ0), H0(θ0) be
defined as in (5.9), (5.11). Recall from (5.13) and (5.14) that

Lσ̄,τ
n (θ0) ≤ D̂Eσ̄,τ

θ0

n
∑

t=1

1{v(θt) < v(θ0)} + Eσ̄,τ
θ0

n
∑

t=1

dθ0
(x∗(θt), jt)1{v(θt) ≥ v(θ0)} . (6.3)

Since the first term on the right-hand-side is bounded by Lemma 5.1(ii), it remains to bound the
last term. To this end, define for every n ≥ 1

`n =
n
∑

t=1

dθ0
(x∗(θt), jt)1{v(θt) ≥ v(θ0)} , (6.4)

∆`n = `n − `n−1 = dθ0
(x∗(θn), jn)1{v(θn) ≥ v(θ0)} , (6.5)

with `0
4
= 0. The required upper-bound is established in the following lemmas, where the basic idea

is that (the expected value of) `n cannot increase “too much” over those time instants when `n is
positive.

Lemma 6.2

(i) `n ≤ D̂ +
n−1
∑

t=1

(∆`t+1)
+ 1{`t ≥ 0} for every n ≥ 1.

(ii) Consequently, there exists a finite constant Q3 such that

Eσ̄,τ
θ0

`n ≤ Q3 + D̂
∞
∑

t=1

P σ̄,τ
θ0

{`t ≥ 0, θt+1 ∈ H(θ0)} .
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Proof:
(i) Fix n ≥ 1, and let m0 = max{0 ≤ t ≤ n − 1 : `t ≤ 0}. Note that ∆`t ≤ D̂. Then

`n ≤ `n − `m0
≤

n−1
∑

t=m0

(∆`t+1)
+

≤ D̂ +
n−1
∑

t=m0+1

(∆`t+1)
+ = D̂ +

n−1
∑

t=m0+1

(∆`t+1)
+ 1{`t > 0}

≤ D̂ +
n−1
∑

t=1

(∆`t+1)
+ 1{`t ≥ 0} . (6.6)

(ii) Recalling the definitions in (5.9) and (5.11) of H(θ0) and S(θ0), (6.5) may be rewritten as

∆`t = dθ0
(x∗(θt), jt)1{θt ∈ {θ0} ∪ H(θ0) ∪ S(θ0)} . (6.7)

Noting that dθ0
(x∗(θ0), j) ≤ 0 and dθ0

(x∗(θ), j) ≤ D̂ for θ ∈ H(θ0), and using Lemma 5.2 for
θ ∈ S(θ0), we get

(∆`t)
+ ≤ D̂ 1{θt ∈ H(θ0)} + M

∑

θ∈S(θ0)

Iθ0,θ(x
∗(θ), jt)1{θt = θ} . (6.8)

Therefore, by (i),

`n ≤ D̂ + D̂
n−1
∑

t=1

1{`t ≥ 0, θt+1 ∈ H(θ0)} + M
∑

θ∈S(θ0)

n−1
∑

t=1

Iθ0,θ(x
∗(θ), jt+1)1{θt+1 = θ} . (6.9)

Extending the summations to +∞ and taking expectation gives

Eσ̄,τ
θ0

`n ≤ D̂ + D̂
∞
∑

t=1

P σ̄,τ
θ0

{`t ≥ 0, θt+1 ∈ H(θ0)}

+ M
∑

θ∈S(θ0)

Eσ̄,τ
θ0

∞
∑

t=1

Iθ0,θ(x
∗(θ), jt+1)1{θt+1 = θ} . (6.10)

It remains to bound the last term. Let θ ∈ S(θ0). Since v(θ) = v(θ0), it follows from (5.6) that

Eσ̄,τ
θ0

∞
∑

t=1

Iθ0,θ(x
∗(θ), jt)1{θt = θ} ≤ Eσ̄,τ

θ0

∞
∑

t=1

Iθ0,θ(xt, jt)1{Λt−1(θ0, θ) ≤ 0} . (6.11)

The latter term can now be bounded exactly in the same way that F τ (θ) of (4.11) was bounded.

Lemma 6.3 Assume that C2(θ) is satisfied for every θ ∈ Θ such that v(θ) = v(θ0). Assume that
player 1 employs strategy σ̄, and player 2 is using any strategy τ . Then there exists a constant η > 0
such that, for every n ≥ 1: if `n > 0, then at least one of the following events Ω1(n)–Ω3(n) holds:

Ω1(n) :
n
∑

t=1

1{v(θt) < v(θ0)} ≥ ηn .

Ω2(n) :
n
∑

t=1

Iθ0,θ(xt, jt)1{θt = θ} ≥ ηn for some θ ∈ H0(θ0) .

Ω3(n) : min
θ∈H(θ0)

n
∑

t=1

Iθ0,θ(xt, jt) ≥ ηn .
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Proof: Similarly to (6.7), we have

`n =
n
∑

t=1

∑

θ∈Θ

dθ0
(x∗(θ), jt)1

{

θt = θ ∈ {θ0} ∪ S(θ0) ∪ H(θ0)
}

. (6.12)

Now, using the appropriate bounds from Lemma 6.1 for each θ in the above sum gives

`n ≤
n
∑

t=1

{ [−δ + M min
θ∈H(θ0)

Iθ0,θ(x
∗(θ0), jt) ] 1{θt = θ0}

+
∑

θ∈S(θ0)

[−δ + MIθ0,θ(x
∗(θ), jt) + M min

θ′∈H(θ0)
Iθ0,θ′(x

∗(θ), jt) ] 1{θt = θ}

+
∑

θ′∈H(θ0)

[−δ + MIθ0,θ′(x
∗(θ′), jt) ] 1{θt = θ′} }

= −δ
n
∑

t=1

1{v(θt) ≥ v(θ0)} + M
n
∑

t=1

∑

θ∈H0(θ0)

Iθ0,θ(xt, jt)1{θt = θ}

+ M
n
∑

t=1

min
θ∈H0(θ0)

Iθ0,θ(xt, jt)1{θt ∈ {θ0} ∪ S(θ0)}

≤ −δn + δ
n
∑

t=1

1{v(θt) < v(θ0)} + M
∑

θ∈H0(θ0)

n
∑

t=1

Iθ0,θ(xt, jt)1{θt = θ}

+M min
θ∈H(θ0)

n
∑

t=1

Iθ0,θ(xt, jt) (6.13)

where in the last steps we used the facts that xt = x∗(θt) under σ̄, and that Iθ0,θ ≥ 0.

Defining η = δ/(δ + M |Θ|), it follows from the last inequality that `n will be negative unless one
of Ω1(n)–Ω3(n) is satisfied.

Lemma 6.4 Let Ω1(n)–Ω3(n) be defined as in the previous lemma. Then, for some Q2 < ∞ and
every τ ∈ T ,

(i)
∞
∑

n=1

P σ̄,τ
θ0

{Ω1(n)} ≤ Q2 ,

(ii)
∞
∑

n=1

P σ̄,τ
θ0

{Ω2(n)} ≤ Q2 ,

(iii)
∞
∑

n=1

P σ̄,τ
θ0

{Ω3(n), θn ∈ H(θ0)} ≤ Q2 .

Proof:
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(i) Recall from (5.4) that v(θt) < v(θ0) implies λt−1(θ̂t, θ0) := λt−1(θ̂t)/λt−1(θ0) > Kt . Therefore
(denoting P : = P σ̄,τ

θ0
),

P{Ω1(n)} ≤ P

{

n
∑

t=1

1{λt−1(θ̂t, θ0) > Kt} ≥ ηn

}

(6.14)

≤ P{λt−1(θ̂t, θ0) > Kt for some t ≥ ηn}

≤ P

{

sup
t≥1

λt−1(θ̂t, θ0) > K[ηn]

}

≤
∑

θ∈Θ

P

{

sup
t≥1

λt−1(θ, θ0) > K[ηn]

}

,

where [ηn] is the integer part of ηn. Now, since the likelihood ratio {λt(θ, θ0)} is a positive Mar-
tingale with expected value 1, it follows by Doob’s inequality that P{Ω1(n)} ≤ |Θ| (K[ηn])

−1 .
Since {K−1

n } is summable by (5.1), this implies

∞
∑

n=1

P{Ω1(n)} ≤ |Θ|
∞
∑

n=1

K−1
[ηn] < ∞ . (6.15)

(ii) Using the union bound and (5.5),

P{Ω2(n)} ≤
∑

θ∈H0(θ0)

P

{

n
∑

t=1

Iθ0,θ(xt, jt) 1{θt = θ} ≥ ηn

}

(6.16)

≤
∑

θ∈H0(θ0)

P

{

n
∑

t=1

Iθ0,θ(xt, jt) 1{Λt−1(θ0, θ) ≤ log Kt} ≥ ηn

}

.

Now, using the same procedure as in the proof of Theorem 4.1 (i.e., player 2 is allowed to
choose (xt, jt), and Λt−1 is replaced by its truncated version Λ̃t−1), it follows by Lemmas 3.1
and 3.3(iv) (with βn = log Kn) that, for every τ ∈ T ,

∞
∑

n=1

P{Ω2(n)} ≤
∑

θ∈H0(θ0)

Q(θ) < ∞ . (6.17)

(iii) Similarly to the proof of (ii), it follows that

P{Ω3(n), θn+1 ∈ H(θ0)} ≤
∑

θ∈H(θ0)

P

{

n
∑

t=1

Iθ0,θ(xt, jt) ≥ ηn, θn+1 = θ

}

(6.18)

≤
∑

θ∈H(θ0)

P

{

n
∑

t=1

Iθ0,θ(xt, jt) ≥ ηn, Λn(θ0, θ) ≤ log Kn+1

}

.

The bound now follows exactly as in (ii), except that Lemma 3.3(iii) is used in place of Lemma
3.3(iv).
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We are now ready to conclude the proof of Theorem 5.2. By (6.3), (6.4), Lemma 5.1(ii) and
Lemma 6.2(ii), it follows that for every τ ∈ T and n ≥ 1:

Lσ̄,τ
n (θ0) ≤ D̂Q1 + Eσ̄,τ

θ0
`n ≤ D̂Q1 + Q3 + D̂

∞
∑

t=1

P{`t ≥ 0, θt+1 ∈ H(θ0)} . (6.19)

Moreover, by Lemmas 6.3 and 6.4,

∞
∑

t=1

P{`t ≥ 0, θt+1 ∈ H(θ0)} ≤
∞
∑

t=1

P{Ω1(t)} +
∞
∑

t=1

P{Ω2(t)} +
∞
∑

t=1

P{Ω3(t), θt+1 > θ0}

≤ 3Q2 < ∞ , (6.20)

so that Lσ̄
n(θ0) ≤ D̂Q1 + Q3 + 3Q2D̂ < ∞ for every n ≥ 1.

7 Concluding Remarks

This paper examined the long-term performance of Certainty Equivalence strategies in an uncertain
dynamic game situation. It was shown that these strategies potentially suffer from closed-loop
identification problems, similar to those found in comparable adaptive control models, and that
these problems can be essentially eliminated by properly modifying the estimator. In particular,
Theorem 5.1 established that the worst-case loss can be kept down to O(log n) by using the value-
biased Maximum Likelihood Estimator.

While the latter result seems quite satisfactory, it is still natural to ask whether this is the best
that can be attained in general. In the sequel paper [23] it will be established that an increase rate
of O(log n) is in fact the best that can be guaranteed by any strategy; furthermore, the optimal coef-
ficient associated with this increase rate (i.e., the smallest possible coefficient β(θ0) in Theorem 5.1)
will be characterized, and a strategy which attains this “asymptotically optimal” performance will
be constructed.

The basic model of this paper may be extended in several directions. Here we studied the case of
finite parameter and actions sets; more general sets may be of interest. It should also be of interest to
consider systems with non-trivial dynamics, e.g. controlled Markov processes (leading to stochastic
game models). More ideas and methods from the field of adaptive control may prove applicable to
such models.
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