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Abstract: This paper considers the Poisson equation associated with time-
homogeneous Markov chains on a countable state space. The discussion empha-
sizes probabilistic arguments and focuses on three separate issues, namely (i)
the existence and uniqueness of solutions to the Poisson equation, (ii) growth
estimates and bounds on these solutions and (iii) their parametric dependence.
Answers to these questions are obtained under a variety of recurrence condi-
tions.

Motivating applications can be found in the theory of Markov decision pro-
cesses in both its adaptive and non-adaptive formulations, and in the theory
of Stochastic Approximations. The results complement available results from
Potential Theory for Markov chains, and are therefore of independent interest.

9.1 INTRODUCTION

Let P � (pxy) be the one-step transition matrix for a time-homogeneous
Markov chain fXt; t = 0; 1; : : :g taking values in some countable space X. This
paper is devoted to the corresponding Poisson equation with forcing function
r : X! IR, namely

h(x) + w = r(x) +
X

y
pxyh(y); x 2 X (9.1)
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for scalar w and mapping h : X ! IR. This equation arises naturally in a
variety of problems associated with Markov chains as the following examples
indicate.
1. As shown in Section 9.3, solving the Poisson equation provides a means to
evaluate the long-run average cost w associated with the cost function r [36]: If
(9.1) has a solution (h;w) and some mild growth conditions are satis�ed, then
Lemma 9.2 states that

w = limt IE�

"
1

t+ 1

tX
s=0

r(Xs)

#
(9.2)

where � is the initial distribution and IE� is the corresponding expectation
operator. The function h measures the sensitivity of the cost to the initial
state, and represents a second-order e�ect captured through the \deviation
matrix" [13]. This function h can also serve as a \Lyapunov function" in
establishing ergodicity [26], and plays a key role in proving the convergence of
the policy improvement algorithm [26]. Approximate solutions can be used for
simulations|see Chapter 10.
2. During the last decade there has been widespread interest in stochastic
approximation algorithms as a means to solve increasingly complex engineering
problems [1, 5, 16, 17]. As a result, focus has shifted from the original Robbins-
Monro algorithm to (projected) stochastic approximations driven by Markovian
\noise" or \state" processes. Properties of solutions to an appropriate Poisson
equation play an essential role when establishing the a.s. convergence of such
adaptive algorithms [1, 18, 22, 24, 25, 39].
3. In the context of Markov decision processes (MDPs), the need for adaptive
policies can arise in response to both modeling uncertainties and computational
limitations [40]. Several adaptive policies have been proposed as \implementa-
tions" to a Markov stationary policy, and shown to yield the same cost perfor-
mance [3, 18, 19, 23, 40]. Here too, the analysis requires precise information on
the solution to the Poisson equation associated with the non-adaptive policy
[40].

In many of these applications, it is natural to view the forcing function r

and the transition matrix P as parameterized, say by some parameter � (which
may be loosely interpreted as a control variable). The requisite analysis then
typically exploits smoothness properties (in �) of the solution h together with
various growth estimates (in x) for h. In addition, estimates on the moments
of fh(Xt); t = 0; 1; 2; : : :g are required, with the added diÆculty that the
resulting process fXt; t = 0; 1; 2; : : :g is not necessarily Markovian (say, under
the given stochastic approximation scheme or adaptive policy).

Our main objective is to develop methods for addressing the concerns above
in a systematic fashion. Whenever possible, we emphasize a probabilistic view-
point as we focus mostly on the following three issues:

1. Existence and uniqueness of solutions to the Poisson equation (9.1);

2. Growth estimates and bounds on these solutions; and

3. Conditions for smoothness in the parameter of these solutions when deal-
ing with the parametric case, as would arise when establishing the a.s.
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convergence of stochastic approximations and the self-tuning property of
adaptive policies.

Answers to these questions are given under a variety of recurrence con-
ditions. As we try to keep the exposition relatively self-contained, we have
included some standard material on the Poisson equation. In addition to its
tutorial merit, the discussion given here provides a uni�ed treatment to many
of the issues associated with the Poisson equation, e.g. existence, uniqueness
and representation of solutions. This is achieved by manipulating a single
martingale naturally induced by the Poisson equation.

Questions of existence and uniqueness of solutions to (9.1) have obvious and
natural points of contact with the Potential Theory for Markov chains [15, 29].
Unfortunately many situations of interest in applications, say in the context
of MDPs, are not readily covered by classical Potential Theory. Indeed, the
classical theory treats the purely transient and recurrent cases separately, with
drastically di�erent results for each situation. This approach is thus of limited
use in the above-mentioned situations, where the recurrence structure of the
Markov chain is typically far more complex in that it combines both transient
and recurrent states. Here, in contrast with the analytical approach of classical
Potential Theory, emphasis has been put on giving an explicit representation
of the solution to (9.1) with a clear probabilistic interpretation.

This probabilistic approach allows for a relatively elementary treatment of
questions of existence and uniqueness, under a rather general recurrence struc-
ture. We accomplish this by focusing on the discrete space case, and by keeping
the assumptions as transparent as possible. The intuition developed here ap-
plies to the general state-space case, under mild conditions on the existence
of petite sets|see Chapter 10 and [10, 26, 27]. Results are obtained in vari-
ous degrees of completeness for both �nite and countably in�nite state spaces;
recurrence structures include multiple positive recurrent classes, and transient
classes. A representation for h is derived in detail in the case of a single positive
recurrent class under integrability conditions involving the forcing function r.
The derivation uses elementary methods, and provides intuition into more gen-
eral situations. This representation is shown to also hold in countable case with
multiple classes, and readily lends itself to establishing natural bounds on the
growth rate of h (as a function of the state), and to investigating smoothness
properties in the parameterized problem.

Similar results are given in [10] for the ergodic case on general state spaces.
In addition, when the forcing function r is positive and \increasing" (i.e. when
its sub-level sets are compact), there is an elegant theory that relates geo-
metric ergodicity to the Poisson equation; details and references can be found
in Chapter 10. As evidenced by the references section, there is a very large
literature on the Poisson equation; of particular note is the monograph by
Nummelin [28]. In the context of MDPs, bounded solutions are discussed by
Ross [34, 35], Gubenko and Shtatland [11] and Yushkevich [42]. One of the
�rst treatments of unbounded solutions is available in Robinson [31, 32] (with
details in Chapter 5).

The paper is organized as follows: The set-up is given in Section 9.2 together
with the basic martingale associated with (9.1). Various uniqueness results on
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the the solution (w; h) are discussed in Section 9.3. We give two decomposi-
tion results in Section 9.4; the �rst is based on the decomposition of the state
space X into its recurrent and transient classes, while the second is an analog
of the standard Green decomposition and relies on an expansion of the forcing
function in terms of more \elementary" functions. To set the stage for the
countably in�nite case, we briey recall an algebraic treatment of the �nite-
state case in Section 9.5. In Section 9.6, under a single positive recurrent class
assumption, an explicit representation for the solution is developed in terms of
the recurrence time to some distinguished state. An example is developed in
Section 9.7 to illustrate the material of previous sections. Bounds and exten-
sions to unbounded forcing functions and multiple recurrent classes are given
in Section 9.8. Equipped with this probabilistic representation of solutions,
we can now investigate the smoothness properties of solutions to the parame-
terized problem; methods for proving continuity and Lipschitz continuity are
developed in Sections 9.9 and 9.10, respectively.

To close, we note that most of the ideas which are discussed here in the con-
text of countable Markov chains have extensions to fairly general state spaces.
This is achieved by means of the so-called splitting technique [10, 26, 27, 28]
which in essence guarantees the existence of an atom on an enlarged state space;
details can be found in Chapter 10.

9.2 THE POISSON EQUATION AND ITS ASSOCIATED

MARTINGALE

First, a few words on the notation used throughout the paper: The set of all real
numbers is denoted by IR and 1[A] stands for the indicator function of a set A.
Unless otherwise stated, limt, limt and limt are taken with t going to in�nity.
Moreover, the in�mum over an empty set is taken to be 1 by convention. The
Kronecker mapping Æ : X � X ! IR is de�ned by Æ(x; y) = 1 if x = y, and
Æ(x; y) = 0 otherwise. Finally, the notation

P
x2X

is often abbreviated as
P

x
.

9.2.1 The set-up

The notion of a Markov chain we adopt in this paper is more general than the
elementary one used in most applications. We do so with the view of broaden-
ing the applicability of the material developed here, especially to problems of
adaptive control for Markov chains [18, 19, 22, 23, 39, 40].

The state space is a countable, and we assume the existence of a measurable
space (
;F) large enough to carry all the probabilistic elements considered in
this paper. In particular, let fFt; t = 0; 1; : : :g denote a �ltration of F , i.e. a
monotone increasing sequence of �-�elds contained in F such that Ft � Ft+1

for all t = 0; 1; : : : , and let fXt; t = 0; 1; : : : g be a sequence of X-valued rvs
which are Ft-adapted, i.e. the rv Xt is Ft-measurable for all t = 0; 1; : : : .

The Markovian structure of interest is de�ned by postulating the existence
of a family fIPx; x 2 Xg of probability measures on F such that for all x and


