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5.1 INTRODUCTION

In this chapter we deal with certain aspects of average reward optimality. It
is assumed that the state space X is denumerably in�nite, and that for each
x 2 X, the set A (x) of available actions is �nite. It is possible to extend the
theory to compact action sets, but at the expense of increased mathematical
complexity. Finite action sets are suÆcient for digitally implemented controls,
and so we restrict our attention to this case.

For initial state x, the quantity W (x) is the best possible limiting expected
average reward per unit time (average reward, for short). This is an appropriate
measure of the largest expected reward per unit time that can possibly be
achieved far into the future, neglecting short-term behavior. Many interesting
applications have the property that the average reward is independent of the
initial state, i.e. W (x) is a constant.

This chapter develops a theory to guarantee the existence of a stationary
policy � and �nite constant W such that

W (x) = w(x; �) �W; x 2 X: (5.1)

Such a policy is an average reward optimal stationary policy. In this chapter a
stationary policy means a nonrandomized (pure) stationary policy. Implement-
ing such a policy requires the controller to know only the current state x of the
system. Table look-up may then determine the �xed action �(x) appropriate
in that state.
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The development takes place under the assumption that there exists a non-
negative (�nite) constant R such that r(x; a) � R, for all x 2 X and a 2 A (x).
Note that rewards may be unbounded below. In some applications, the actual
reward is a random quantity. In these cases, r(x; a) is to be interpreted as an
expected reward.

In a typical reward maximization setting, it may be possible to incur costs
as well as earn rewards. Costs can be built into the system as negative re-
wards. For example, to minimize over the set f5; 2; 8g of costs, we may calculate
maxf�5;�2;�8g = �2, and then the answer is �(�2) = 2. Our framework
allows rewards to be unbounded below, thereby handling the common case of
costs unbounded above. For example, queueing control problems may involve
holding costs that are linear in the number of customers. If the bu�ers are
unlimited (able to hold all arriving customers), then this would entail costs
unbounded above. The theory does not allow the controller to earn arbitrarily
large positive rewards. This is not a severe limitation in queueing control prob-
lems and other applications. For example, assume that the controller earns a
unit reward each time a customer is admitted to the system. If the number
of customers that can arrive in any slot is bounded, then the assumption will
hold. If the distribution on customer batch sizes is unbounded, then we may
allow the controller to earn a reward that is a function of the mean batch size.

We may de�ne a new reward structure by subtracting R from the rewards in
the original system. By so doing, the optimal policy will not be a�ected, and
it will be the case that all rewards are nonpositive. Let us assume that this has
already been done, so that for the rest of the chapter we make the following
assumption.

Assumption 5.1 We have r(x; a) � 0, for all x 2 X and a 2 A (x).

Note that to recover the average reward in the original setting, it is only nec-
essary to add R to W .

To motivate our approach, let us consider the situation when X is �nite. In
this case, it is well-known that there exist �0 2 (0; 1) and a stationary policy
� that is discount optimal for � 2 (�0; 1). Such a policy is called Blackwell

optimal, and it must also be average optimal. These claims are proved in the
chapter by Hordijk and Yushkevich in this volume; also see Sennott [37, Propo-
sition 6.2.3]. Note that in the general case, W (x) may not be constant. To
motivate the assumptions to be introduced in Section 3, we give the following
result. It was stated in [37, Proposition 6.4.1] for the cost minimization frame-
work, and the proof may be recast into the reward maximization framework.

Proposition 5.1 Let X be �nite. The following are equivalent:

(i) W (x) �W , for x 2 X.

(ii) There exists z 2 X and a �nite constant L such that jV (x; �)� V (z; �)j �
L, for all x 2 X and � 2 (0; 1).

(iii) Given y 2 X, there exists a �nite constant L such that jV (x; �)�V (y; �)j �
L, for all x 2 X and � 2 (0; 1).


