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Abstract: In this chapter we study Markov decision processes (MDPs) with
�nite state and action spaces. This is the classical theory developed since the
end of the �fties. We consider �nite and in�nite horizon models. For the �nite
horizon model the utility function of the total expected reward is commonly
used. For the in�nite horizon the utility function is less obvious. We consider
several criteria: total discounted expected reward, average expected reward and
more sensitive optimality criteria including the Blackwell optimality criterion.
We end with a variety of other subjects.
The emphasis is on computational methods to compute optimal policies for
these criteria. These methods are based on concepts like value iteration, policy
iteration and linear programming. This survey covers about three hundred
papers. Although the subject of �nite state and action MDPs is classical, there
are still open problems. We also mention some of them.

2.1 INTRODUCTION

2.1.1 Origin

Bellman's book [13], can be considered as the starting point of Markov decision
processes (MDPs). However, already in 1953, Shapley's paper [221] on stochas-
tic games includes as a special case the value iteration method for MDPs, but
this was recognized only later on. About 1960 the basics for the other compu-
tational methods (policy iteration and linear programming) were developed in
publications like Howard [121], De Ghellinck [42], D'Epenoux [55], Manne [164]
and Blackwell [27]. Since the early sixties, many results on MDPs are published
in numerous journals, monographs, books and proceedings. Thousands of pa-
pers were published in scienti�c journals. There are about �fty books on MDPs.
Around 1970 a �rst series of books was published. These books (e.g. Der-
man [58], Hinderer [107], Kushner [148], Mine and Osaki [167] and Ross [198])
contain the fundamentals of the theory of �nite MDPs. Since that time nearly
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every year one or more MDP-books appeared. These books cover special topics
(e.g. Van Nunen [250], Van der Wal [246], Kallenberg [134], Federgruen [69],
Vrieze [260], Hern�andez-Lerma [102], Altman [2] and Sennott [218]) or they
deal with the basic and advanced theory of MDPs (e.g. Bertsekas [15], Whit-
tle [289], [290], Ross [200], Dietz and Nollau [63], Bertekas [17], Denardo [50],
Heyman and Sobel [106], White [285], Puterman [186], Bertsekas [18], [19],
Hern�andez-Lerma and Lasserre [103], [104], and Filar and Vrieze [79].

2.1.2 The model

We will restrict ourselves to discrete, �nite Markovian decision problems, i.e.
the state space X and the action sets A (i); i 2 X, are �nite, and the decision time
points t are equidistant, say t = 1; 2; : : : . If, at time point t, the system is in
state i and action a 2 A (i) is chosen, then the following happens independently
of the history of the process:
(1) a reward r(i; a) is earned immediately;
(2) the process moves to state j 2 X with transition probability p(jji; a), where
p(jji; a)) � 0 and

P
j p(jji; a) = 1 for all i; j and a.

The objective is to determine a policy, i.e. a rule at each decision time point,
which optimizes the performance of the system. This performance is expressed
as a certain utility function. Such utility function may be the expected total
(discounted) reward over the planning horizon or the average expected reward
per unit time. The decision maker has to �nd the optimal balance between
immediate reward and future reward: a high immediate reward may bring the
process in a bad situation for later rewards.

In Chapter 1 several classes of policies are introduced: general policies, Markov
policies and stationary policies. There are randomized and nonrandomized
(pure) policies. Denote the set of pure stationary policies by F and a particular
policy of that set by f. Let X � A = f(i; a) j i 2 X; a 2 A (i)g, let the
random variables Xt and Yt denote the state and action at time t and let
IP�;�[Xt = j; Yt = a] be the notation for the probability that at time t the
state is j and the action is a, given that policy � is used and � is the initial
distribution. The next theorem shows that for any initial distribution �, any
sequence of policies �1; �2; : : : and any convex combination of the marginal
distributions of IP�;�k ; k 2 N, there exists a Markov policy with the same
marginal distribution.

Theorem 2.1 Given any initial distribution �, any sequence of policies �1,
�2; : : : and any sequence of nonnegative real numbers p1; p2 : : : with

P
kpk = 1;

there exists a Markov policy �� such that for every (j; a) 2 X� A

IP�;�� [Xt = j; Yt = a] =
X

k
pk � IP�;�k [Xt = j; Yt = a]; t 2 N: (1:1)

Corollary 2.1 For any starting state i and any policy �, there exists a Markov
policy �� such that

IPi;�� [Xt = j; Yt = a] = IPi;� [Xt = j; Yt = a]; t 2 N; (j; a) 2 X� A : (1:2)
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The results of Theorem 2.1 and Corollary 2.1 imply the suÆciency of Markov
policies for performance measures which only depend on the marginal distri-
butions. Corollary 2.1 is due to Derman and Strauch [61] and the extension
to Theorem 2.1 was given by Strauch and Veinott [237]. The result is fur-
ther generalized to more general state and actions spaces by Hordijk [112] and
Van Hee [247].

2.1.3 Optimality criteria

Let v(i; �) be the utility function if policy � is used and state i is the starting
state, i 2 X. The value vector v of this utility function is de�ned by

v(i) := sup
�
v(i; �); i 2 X: (1:3)

A policy � is an optimal policy if v(i; �) = v(i); i 2 X. In Markov decision
theory the existence and the computation of optimal policies is studied. For this
purpose a so-called optimality equation is derived, i.e. a functional equation for
the value vector. Then a solution of this equation is constructed which produces
both the value vector and an optimal policy. There are three standard methods
to perform this: value iteration, policy iteration and linear programming.

In value iteration the optimality equation is solved by successive approxima-
tion. Starting with some v0; vt+1 is computed from vt; t = 0; 1; : : : . The
sequence v0; v1; : : : converges to the solution of the optimality equation. In
policy iteration a sequence of improving policies f0; f1; : : : is determined, i.e.
v(ft+1) � v(ft) for all t, until an optimal policy is reached. The linear pro-
gramming method can be used because the value vector is the smallest solution
of a set of linear inequalities; an optimal policy can be obtained from its dual
program.

In this survey we consider the following utility functions:
(1) total expected reward over a �nite horizon;
(2) total expected discounted reward over an in�nite horizon;
(3) average expected reward over an in�nite horizon;
(4) more sensitive optimality criteria for the in�nite horizon.

Suppose that the system has to be controlled over a �nite planning horizon of
T periods. As performance measure we use the total expected reward over the
planning horizon, i.e. for policy � we will consider for starting state i

vT (i; �) :=
TX
t=1

IEi;� [r(Xt; Yt)] =
TX
t=1

X
j;a

IPi;�[Xt = j; Yt = a] � r(j; a): (1:4)

A matrix P = (pij) is called a transition matrix if pij � 0 for all (i; j)
and
P

j pij = 1 for all i. Markov policies, and consequently also station-
ary policies, induce transition matrices. For the randomized Markov policy
� = (�1; �2; : : : ) we de�ne, for every t 2 N, the transition matrix P (�t) by

[P (�t)]ij :=
X

a
p(jji; a)�t(i; a) for all i; j 2 X; (1:5)
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and the reward vector r(�t) by

ri(�
t) :=

X
a
�t(i; a)r(i; a) for all i 2 X (1:6)

Hence the total expected reward for the Markov policy � can be written in
vector notation as

vT (R) =
XT

t=1
P (�1)P (�2) � � �P (�t�1)r(�t): (1:7)

It can be shown that an optimal Markov policy �� = (f1� ; f
2
� ; : : : ; f

T
� ) exists,

where f t� is a pure decision rule 1 � t � T. The nonstationarity is due to the
�niteness of the planning horizon.

Next, we consider an in�nite planning horizon. In that case there is no unique
optimality criterion. Di�erent optimality criteria are meaningful: discounted
reward, total reward, average reward or more sensitive criteria.

The total expected �-discounted reward, given discount factor � 2 [0,1), initial
state i and policy �, is denoted by v�(i; �) and de�ned by

v�(i; �) :=
X1

t=1
IEi;�[�

t�1r(Xt; (Yt)]

=
X1

t=1
�t�1
X

j;a
IPi;�[Xt = j; Yt = a]r(j; a):

(1:8)

In section 1.3.1 it will be shown that there exists an optimal policy f 2 F and
that any stationary policy � satis�es

v�(�) =
X1

t=1
�t�1P (�)t�1r(�) = [I � �P (�)]�1r(�): (1:9)

When there is no discounting, i.e. the discount factor � equals 1, then|for
instance|we may consider the total expected reward and the average expected
reward criterion. In the total expected reward criterion the utility function is
limT!1

PT
t=1 IE[r(Xt; Yt)]. Without further assumptions, this limit can be

in�nite or the limsup can be unequal to the liminf. When the average reward
criterion is used, the limiting behavior of the expectation of 1

T

PT
t=1 r(Xt; Yt) is

considered. Since limT!1
1
T

PT
t=1IE[r(Xt; Yt)] or IE[limT!1

1
T

PT
t=1r(Xt; Yt)]

does not exist, in general, and interchanging limit and expectation may not be
allowed, there are four di�erent evaluation measures, which can be considered
for a given policy:
(a) the lower limit of the average expected reward:

�(i; �) := lim inf
T!1

1

T

XT

t=1
IEi;�[r(Xt; Yt)]; i 2 X; (1:10)

(b) the upper limit of the average expected reward:

�(i; �) := lim sup
T!1

1

T

XT

t=1
IEi;�[r(Xt; Yt)]; i 2 X; (1:11)
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(c) the expectation of the lower limit of the average reward:

 (i; �) := IEi;�[lim inf
T!1

1

T

XT

t=1
r(Xt; Yt)]; i 2 X; (1:12)

(d) the expectation of the upper limit of the average reward:

	(i; �) := IEi;� [lim sup
T!1

1

T

XT

t=1
r(Xt; Yt)]; i 2 X: (1:13)

Lemma 2.1
(i)  (�) � �(�) � �(�) � 	(�) for every policy �;
(ii)  (�) = �(�) = �(�) = 	(�) for every stationary policy �.

Remark
In Bierth [26] it is shown that the four criteria are equivalent in the sense that
the value vectors can be attained for one and the same deterministic policy.
Examples can be constructed in which for some policy � the inequalities of
Lemma 2.1 part (i) are strict.

The long-run average reward criterion has the disadvantage that it does not
consider rewards earned in a �nite number of periods. Hence, there may be
a preference for more selective criteria. There are several ways to be more
selective. One way is to consider discounting for discount factors that tend to
1. Another way is to use more subtle kinds of averaging. We will present some
criteria and results. For all criteria it can be shown that optimal policies in
class F exist and that these policies are (at least) average optimal.

A policy �� is called n-discount optimal for some integer n � � 1; if
lim inf�"1(1 � �)�n[v�(��) � v�(�)] � 0 for all policies �. 0-discount
optimality is also called bias-optimality. There is also the concept of n-average
optimality. For any policy �, any t 2 N and for n = �1; 0; 1; : : : , let the vector
vn;t(�) be de�ned by

vn;t(�) :=

�
vt(�) for n = �1Pt

s=1 v
n�1;s(�) for n = 0; 1 : : :

(1:14)

�� is said to be n-average optimal if lim infT!1
1
T
[vn;T (��)� vn;T (�)] � 0 for

all policies �.

A policy �� is said to be Blackwell optimal if �� is �-discounted optimal for
all discount factors � 2 [�0,1) for some 0 � �0 < 1. In a fundamental paper
Blackwell [27] presented a mathematically rigorous proof for the policy itera-
tion method to compute an �-discounted optimal policy. He also introduced
the concept of bias-optimality (Blackwell called it nearly optimality) and es-
tablished the existence of a discounted optimal policy for all discount factors
suÆciently close to 1. In honor of Blackwell, such policy is called a Blackwell
optimal policy.
It can be shown that n-discount optimality is equivalent to n-average opti-
mality, that (-1)-discount optimality is equivalent to average optimality, and
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that Blackwell optimality is n-discount optimality for all n � N � 1; where
N = #X (in this chapter we will always use the notation N for the number
of states).
The n-discount optimality criterion and the policy iteration method for �nding
an n-discount optimal policy, were proposed by Veinott [257]. He also showed
that Blackwell optimality is the same as n-discount optimality for n � N � 1:
Sladky [223] has introduced the concept of n-average optimality; furthermore,
he also showed the equivalence between this criterion and n-discount optimal-
ity. More details on bias optimality and Blackwell optimality can be found in
Chapter 3 and Chapter 8.

2.1.4 Applications

White has published three papers on `real applications' of Markov decision
theory (White [280], [281] and [284]). Many stochastic optimization problems
can be formulated as MDPs. In this section we shortly introduce the follow-
ing examples: routing problems, stopping and target problems, replacement
problems, maintenance and repair problems, inventory problems, the optimal
control of queues, stochastic scheduling and multi-armed bandit problems. In
this book there are also chapters on applications in �nance (Chapter 15) and in
telecommunication (Chapter 16). We also mention the contribution Chapter 17
on water reservoir applications.

Routing problems
In routing problems the problem is to �nd an optimal route through a net-
work. Well known is the shortest path problem. A shortest path problem in a
layered network can be formulated as an MDP over a �nite horizon. Another
application of this kind is the maximum reliability problem. In this network
the connections are unreliable: let pij be the probability of reaching node j
when the arc from node i to node j is chosen. The objective is to maximize the
probability of reaching a terminal node n when the process is started in some
node, say node 1. Results for a stochastic version of the shortest path prob-
lem can for instance be found in Bertsekas and Tsitsiklis [23]. The maximum
reliability problem is discussed in Roosta [194].

Optimal stopping problems
In an optimal stopping problem there are two actions in each state. The �rst
action is the stopping action and the second action corresponds to continue.
If we continue in state i, a cost ci is incurred and the probability of being in
state j at the next time point is pij . If the stopping action is chosen in state
i, then a �nal reward ri is earned and the process terminates. In an optimal
stopping problem, in each state one has to determine which action is chosen
with respect to the total expected reward criterion. This kind of problem often
has an optimal policy that is a so-called control limit policy.
The original analysis of optimal stopping problems appeared in Derman and
Sacks [60], and Chow and Robbins [36]. A dynamic programming approach can
be found in Breiman [28] who showed the optimality of a control limit policy.
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Target problems
In a target problem one wants to reach a distinguished state (or a set of states)
in some optimal way, where in this context optimal means, for instance, at
minimum cost or with maximum probability. The target states are absorbing,
i.e. there are no transitions to other states and the process can be assumed
to terminate in the target states. These target problems can be modeled as
MDPs with the total expected reward as optimality criterion. To the class
of target problems we may count the so-called �rst passage problem. In this
problem there is one target state and the objective is to reach this state (for the
�rst time) at minimum cost. A second class of target problems are gambling
problems (the gambler's goal is to reach a certain fortune N and the problem is
to determine a policy which maximizes the probability to reach this goal). For
more information about MDPs and gambling problems we refer to Chapter 13.
The �rst passage problem was introduced by Eaton and Zadeh [67] under the
name \pursuit problem". The dynamic programming approach was introduced
in Derman [56]. A standard reference on gambling is Dubins and Savage [64].
Dynamic programming approaches are given in Ross [199] and Dynkin [66].

Replacement problems
Consider an item which is in a certain state. The state of the item describes its
condition. Suppose that in each period, given the state of the item, the decision
has to be made whether or not to replace the item by a new one. When an
item of state i is replaced by a new one, the old item is sold at price si, a new
item is bought at price c, and the transition to the new state is instantaneous.
In case of nonreplacement, let pij be the probability that an item of state i
is at the beginning of the next period in state j, and suppose that ci is the
maintenance cost|during one period|for an item of state i. This problem can
be modeled as an MDP. It turns out that for the computation of an optimal
policy an eÆcient algorithm, with complexity O(N3), exists (see Gal [83]).
Next, we mention the model of deterioration with failure. In this model the
states are interpreted as `ages'. In state i there is a failure probability pi and,
when failure occurs, there is an extra cost fi and the item has to be replaced
by a new one. If there is no failure the next state is state i+1: It can be shown
that, under natural assumptions about the failure probabilities and the costs, a
control limit policy is optimal, i.e. there is an age i� and the item is replaced by
a new one if its age exceeds i�. This property holds for the discounted reward
criterion as well as for the average reward criterion.
There are a lot of references on replacement models. The early survey of
Sherif and Smith [222] contained already over 500 references. Results on the
optimality of control limit policies for replacement problems can be found in
Derman [57, 58], Kolesar [146], Ross [198] and Kao [138].

Maintenance and repair problems
In maintenance and repair problems there is a system which is subject to de-
terioration and failure. Usually, the state is a characterization of the condition
of the system. When the state is observed, an action has to be chosen, e.g.
to keep the system unchanged, to execute some maintenance or repair, or to
replace one or more components by new ones. Each action has corresponding
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costs. The objective is to minimize the total costs, the discounted costs or the
average costs. These problems can easily be modeled as an MDP.
A one-component problem is described in Klein [145]. The two-component
maintenance problem was introduced by Vergin and Scriabin [259]. Other
contributions in this area are e.g. Oezekici [173], and Van der Duyn Schouten
and Vanneste [244]. An n-component series system is discussed in Katehakis
and Derman [139]. Asymptotic results for highly reliable systems can be found
in Smith [226], Katehakis and Derman [140], and Frostig [81].

Inventory problems
In inventory problems an optimal balance between inventory costs and ordering
costs has to be determined. We assume that the probability distribution of the
demand is known. There are di�erent variants of the inventory problem. They
di�er, for instance, in the following aspects:
- stationary or nonstationary costs and demands;
- a �nite planning horizon or an in�nite planning horizon;
- backlogging or no backlogging.
For all these variants di�erent performance measures may be considered.
In many inventory models the optimal policy is of (s; S)-type, i.e. when the
inventory is smaller than or equal to s, then replenish the stock to level S. The
existence of optimal (s; S)-policies in �nite horizon models with �xed cost K is
based on the so-called K-convexity, introduced by Scarf [202]. The existence of
an optimal (s; S)-policy in the in�nite horizon model is shown by Iglehart [126].
Another related paper is Veinott [255]. For the relation between discounted and
average costs we refer to Hordijk and Tijms [119]. For the computation of the
values s and S we refer to papers like Federgruen and Zipkin [76], and Zheng
and Federgruen [292].

Optimal control of queues
Consider a queueing system where customers arrive according to a Poisson
process and where the service time of a customer is exponentially distributed.
Suppose that the arrival and service rates can be controlled by a �nite number
of actions. When the system is in state i, i.e. there are i customers in the
system, action a means that the arrival or the service rates are �i(a) or �i(a),
respectively. The arrival and service processes are continuous-time processes.
However, by the memoryless property of the exponential distribution, we can
�nd an embedded discrete-time Markov chain which is appropriate for our
analysis. This technique is called uniformization (see e.g. Tijms [241]).
A queue, or a network of queues, is a useful model for many applications, e.g.
manufacturing, computer, telecommunication and traÆc systems. See the sur-
vey of MDPs in telecommunication, Chapter 16. Control models can optimize
certain performance measures by varying the control parameters of the system.
We distinguish between admission control and service rate control.
In a service rate model, the service rate can be chosen from an interval [0; ��].
If rate � is chosen, there are service costs c(�) per period; we also assume that
there are holding costs h(i) per period when there are i customers in the system.
Under natural conditions it can be shown that a bang-bang policy is optimal, i.e.
� = 0 or � = ��. For details see Weber and Stidham [268]. Surveys of optimal
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control of (networks of) queues can be found in the book by Walrand [265] and
the papers by Stidham [234] and Stidham and Weber [235].

Stochastic scheduling
In a scheduling problem, jobs are processed on machines. Each machine can
process only one job at a time. A job has a given processing time on the
machines. In stochastic scheduling, these processing times are random vari-
ables. At certain time points decisions have to be made, e.g. which job is
assigned to which machine. There are two types of models: the customer as-
signment models, in which each arriving customer has to be assigned to one
of the queues (each queue with its own server) and server assignment models,
where the server has to be assigned to one of the queues (each queue has its
own customers).
Also in queueing models optimal policies often have a nice structure. Examples
of this structure are:
- �c-rule : this rule assigns the server to queue k, with k the queue with
�kck = maxif�ici j queue i is nonemptyg, where ci is the cost which is
charged per unit of time that the customer is in queue i and the service times
in queue i are geometrically distributed with rate �i;
- shortest queue policy (SQP): an arriving customer is assigned to the shortest
queue;
- longest expected processing time (LEPT): the jobs are allocated to the ma-
chines in decreasing order of their expected processing times;
- shortest expected processing time (SEPT): the jobs are allocated to the ma-
chines in increasing order of their expected processing times.
The optimality of the �c-rule is established in Baras, Ma and Makowsky [9].
Ephremides, Varayia and Walrand [68] have shown the optimality of the short-
est queue policy. The results for the optimality of the LEPT and SEPT policies
are due to Bruno, Downey and Frederickson [30]. Related results are obtained
by Weber [266] and by Chang, Hordijk, Righter and Weiss [33]. For reviews
on stochastic scheduling we refer to Weiss [269], Walrand [265] (chapter 8) and
Righter [193].

Multi-armed bandit problem
The multi-armed bandit problem is a model for dynamic allocation of a re-
source to one of n independent alternative projects. Any project may be in one
of a �nite number of states. At each period the decision maker has the option
of working on exactly one of the projects. When a project is chosen, the imme-
diate reward and the transition probabilities only depend on the active project
and the states of the remaining projects are frozen. Applications of this model
appear in machine scheduling, in the control of queueing systems and in the
selection of decision trials in medicine. It can be shown that an optimal policy
is the policy that selects the project which has the largest so-called Gittins-
index. Fortunately, these indices can be computed for each project separately.
As a consequence, the multi-armed bandit problem can be solved by a sequence
of n one-armed bandit problems. This is a decomposition result by which the
dimensionality of the problem is reduced considerably. EÆcient algorithms for
the computation of the Gittins indices exist. The most fundamental contri-
bution on multi-armed bandit problems was made by Gittins (cf. Gittins and
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Jones [86], and Gittins [85]). In Whittle [288] an elegant proof is presented.
Other proofs are given by Ross [200], Varaiya, Walrand and Buyoccoc [254],
Weber [267] and Tsitsiklis [243]. Several methods are developed for the com-
putation of the Gittins indices: Varaiya, Walrand and Buyukkoc [254], Chen
and Katehakis [35], Kallenberg [135], Katehakis and Veinott [141], Ben-Israel
and S.D.Fl�am [14], and Liu and Liu [155].

2.2 FINITE HORIZON

Consider an MDP with a �nite horizon of T periods. In fact, we can analyze
with the same e�ort a nonstationary MDP, i.e. with rewards and transition
probabilities which may depend on the time t (1 � t � T ). These nonstation-
ary rewards and transition probabilities are denotated by rt(i; a) and pt(jji; a).
By the principle of optimality, an optimal policy can be determined by back-
ward induction as the next theorem shows. The proof can be given by induction
on the length T of the horizon. The use of the principle of optimality and the
technique of dynamic programming for sequential optimization was provided
by Bellman [13].

Theorem 2.2 Let xT+1i = 0; i 2 X. Determine for t = T; T � 1; :::; 1 a pure
decision rule f t such that

[rt(f t)]i + [P (f t)xt+1]i = max
a2A(i)

frt(i; a) +
X

j
pt(jji; a) � xt+1j g; i 2 X;

and let xt = rt(f t) + P t(f t)xt+1. Then, R� = (f1; f2; :::; fT ) is an optimal
policy and x1 is the value vector.

If [rt(f t)]i+[P
t(f t)xt+1]i = maxa2A(i)fr

t(i; a)+
P

j p
t(jji; a)�xt+1j g; i 2 X, then

we denote rt(f t)+P t(f t)x = maxX�Afr
t+P txg and f t 2 argmax

X�A

frt + P txg.

Algorithm I (�nite horizon)

1. x := 0.

2. Determine for t = T; T � 1; : : : ; 1 :

f t 2 argmax
X�A

frt + P txg and x := rt(f t) + P t(f t)x:

3. R� := (f1; f2; : : : ; fT ) is an optimal policy and x is the value vector.

Remarks
1. It is also possible to include in this algorithm elimination of suboptimal
actions . Suboptimal actions are actions that will not occur in an optimal
policy. References are Hastings and Van Nunen [99] and H�ubner [124].
2. A �nite horizon nonstationary MDP can be transformed in an equivalent
stationary in�nite horizon model. In such an in�nite horizon model other
options, as the treatment of side constraints, also called additional constraints,
are applicable. These results can be found in Derman and Klein [59] and in
Kallenberg [131], [132].


