
14 NEURO-DYNAMIC

PROGRAMMING: OVERVIEW AND

RECENT TRENDS

Benjamin Van Roy

Abstract: Neuro-dynamic programming is comprised of algorithms for solving

large-scale stochastic control problems. Many ideas underlying these algorithms

originated in the �eld of arti�cial intelligence and were motivated to some extent

by descriptive models of animal behavior. This chapter provides an overview

of the history and state-of-the-art in neuro-dynamic programming, as well as

a review of recent results involving two classes of algorithms that have been

the subject of much recent research activity: temporal-di�erence learning and

actor-critic methods.

14.1 INTRODUCTION

In the study of decision-making, there is a dividing line between those who
seek an understanding of how decisions are made and those who analyze how
decisions ought to be made in the light of clear objectives. Among the former
group are psychologists and economists who examine participants of physical
systems in their full complexity. This often entails the consideration of both
\rational" and \irrational" behavior. The latter group|those concerned with
rational decision-making|includes engineers and management scientists who
focus on the strategic behavior of sophisticated agents with de�nite purposes.
The intent is to devise strategies that optimize certain criteria and/or meet
speci�c demands. The problems here are well-de�ned and the goal is to �nd a
\correct" way to make decisions, if one exists.

The self-contained character of rational decision problems has provided a
ground for the development of much mathematical theory. Results of this
work|as exempli�ed by previous chapters of this volume|provide an under-
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standing of various possible models of dynamics, uncertainties, and objectives,
as well as characterizations of optimal decision strategies in these settings. In
cases where optimal strategies do exist, the theory is complemented by com-
putational methods that deliver them.

In contrast to rational decision-making, there is no clear-cut mathematical
theory about decisions made by participants of natural systems. Scientists are
forced to propose speculative theories, and to re�ne their ideas through ex-
perimentation. In this context, one approach has involved the hypothesis that
behavior is in some sense rational. Ideas from the study of rational decision-
making are then used to characterize such behavior. In �nancial economics, this
avenue has lead to utility and equilibrium theory. To this day, models arising
from this school of economic thought|though far from perfect|are employed
as mainstream interpretations of the dynamics of capital markets. The study
of animal behavior presents another interesting case. Here, evolutionary theory
and its popular precept|\survival of the �ttest"|support the possibility that
behavior to some extent concurs with that of a rational agent.

There is also room for reciprocal contributions from the study of natural
systems to the science of rational decision-making. The need arises primar-
ily due to the computational complexity of decision problems and the lack of
systematic approaches for dealing with it. For example, practical problems
addressed by the theory of dynamic programming can rarely be solved using
dynamic programming algorithms because the computational time required for
the generation of optimal strategies typically grows exponentially in the num-
ber of variables involved|a phenomenon known as the curse of dimensionality.
This de�ciency calls for an understanding of suboptimal decision-making in the
presence of computational constraints. Unfortunately, no satisfactory theory
has been developed to this end.

It is interesting to note that similar computational complexities arise in at-
tempts to automate decision tasks that are naturally performed by humans or
animals. The fact that biological mechanisms facilitate the eÆcient synthesis of
adequate strategies motivates the possibility that understanding such mecha-
nisms can inspire new and computationally feasible methodologies for strategic
decision-making.

Over the past two decades, algorithms of reinforcement learning|originally
conceived as descriptive models for phenomena observed in animal behavior{
have grown out of the �eld of arti�cial intelligence and been applied to solving
complex sequential decision problems. The success of reinforcement learning al-
gorithms in solving large-scale problems has generated excitement and intrigue
among operations researchers and control theorists, and much subsequent re-
search has been devoted to understanding such methods and their potential.
Developments have focused on a normative view, and to acknowledge the rel-
ative disconnect from descriptive models of animal behavior, some operations
researchers and control theorists have come to refer to this area of research as
neuro-dynamic programming, instead of reinforcement learning.

In this chapter, we provide a sample of recent developments and open issues
at the frontier of research in neuro-dynamic programming. Our two points
of focus are temporal-di�erence learning and actor-critic methods|two algo-
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rithmic ideas that have found greatest use in applications of neuro-dynamic
programming and for which there has been signi�cant theoretical progress in
recent years. We begin, though, with three sections providing some background
and perspective on the methodology and problems that may address.

14.2 STOCHASTIC CONTROL

As a problem formulation, let us consider a discrete-time dynamic system that,
at each time t, takes on a state xt and evolves according to

xt+1 = f(xt; at; wt);

where wt is a disturbance and at is a control decision. Though more general
(in�nite/continuous) state spaces can be treated, to keep the exposition simple,
we restrict attention to �nite state, disturbance, and control spaces, denoted by
X, W , and A , respectively. Each disturbance wt 2 W is independently sampled
from some �xed distribution.

A function r : X � A 7! IR associates a reward r(xt; at) with a decision at
made at state xt. A stationary policy is a mapping � : X 7! A that generates
state-contingent decisions. For each stationary policy �, we de�ne a value
function v(�; �) : X 7! IR by

v(x; �) = IE

"
1X
t=0

�tr(xt; �(xt))
���x0 = x

#
;

where � 2 [0; 1) is a discount factor and the state sequence is generated accord-
ing to x0 = x and xt+1 = f(xt; �(xt); wt). Each v(x; �) can be interpreted as
an assessment of long term rewards given that we start in state x and control
the system using a stationary policy �. The optimal value function V is de�ned
by

V (x) = max
�

v(x; �):

A standard result in dynamic programming states that any stationary policy
�� given by

��(x) = argmax
a2A

IE
w

h
r(x; a) + �V (f(x; a; w))

i
;

where IE
w
[�] denotes expectation with respect to the distribution of disturbances,

is optimal in the sense that

V (x) = v(x; ��);

for every state x (see, e.g. [8]).
For illustrative purposes, let us provide one example of a stochastic control

problem.

Example 14.1 The video arcade game of Tetris can be viewed as an instance
of stochastic control (we assume that the reader is familiar with this popular
game). In particular, we can view the state xt as an encoding of the current
\wall of bricks" and the shape of the current \falling piece." The decision at


