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Abstract: This chapter is concerned with the Linear Programming (LP) ap-
proach to MDPs in general Borel spaces, valid for several criteria, including the
�nite horizon and long run expected average cost, as well as the in�nite horizon
expected discounted cost.

12.1 INTRODUCTION

In this chapter we study the linear programming (LP) approach to Markov
decision problems and our ultimate goal is to show how a Markov decision
problem (MDP) can be approximated by �nite linear programs.

The LP approach to Markov decision problems dates back to the early sixties
with the pioneering work of De Ghellinck [10], d'Epenoux [11] and Manne [30]
for MDPs with �nite state and action spaces. Among later contributions for
�nite or countable state and action MDPs, let us mention Altman [1], Borkar
[8], [9], Denardo [12], Kallenberg [28], Hordijk and Kallenberg [25], Hordijk
and Lasserre [26], Lasserre [29], and for MDPs in general Borel spaces and in
discrete or continuous time, Bhatt and Borkar [7], Haneveld [13], Heilmann [14],
[15], Hern�andez-Lerma and Gonz�alez-Hern�andez [16], Hernandez-Lerma and
Lasserre [19], [21], Mendiondo and Stockbridge[31], Stockbridge [39], Yamada
[42].

Among the nice features of the LP approach, the most evident is that it
is valid in a very general context. For instance, for the long-run expected
average cost (AC) problem, one does not need to assume that the Average Cost
Optimality Equation (ACOE) holds, a restrictive assumption. Under weak
hypotheses, one obtains the existence of a stationary optimal policy (possibly
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on a subset S of the state space). The LP approach permits to identify this
set S which is an ergodic class of minimum expected average-cost. Getting an
expected AC optimal policy for all initial states (for the unichain case as well
as the multichain case) requires much stronger assumptions. However, the LP
approach is still possible via the introduction of additional variables. Also, it
permits to handle some constrained MDPs in a very natural form. Finally,
it is possible to devise simple convergent numerical approximation schemes
that require to solve �nite LPs for which eÆcient codes are now available.
However, if convergence to the optimal value is obtained, it remains to devise a
convergent approximation scheme for policies, as done in alternative methods
like for instance in Hern�andez-Lerma [17] or Sennott [37], [38] for control of
queues.

Let us briey outline one simple way to see how the LP approach can be
naturally introduced, although it was not the idea underlying the �rst papers on
the LP approach to MDPs. The starting point is to observe that given a policy
� 2 �, an initial distribution � and a one-step cost function c : X � A ! IR,
the �nite-horizon functional

J(�; �;N; 1; c) := N�1E�
�

N�1X
t=0

c(xt; at);

can be written as a linear functional
R
cd�

�;�

N with �
�;�

N the expected (state-
action) occupation measure

�
�;�

N (B) := N�1E�
�

N�1X
t=0

1f(xt; at) 2 Bg; B 2 B(X� A ):

Under some conditions, and with some limiting arguments as N !1, one may
show that, for instance, minimizing the long-run expected average cost criterion
(the AC problem) reduces to solving a linear program. More precisely, the AC
problem reduces to minimize the linear criterion

R
cd� over a set of probability

measures � on X�A that satisfy some linear \invariance" constraints involving
the transition kernel P . This approach for MDPs is of course related to the
Birkho� Individual Ergodic Theorem (for noncontrolled Markov chains) which
states that given a homogeneous Markov chain Xt, t = 0; 1; : : : on X, a cost
function c : X! IR, and under some conditions,

lim
N!1

N�1E�

N�1X
t=0

c(Xt) =

Z
cd�� ;

for some invariant probability measure �� .
However, we should note that the �rst papers on the LP approach to MDPs

used a di�erent (in fact, dual) approach. Namely, the LP formulation was a
rephrasing of the average (or discounted)-cost optimality equations. We briey
discuss this approach in Remark 12.5 that yields a dual linear program.

Although the LP approach is valid for several criteria, including the N -step
expected total cost, the in�nite-horizon expected discounted cost, the con-
trol up to an exit time, the long-run expected average cost, the constrained
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discounted and average cost problems, we have chosen to illustrate the LP
approach with the AC problem. With ad hoc suitable modi�cations and ap-
propriate assumptions, the reader would easily deduce the corresponding linear
programs associated with the other mentioned problems. For instance, with
respect to constrained MDPs, the reader is referred to Huang and Kurano [27],
Altman [1], Piunovskiy [33] and Hern�andez-Lerma and Gonzalez-Hern�andez
[18]. Similarly, for multiobjective MDPs, see for instance, Hern�andez-Lerma
and Romera [23].

We shall �rst proceed to �nd a suitable linear program associated to the
Markov decision problem. Here, by a \suitable" linear program we mean a
linear program (P) that together with its dual (P�) satis�es that

sup(P�) � (MDP)� � inf(P); (12.1)

where (using terminology speci�ed in the following section)

inf(P) := value of the primal program (P),

sup(P�) := value of the dual program (P�),

(MDP)� := value function of the Markov decision problem:

In particular, if there is no duality gap for (P), so that

sup(P�) = inf(P); (12.2)

then of course the values of (P) and of (P�) yield the desired value function
(MDP)�.

However, to �nd an optimal policy for the Markov decision problem, (12.1)
and (12.2) are not suÆcient because they do not guarantee that (P) or (P�)
are solvable. If it can be ensured that, say, the primal (P) is solvable|in which
case we write its value as min (P)|and that

min(P) = (MDP)�; (12.3)

then an optimal solution for (P) can be used to determine an optimal policy
for the Markov decision problem. Likewise, if the dual (P�) is solvable and its
value|which in this case is written as max (P�)|satis�es

max(P�) = (MDP)�; (12.4)

then we can use an optimal solution for (P�) to �nd an optimal policy for the
Markov decision problem. In fact, one of the main results in this chapter (The-
orem 12.6) gives conditions under which (12.3) and (12.4) are both satis�ed,
so that in particular strong duality for (P) holds, that is,

max(P�) = min(P): (12.5)

Section 12.2 presents background material. It contains, in particular, a
brief introduction to in�nite LP. In Section 12.3 we introduce the program (P)
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associated to the AC problem, and we show that (P) is solvable and that there
is no duality gap, so that (12.2) becomes

sup(P�) = min(P):

Section 12.4 deals with approximating sequences for (P) and its dual (P�). In
particular, it is shown that if a suitable maximizing sequence for (P�) exists,
then the strong duality condition (12.5) is satis�ed. Section 12.5 presents an
approximation scheme for (P) using �nite-dimensional programs. The scheme
consists of three main steps. In step 1 we introduce an \increasing" sequence
of aggregations of (P), each one with �nitely many constraints. In step 2 each
aggregation is relaxed (from an equality to an inequality), and, �nally, in step 3,
each aggregation-relaxation is combined with an inner approximation that has
a �nite number of decision variables. Thus the resulting aggregation-relaxation-
inner approximation turns out to be a �nite linear program, that is, a program
with �nitely many constraints and decision variables. The corresponding con-
vergence theorems are stated without proof, and the reader is referred to [21]
and [22] for proofs and further technical details. These approximation schemes
can be extended to a very general class of in�nite-dimensional linear programs
(as in [20]), not necessarily related to MDPs.

12.2 LINEAR PROGRAMMING IN INFINITE-DIMENSIONAL SPACES

The material is divided into four subsections. The �rst two subsections review
some basic de�nitions and facts related to dual pairs of vector spaces and
linear operators whereas the last two subsections summarize the main results
on in�nite LP needed in later sections.

12.2.1 Dual pairs of vector spaces

Let X and Y be two arbitrary (real) vector spaces, and let h�; �i be a bilinear
form on X � Y , that is, a real-valued function on X � Y such that

the map x 7! hx; yi is linear on X for every y 2 Y , and

the map y 7! hx; yi is linear on Y for every x 2 X .

Then the pair (X ;Y) is called a dual pair if the bilinear form \separates
points" in x and y, that is,

for each x 6= 0 in X there is some y 2 Y with hx; yi 6= 0, and

for each y 6= 0 in Y there is some x 2 X with hx; yi 6= 0.

If (X ;Y) is a dual pair, then so is (Y ;X ).
If (X1;Y1) and (X2;Y2) are two dual pairs of vector spaces with bilinear

forms h�; �i1 and h�; �i2, respectively, then the product (X1 � X2;Y1 � Y2) is
endowed with the bilinear form

h(x1; x2); (y1; y2)i := hx1; y1i1 + hx2; y2i2: (12.6)


