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1 Introduction

In the study of decision—making, there is a dividing line between those who seek an understanding
of how decisions are made and those who analyze how decisions ought to be made in the light of clear
objectives. Among the former group are psychologists and economists who examine participants of
physical systems in their full complexity. This often entails the consideration of both “rational” and
“irrational” behavior. The latter group — those concerned with rational decision—making — includes
engineers and management scientists who focus on the strategic behavior of sophisticated agents
with definite purposes. The intent is to devise strategies that optimize certain criteria and/or meet
specific demands. The problems here are well-defined and the goal is to find a “correct” way to
make decisions, if one exists.

The self—contained character of rational decision problems has provided a ground for the devel-
opment of much mathematical theory. Results of this work — as exemplified by previous chapters
of this volume — provide an understanding of various possible models of dynamics, uncertainties,
and objectives, as well as characterizations of optimal decision strategies in these settings. In cases
where optimal strategies do exist, the theory is complemented by computational methods that de-
liver them.

In contrast to rational decision—making, there is no clear-cut mathematical theory about deci-
sions made by participants of natural systems. Scientists are forced to propose speculative theories,
and to refine their ideas through experimentation. In this context, one approach has involved the
hypothesis that behavior is in some sense rational. Ideas from the study of rational decision—making
are then used to characterize such behavior. In financial economics, this avenue has lead to utility
and equilibrium theory. To this day, models arising from this school of economic thought — though
far from perfect — are employed as mainstream interpretations of the dynamics of capital markets.
The study of animal behavior presents another interesting case. Here, evolutionary theory and its
popular precept — “survival of the fittest” — support the possibility that behavior to some extent
concurs with that of a rational agent.

There is also room for reciprocal contributions from the study of natural systems to the science
of rational decision—making. The need arises primarily due to the computational complexity of
decision problems and the lack of systematic approaches for dealing with it. For example, practical
problems addressed by the theory of dynamic programming can rarely be solved using dynamic
programming algorithms because the computational time required for the generation of optimal
strategies typically grows exponentially in the number of variables involved — a phenomenon known
as the curse of dimensionality. This deficiency calls for an understanding of suboptimal decision—
making in the presence of computational constraints. Unfortunately, no satisfactory theory has been
developed to this end.

It is interesting to note that similar computational complexities arise in attempts to automate
decision tasks that are naturally performed by humans or animals. The fact that biological mech-
anisms facilitate the efficient synthesis of adequate strategies motivates the possibility that under-
standing such mechanisms can inspire new and computationally feasible methodologies for strategic
decision—making.

Over the past two decades, algorithms of reinforcement learning — originally conceived as descrip-
tive models for phenomena observed in animal behavior — have grown out of the field of artificial
intelligence and been applied to solving complex sequential decision problems. The success of rein-
forcement learning algorithms in solving large—scale problems has generated excitement and intrigue
among operations researchers and control theorists, and much subsequent research has been devoted



to understanding such methods and their potential. Developments have focused on a normative view,
and to acknowledge the relative disconnect from descriptive models of animal behavior, some opera-
tions researchers and control theorists have come to refer to this area of research as neuro—dynamic
programming, instead of reinforcement learning.

In this chapter, we provide a sample of recent developments and open issues at the frontier of
research in neuro—dynamic programming. Our two points of focus are temporal—difference learning
and actor—critic methods — two algorithmic ideas that have found greatest use in applications of
neuro—dynamic programming and for which there has been significant theoretical progress in recent
years. We begin, though, with three sections providing some background and perspective on the
methodology and problems it may address.

2 Stochastic Control

As a problem formulation, let us consider a discrete-time dynamic system that, at each time ¢, takes
on a state x; and evolves according to

Tip1 = f(@g, ug, w),

where w; is a disturbance and wu; is a control decision. Though more general (infinite/continuous)
state spaces can be treated, to keep the exposition simple, we restrict attention to finite state,
disturbance, and control spaces, denoted by S, W, and U, respectively. Each disturbance wy € W
is independently sampled from some fixed distribution.

A function g : S x U — R associates a reward g(x;, us) with a decision u; made at state ;. A
policy is a mapping p : S — U that generates state—contingent decisions. For each policy p, we
define a value function J* : S — R by

Jt(z) =E lz atg(a:t,u(wt))‘xo = a:] ,

t=0

where a € [0,1) is a discount factor and the state sequence is generated according to o = = and
Zer1 = f(@e, w(xt), we). Each J#(z) can be interpreted as an assessment of long term rewards given
that we start in state x and control the system using a policy u. The optimal value function J* is
defined by

J*(z) = max JH(z).

A standard result in dynamic programming states that any policy u* given by

p(x) = axgmax [g(r, u) + " (f (@, u,0)]

where E[-] denotes expectation with respect to the distribution of disturbances, is optimal in the
w

sense that

BertsekasDP
for every state z (see, e.g., .

For illustrative purposes, let us provide one example of a stochastic control problem.

T (2) = J* (),



Example 1 The video arcade game of Tetris can be viewed as an instance of stochastic control (we
assume that the reader is familiar with this popular game). In particular, we can view the state x: as
an encoding of the current “wall of bricks” and the shape of the current “falling piece.” The decision
uy identifies an orientation and horizontal position for placement of the falling piece onto the wall.
Though the arcade game employs a more complicated scoring system, consider for simplicity a reward
g(x¢,ug) equal to the number of rows eliminated by placing the piece in the position described by uy.
Then, a policy p that mazimizes the value

JH(z)=E lz atg(:ct,u(:ct))‘xo = :c] ;

t=0

essentially optimizes a combination of present and future row elimination, with decreasing emphasis
placed on rows to be eliminated at times farther into the future.

Classical dynamic programming algorithms compute the optimal value function J*. The result
is stored in a “look-up” table with one entry J*(z) per state z € S. When the need arises, the
value function is used to generate optimal decisions. In particular, given a current state z; € S, a
decision wu; is selected according to

uy = argmax B [g(xt,u) + aJ*(f(a:t,u,w))].
uelU W

3 Control of Complex Systems

Our primary interest is in the development of a methodology for the control of “complex systems.”
It is difficult to provide a precise definition for this term, but let us mention two characteristics that
are common to such systems: an intractable state space and severe nonlinearities. Intractable state
spaces preclude the use of classical dynamic programming algorithms, which compute and store
one numerical value per state. At the same time, methods of traditional linear control, which are
applicable even when state spaces are large, are ruled out by severe nonlinearities. To give a better
feel for the types of problems we have in mind, let us provide a few examples.

1. Call Admission and Routing

With rising demand in telecommunication network resources, effective management is as im-
portant as ever. Admission (deciding which calls to accept/reject) and routing (allocating links
in the network to particular calls) are examples of decisions that must be made at any point
in time. The objective is to make the “best” use of limited network resources. In principle,
such sequential decision problems can be addressed by dynamic programming. Unfortunately,
the enormous state spaces involved render dynamic programming algorithms inapplicable, and
heuristic control strategies are used in lieu.

2. Strategic Asset Allocation
Strategic asset allocation is the problem of distributing an investor’s wealth among assets in
the market in order to take on a combination of risk and expected return that best suits the
investor’s preferences. In general, the optimal strategy involves dynamic rebalancing of wealth
among assets over time. If each asset offers a fixed rate of risk and return, and some additional
simplifying assumptions are made, the only state variable is wealth, and the problem can be



solved efficiently by dynamic programming algorithms. L}}(%g% Jre even closed form solutions

in cases involving certain types of investor preferences . However, in the more re irsetigang_,
situation involving risks and returns that fluctuate with economic conditions (see, e.g., ,
economic indicators must be taken into account as state variables, and this quickly leads to

an intractable state space.

3. Supply—Chain Management

With today’s tight vertical integration, increased production complexity, and diversification,
the inventory flow within a corporation can be viewed as a complex network — called a supply
chain — consisting of storage, production, and distribution sites. In a supply chain, raw
materials and parts from external vendors are processed through several stages to produce
finished goods. Finished goods are then transported to distributors, then to wholesalers, and
finally retailers, before reaching customers. The goal in supply—chain management is to achieve
a particular level of product availability while minimizing costs. The solution is a policy that
decides how much to order or produc%aﬁ%iyarious sites given the present state of the company
and the operating environment. See and references therein for further discussion of this
problem.

4. Emissions Reductions

The threat of global warming that may result from accumulation of carbon dioxide and other
“greenhouse gasses” poses a serious dilemma. In particular, cuts in emission levels bear a
detrimental short—term impact on economic growth. At the same time, a depleting environ-
ment can severely hurt the economy — especially the agricultural sector — in the longer term.
To complicate the matter further, scientific evidence on the relationship between emission
levels and global warming is inconclusive, leading to uncertainty about the benefits of various
cuts. One systematic approach to considering these conflicting goals involves the formulation
of a dynamic system model tha o(]ir icagisl&(as our understanding of economic growth and envi-
ronmental science, as is done in 238 . Given such a model, the design of environmental policy
amounts to dynamic programming. Unfortunately, classical algorithms are inapplicable due
to the size of the state space.

5. Semiconductor Wafer Fabrication
The manufacturing floor at a semiconductor wafer fabrication facility is organized into service
stations, each equipped with specialized machinery. There is a single stream of jobs arriving
on a production floor. Each job follows a deterministic route that revisits the same station
multiple times. This leads to a scheduling problem where, at any time, each station pust gsrglect
a job to service such that (long term) production capacity is maximized (see, e.g., [31]). Such
a system can be viewed as a special class of queueing networks, which are models suitable for a
variety of applications in manufacturing, telecommunications, and computer systems. Optimal

control of queueing networks is notoriously difficult, anii athiisi Jeputation is strengthened by

formal characterizations of computational complexity in .

For complex systems as those we have described, state spaces are intractable. This is a con-
sequence of the “curse of dimensionality” — that is, the fact that state spaces generally grow ex-
ponentially in the number of state variables. For example, in a queueing network, every possible
configuration of queues corresponds to a different state, and therefore, the number of states increases
exponentially with the number of queues involved. For this reason, it is essentially impossible to



compute (or even store) one value per state, as is required by classical dynamic programming algo-
rithms.

There is an additional shortcoming of classical dynamic programming algorithms that is worth
mentioning here — that the computations they carry out require use of transition probabilities. For
many complex systems, such probabilities are not readily accessible. On the other hand, it is often
easier to develop a simulator for the system that generates sample trajectories, as is commonly done
to test performance of particular decision policies.

Neuro-dynamic programming algorithms aim at overcoming both deficiencies of classical algo-
rithms. The curse of dimensionality is conquered through use of parameterized function approx-
imators that approximate the value function in a spirit similar to statistical regression. At the
same time, these algorithms rely on output generated by simulators, rather than explicite transition
probabilities, in their computation.

4 Value Function Approximation

The intractability of state spaces calls for value function approximation. There are two impor-
tant preconditions for the development of an effective approximation. First, we need to choose a
parameterization J : S x ®K +— R that yields a good approximation

J(z,r) = J* (),

for some setting of the parameter vector r € K. In this respect, the choice of a suitable parame-
terization requires some practical experience or theoretical analysis that provides rough information
about the shape of the function to be approximated. Second, we need algorithms for computing
appropriate parameter values, such as those studied in neuro—dynamic programming.

Though more general classes of parameterizations have been used in neuro—dynamic program-
ming, to keep the exposition simple, let us focus on linear parameterizations, which take the form

J(@,r) =Y (k)i (),

k=1
where ¢1,...,¢x are “basis functions” mapping S to ® and r = (r(1),...,r7(K))" is a vector of
scalar weights. In a spirit similar to that of statistical regression, the basis functions ¢y, ..., ¢x

are selected by a human user based on intuition or analysis specific to the problem at hand. One
interpretation that is useful for the construction of basis functions involves viewing each function ¢y
as a “feature” — that is, a numerical value capturing a salient characteristic of the state that may be
pertinent to effective decision making. This general idea is probably best illustrated by a concrete
example.

Example 2 In our stochastic control formulation of Tetris, the state is an encoding of the current
wall configuration and the current falling piece. There are clearly too many states for exact dynamic
programming algorithms to be applicable. However, we may believe that most information relevant
to game—playing decisions can be captured by a few intuitive features. In particular, one feature, say
@1, may map states to the height of the wall. Another, say ¢, could map states to a measure of
“jaggedness” of the wall. A third might provide a scalar encoding of the type of the current falling



piece (there are seven different shapes in the arcade game). Given a collection of such features, the
next task is to select weights r(1),...,7(K) such that

> (k)i (x) = J*(x),
k=1

for all states z. This approzimation could thep be used to generate a game-playing strategy. Such
an approach to Tetris has been developed in|[56] and[[9]. In the latter reference, with 22 features, the
authors are able to generate a strategy that eliminates an average of 3554 rows per game, reflecting
performance comparable to that of an expert player.

5 Temporal-Difference Learning

In this section, we introduce temporal—difference learning as applied to tuning basis function weights
in autonomous and controlled systems. Our presentation is not mathematically rigorous. Instead,
emphasis is placed on conveying ideas and results at an intuitive level. More detailed discussions
and mathematical analyses can be found in cited references.

5.1 Autonomous Systems

Let us begin by considering an autonomous process

Ti41 = f(xt;wt)y

and aim at approximating a value function

=E li atg(xt)‘xo = a:] ,

where g(x) is a scalar reward associated with state 2 and a € [0,1) is a discount factor. Note
that this setting is equivalent to one where we are dealing with a controlled system and wish to
approximate the value function J# corresponding to a fixed policy u.

Let ¢1,...,dx be a collection of basis functions, and let J : S x RE — R be defined by

T(@,r) =Y r(k)du(z)
k=1

Suppose that we observe a sequence of states xg, T1,Z2,... and that at time ¢ the weight vector has
been set to some value r,. We define the temporal difference d; corresponding to the transition from
It to Ti41 by 5 5

dy = g(z1) + aJ (Tey1,7¢) — J (T4, 71)-

Then, given an arbitrary initial weight vector rg, the temporal-difference learning algorithm gener-
ates subsequent weight vectors according to

rip1 = e + Yede 2,



where 7; is a scalar step size, and z; € RE is an eligibility vector defined by

t

2t = Z(O"\)t_qu(xT):

7=0

where ¢(z) = (¢1(),...,dk(x))". The parameter A takes on values in [0, 1], and to emphasize its
presence, the temporal-difference learning is often referred to as TD(A). Note that the eligibility
vectors can be recursively updated according to

241 = a)\zt + ¢($t+1)-

Let us provide one (heuristic) interpretation of the algorithm. Note that the temporal difference
d¢ can be viewed as a difference between two predictions of future rewards:

T—t

1. J(xg,r) is a prediction of Y2, a" tg(z,) given our current approximation J(-,7¢) to the

value function.

2. g(xt) + aJ(ze41,7¢) is an “improved prediction” that incorporates knowledge of the reward
g(x¢) and the next state z;41.

Roughly speaking, the learning process tries to make predictions J (x¢,7¢) consistent with their
improved versions. Note that ¢(z;) = V,.J(x¢,7). Consequently, when A = 0, the update can be
rewritten as

Te41 = T¢ + ’)’tvrj(.’lit,f‘t)(g(.’lft) + Otj(.’IIH_l,?"t) — j(wt,rt)).

The gradient can be viewed as providing a direction for the adjustment of r; such that J (x,71)
moves towards the improved prediction. In the more general case of A € [0, 1], the direction of the
adjustment is determined by the eligibility vector z; = Zizo (aN)! 7V, J(2,,r;). Here, each gradi-
ent term in the summation corresponds to one of the previous states, and the temporal difference
can be viewed as “triggering” adjustments of all previous predictions. The powers of a account for
discounting effects inherent to the problem, while the powers of A influence the “credit assignment” —
that is, the amounts by which previous predictions are to be adjusted based on the current temporal
difference.

A sizable literature addresses the dypamics of temporal difference methods in fhe context afan o o0

&,utonggllg%s’parn%%%% Examples include [47, 16, 17, 23, 41,756, 60]. The most recent of these results

Sits1
[56, 60] state that, under appropriate technical conditions:

1. For any A € [0,1], there exists a vector M such that the sequence r; generated by the
algorithm converges (with probability one) to 7).

2. The limit of convergence r*) satisfies

* 1 * *
|7* — &rM||, < ﬁ”ﬂj |

where (1)
all —

el AV

1 - =@



the norm || - || is defined by

1/2
1 71lx = (Z W(x)f"(m)) ;

z€eS

with 7 being the invariant distribution of the process, and the matrix II projects onto the span
of ¢1,...,¢x with respect to || - || -

These results imply that the iterates ¢ converge to some r(»). Furthermore, ®r(*) provides an
approximation to J* in a sense that we will now describe. The term |[IIJ* — J*|| represents the
error associated with the projection IIJ*. By the projection theorem, this error is minimal (if we
are constrained to selecting approximations within the span of ¢y, ..., ¢x). The bound state above
therefore establishes that the error associated with ®r(*) is within a constant factor of the best
possible.

5.2 Controlled Systems

The algorithm described in the previous section involves simulating a system and updating weights of
an approximate value function based on observed state transitions. Unlike an autonomous system,
a controlled system cannot be passively simulated and observed. Control decisions are required
and influence the system’s dynamics. In this section, we discuss extensions of temporal-difference
learning to this context. The objective is to approximate the optimal value function of a controlled
system.

5.2.1 Approximate Policy Iteration

A well-known result in dynamic programming is that, given a value function J# corresponding to
a policy u, an improved policy &z can be defined by

o(z) = argérll]ax]liuj [g(a:,u) + aJ”(f(a:,u,w))].

In particular, J#(x) > J#(z) for all z € S. Furthermore, a sequence of policies {u,|m =0,1,2,...}
initialized with some arbitrary po and updated according to

pom11(z) = argmaxE [g(z,u) + o ( (@, u,w))].
uelU w

converges to an optimal policy p*. This iterative method for generating an op 'owillmﬂlicy constitutes
policy iteration, a classical dynamic programming algorithm due to Howard

As with other dynamic programming algorithms, policy iteration suffers from the curse of di-
mensionality. In particular, each value function J*™ generated during the course of the algorithm
can not be efficiently computed or stored. A possible approach to overcoming such limitations
involves approximating each iterate J#™ in terms of a weighted combination of basis functions.
For instance, letting ¢1,...,dx be a set of basis functions and letting J(z,r) = Zszl r(k)or(x),
consider generating a sequence of weight vectors r', 72, ... by selecting each »™*! such that

J(z,r™ ) x Jhm (1),



where jig is an arbitrary initial policy and for m = 1,2,3,.. .,

fim(x) = argmax E [g(a:,u) + aJ(f(w,u,w),rm)].
uelU w
We will refer to such an algorithm as approzimate policy iteration.

There is one key component missing in our description of approximate policy iteration — a method
for generating each iterate r™. The possibility we have in mind is, of course, temporal-difference
learning. In particular, we can apply the temporal-difference learning algorithm to the autonomous
system resulting from simulation of the controlled system under a fixed policy fi,,. (The dynamics
are described by 441 = f(¢, fim(2¢), w;).) Initializing with r§*t? = r™ the algorithm would
generate a sequence of vectors T{”H,rg” 1,r§”+1, ... that converges. The limiting vector provides
the subsequent iterate r™t!.

To clarify the interplay between the two types of iterations involved in approximate policy
iteration, let us note that we have nested sequences:

e An “external” sequence is given by r%,r!, 72, ...

e For each m =1,2,3,..., an “internal” sequence is given by »3*,r{*, 75, ...
For each m, the internal sequence is initialized with 7‘6"“ = r™ and the limit of convergence becomes

the next element r™1! of the external sequence.

T\Frgéferk%rsrﬁjﬁ,s of approximate policy iteration are not very well understood. However a result

from 0 some extent motivates its use. The result states that, if there exists some € > 0 such
that
max [(®r™)(z) — JFm1(z)| <,
z€S
for all m, then
lim sup max |(®r™)(z) — J*(z)| < ﬂ.
m—oo ZTES - (1 - 0[)2

In other words, if each of the policy evaluations errs by no more than € per component, approximate
value iteration eventually comes within a constant factor of € from the optimal value function.

5.2.2 Controlled TD

Any function J : S — R can be used to generate a policy

pl(z) = argmaxE [g(w,u) + aJ (f(z,u,w))].
uelU w

In this respect, one can view J as a guide for decision—making. The value functions J#o,  J#1 JH2 .

generated by (exact) policy iteration can then be viewed as a monotonically improving sequence of

guides.

Recall that given a policy u, the value function J* generates an improved policy. It seems
therefore seems reasonable to hope that the approximation J (-,r™*1) to JEm similarly generates a
policy fi;,41 that improves on fi,,,. Now recall that, approximate policy iteration employs temporal—
difference learning to compute r™*! given ™. This is done by simulating the system under the
control policy fin,, initializing a sequence with rg"*' = 7™ and generating r7"*! ri 1 p2 1 ac-
cording to the temporal—difference learning iteration. Since the corresponding sequence of functions



J(yrY), J(,72), J(-,72),. .. converges to J(-,r™*1), one might speculate that these intermediate
functions themselves provide improving guides to decision—making, each of which can be used to
control the system. This possibility motivates an alternative algorithm, which we refer to as con-
trolled TD.

Controlled TD simulates a state trajectory zg,x1,Zs,... and then generates weight vectors
T9,T1,T2,-... The initial state o and weight vector ry can be arbitrary. Given a state x; and
a weight vector 73, a decision u; is generated according to

u; = argmax | [g(mt,u) + af(f(:ct,u,w),rt)].
uelU W

The next state z;41 is then given by
Zpp1 = f(Te, ug, we).
Analogously with the autonomous case, let the temporal difference d; be defined by
de = g(xe,ur) + aj(wt+1,rt) — j(:ct,rt).
Then, the weight vector is updated according to
Ti1 = T + Yedi 2y,

where ; is a scalar step size and the eligibility vector z; € R¥ is once again defined by

t

2= (0N ().

=0

There is little theory providing understanding of controlled TD. For the case of a “look—up table”
representation —i.e., where we store one value per state, as is done by classical dynamic programming
algorithms — existing results indicate that controlled TD nglt)\ t 59 0.cpnverges so long as every

S1K11S
state is visited infinitely often in the course of simulation [[55, 27]. There are also resulg,s invalving
[p1ngh94 TSy

very restrictive types of parameterizations such as those arising from state aggregation [45, 56, 22].
These establish convergence in the context of such approximators for variants of controlled TD that
sample states with fixed relative frequencies.

Another special case for which fairly comprehensive results are available involves a version of
controlled TD tailored for solving optimal stopping problems — a quite limited albeit practically
relevant class of stochastic control problems. This theory establishes conver enge Qg the algoril
to a unique limit that offers a desirable approximation to the value function ZU, 39 .

In practice, controlled TD often suffers from getting “stuck” in “deadlock” situations. In par-
ticular, viewing the procedure in an anthropomorphic light, the state x; constitutes an animal’s
operating environment and wy is the action it takes. The action is selected based on an approximate
value function J (-,r¢), and the weight vector r; is improved based on experience. If the animal
always selects actions in terms of a deterministic function of 2; and .J (+,r¢), there is a possibility
that only a small subset of the state space will ever visited and that the animal will never “learn”
the value of states outside that region. This is related to the notion of a “self-fulfilling prophecy,”
whereby the unexplored is never explored because values learned from the explored do not promote
further exploration. A modification that has been found to useful in practical applications involves

10



adding “exploration noise” to the controls. One approach to this end involves selecting decisions by
choosing u; = u with probability

exp ((E [g(mt,ﬂ) + aJ(f (2,7, w),rt)]) /6)
Sev e ( (B [ote0) + al o ww).r] ) /6)

for some small parameter § > 0. Note that at any state, each decision is selected with positive
probability upon each visit, and that as § approaches 0, the probability that u; is a decision that
maximizes

B [g(ee,u) + ad (e, u,w),m)],

w

becomes 1.

Recent theoretical results have pointed to an additional reason for exploration. The trajectory
of weight vectors r; generated by controlled TD can be viewed as an approximation to a trajectory
of an ordinary differential equation. Limits of convergence of the algorithm correspond to stationary
points of the ordinary differential equation. Some recent work has studied such stationagy points,
showing that — in the absence of exploration — there need not exist any stationary pointsa%B%Tlﬁ
work also shows that, with the incorporation of exploration of the type described above, controlled
TD is guaranteed to possess at least one stationary point. %egperrlréis%]&t also hope that this stationary
point is unique. However, as illustrated by an example in , this is not necessarily the case.

Due to the current absence of adequate theory, there is no streamlined and widely accepted ver-
sion of controlled TD. Instead, there is a conglomeration of variants, and each one is parameterized
by values that must be selected by a user. It is unclear which algorithms and parameter settings will
work on a particular problem, and when a method does work, it is still unclear which ingredients
are actually necessary for success. As a result, applications often require trial and error in a long
process of parameter tweaking and experimentation.

5.2.3 Approximating the ()—Function

Given the optimal value function J*, the generation of optimal control decisions

Ut = argmaXE I:g(wh u) + OtJ* (f(wta u, w))] )
uelU w

requires computing one expectation per element of the decision space U, which requires in turn
repeated evaluation of the system function f. One approach toy[lg%ggggg this computation involves

obtaining a “@Q—function,” as originally introduced by Watkins , which maps S x U to R and is
defined by

Q*(@,u) = E [g(,u) + aJ*(f(z,u,w))].

w

Given this function, optimal decisions can be computed according to

Ut = argmaXQ*(xta U),
ueU

which no longer involves taking expectations or evaluating the system function.

11



atkins89,Watkins92
@Q-learning Hﬂ 62, 63] 1s a variant of temporal-difference learning that approximates () functions

rather than value functlons The basis functions ¢1, ..., ¢x now map S x U to R, and the objective
is to obtain a weight vector r = (r(1),...,r(K))" such that

Q*(z,u) = Q(z,u,r) Zr Yok (T, u).

Like in controlled TD, ()-learning simulates a state trajectory xg, 1, Zs,... and then generates
weight vectors rg,r1,72,.... Given a state z; and a weight vector ry, a decision u; is generated
according to

uy = argmax Q(xy, u, r¢).
uelU

The next state z;41 is then given by
Tpp1 = f(Te, ug, we).
The temporal difference d; is defined by
di = g(@1,ue) + QQ(Teg1, uer1,7e) — Q(Te, ue, 1e),
and the weight vector is updated according to
Ter1 = T¢ + Vedi 2,

where ; is a scalar step size and the eligibility vector z; € R¥ is defined by

t

2 = Z(a)\)t”qﬁ(wﬁ Ur).

7=0

Like in the case of controlled TD, it is often desirable to incorporate exploration, for example, by
selecting selecting decisions according to u; = w with probability

exp (Q(mt,ﬂ, rt)/é)
2ueu €XP (Q(xtauart)/d) ,

for some small parameter 6 > 0.

The analysis of ()—learning bears many similarities with that of controlled TD, and results that
apply to one can often be generalized in a straightforward way to accommodate the other. For
example, reﬁultts aﬁ}glsséglgat%kto €os “look—up table” case apply when A = 0 to both controlled TD and
Q-learning [[55, 27]. Similatly. resylts on the relevance of exploration to the existence of stationary
points for controlled TD EILS can also be extended to the case of ()-learning.

5.3 Relationship with Approximate Value Iteration

The classical value iteration algorithm can be described compactly in terms of the “dynamic pro-
gramming operator” T', defined by

(TT)(x) = Ey [9(z, w) + aJ (f(z,u,w))],
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for any J. In particular, value iteration generates a sequence of functions according to Jiyy+1 = T'Jy,
each mapping states to real numbers. This sequence converges to the optimal value function J*,
which is the unique fixed point of T" and can be used to generate an opgimal - %icy.

Approximate value iteration — which dates all the way back to 1959 ’%‘]%s at approximating
each iterate Ji by a linear combination of prespecified basis functions ¢1,...,¢x. In rough terms,
iterates Jj, are generated according to J (5 rps1) = orJ (-,r%), where II is a projection operator
that produces a function that is in the span of ¢1,...,dx and close to T'J;. The hope is that Jj,
converges to a good approximation of J*. cFarias99

Recent work points out that the approximate value iteration need not possess fixed points }[d'f8i7
and therefore should not be expected to converge. In fact, even in cases where a fixed point exists,
and eve%aw)ge]asthe system is autonomous, the algorithm can generate a diverging sequence of weight
vectors

Controlled TD can be thought of as a stochasti oa&proximation algorithm designed to converge
on fixed points of approximate value iteration F)%lf_%ne advantage of controlled TD is its use of
simulation to effectively bypass the need to explicitely compute projections required for approximate
value iteration. But two features of controlled TD also come to the rescue where approximate value
iteration can fail.

One advantage can be fully appreciated in the context of autonomous systems. In this case,
through use of simulation, controlled TD visits states with relative frequencies equal to the steady—
state distribution of underlying Markov chain. This effectively induces a projection onto the subspace
spanned by basis functions with respect to a weighted quadratic norm, with weights given by the
relative frequencies. It turns out that the use of such a projection, which is related to the dynamics
of the underlying Markov chain, ensures in the autonomous case that approximate value iteration
converges to a unique fixed point and that controlled TD converges to the same point. Without
the use of simulation, it is generally difficult to implement approximate value iteration with such a
projections. This is important since the Psetofﬁltegrga‘}lv%n%gns in projection can lead to divergence.
Results along these lines are proved in [57, 60].

A second advantage, realized in the context of controlled systems, involves the possible intro-
duction of exploration. Without exploratio eg:olr_lltgé)%ed TD, and related versions of approximate
value iteration need not possess fixed pointerFFB]u

5.4 Historical Notes

There is a long history behind the algorithms discussed in the preceding sections. We will attempt to
provide a brief historical account of items that are particularly relevant to what we have presented.

The line of research originated in an area of artifici ig%g}llggence known as reinforcement learning.
Temporal—difference — originally proposed by Sutton e CQRprises 4 major development in this
area, but draws on earlier work by Barto and Sutton Wﬁmls for classical conditioning
phenomena observed in animal behavior and by Barto, Sutton, and Anderson on “actor—critic
methods,” which will be further discussed in the next section. In the loo 1 eItﬁ;ale case, the
algorithm also bears similarities with one prop ed ¢ %cade earlier by Witten I(;g Another major
development came with the thesis of Watkins [, in which “@Q-learning” was proposed, and the
study of temporal—difference learning was integrated with jﬁasgmgl, 1Qeabs fggmb@[/gar&g programming
and s&gchastlc approximation theory. The work of Werbos [64, 65, 66] and Barto, Bradtke, and Singh
hﬂ']_al% contributed to this integration.

d’
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In addition to advancing the understanding of temporal—-difference learning, the marriage with
classical engineering ideas furthered the view of the algorithm as one for addressing complex engineer-
ing problen}fegglud ]ggc]: to any E)Searm()(fggpplications. The practical potential was first demonstrated

A :

o esauro
by Tesauro [52, 53, b4[, who used a variant of controlled TD to produce a world—class Backgammon

playing program. Sev al case studies involving E%?PJ%H& %gglcﬂeggechannel allocation in gggular com-
munication _netwarks %ﬁ,_elevator dispatching [T4, 15], inventory managementl}%'% job—shop
scheduling , tollowed to demonstrate additional signs of promise.

Since the completion of Watkin’s thesis, there has been a growing literature involving the applica-
tion of ideas from dynamic programming and stochastic approximation to the analysis of temporal—
difference learning and its variants. However, the existing theory does not provide sufficient support
for applications, as we will now explain. In controlled TD, approximation accuracy is limited by
the choice of a parameterization. The hope, however, is that the iterative computation of param-
eters should lead to a good approximation relative to other possibilities allowed by this choice.
Unfortunately, there is a shortage of theory that ensures desirable behavior of this kind.

6 Actors and Critics

The methods described thus far make use of a parameterized representation of the value function.
An alternative that has been studied in other research communities as well as within the vein of
neuro—dynamic programming involves paran}&t%ril@"cﬁg&?& ﬁqr{gﬁg&g%g}g@ &HQIEQ&%% %aggar&rygt"cers
via stochastic gradient methods (see, e.g., |21, 24, 67, 13, 35, 34[). Such methods simulate the
system of interest and directly adapt the parameters of a controller as performance is observed.

A parameterized controller can be thought of as an actor, since it makes decisions and acts on
them, thereby influencing the dynamics of the system. On the other hand, an approximate value
function can be thought of as a critic, assessing alternative decisions to provide guidance. The
interpretation as a critic may be particularly suitable in the context of approximate policy iteration,
as described in Section 5.2.1. Here, given a policy, one generates an approximate value function (a
critic) that provides an evaluation of each state when the system is controlled by this policy. Given
feedback from this critic, one can select improved decisions (greedy decisions with respect to the
value function).

A current area of active research in neuro—dynamic programming involves the combination of
actors and critics, working in tandem to improve system performance. Recent results suggest a
possibility that critics can accelerate the computation of gradients that are used to improve actor
performance. This line of research provides an interesting interface between value function approx-
imation methods of neuro—dynamic programming and Monte Carlo gradient estimation methods
studied in operations research.

In this section, we will overview actor—critic methods and discuss some recent results. Before
doing so, however, we will introduce an average reward formulation of stochastic control, involv-
ing the maximization of time-averaged rewards rather than discounted rewards. This formulation
provides a more natural setting for the developments discussed in this section.

6.1 Averaged Rewards

As before, we consider a discrete—time stochastic system that, at each time ¢, evolves according to

Tip1 = f(Te,ug, wy),

14



where z; is a state in S, w; is a disturbance drawn from W, and u is a decision selected from U.
We will assume for convenience that for any policy u : S — U, the Markov chain following

Top1 = f(@g, ug, p(zy)),

is aperiodic and irreducible. The average reward of the system when operated by a policy u is
defined by

and the optimal average reward is
* -
g* = m‘?x [

Analogous to the value functions employed in a discounted setting, for any policy u, we define a
differential value function by

J¥(z) = lim B lz (9(zt, (1)) — 7,) ‘370 = JU] )

N—oo
t=0

where z;1 = f (¢, u(x¢), wy). The optimal differential value function is defined by

N
J* _ 1 E , * o ‘ _ ,
(z) JRre l; (9(zt, p"(z)) — g") |20 ZU]
where zy41 = f(x¢, p*(2¢),w:). Similarly with the discounted case, an optimal policy can be gener-
ated by greedy decisions with respect to J*:

W (@) = argmax B lg(z, u) + J*(f (@, v, w))]

There is a substantial literature gencralizing, temparal ylifforonce, learnine, and golated Sheory 191 0sa, vanoy
average reward formulations (see, e.g., [42, 43, 33, o1, I, 2, 60, 58]). 'lo provide a teel ior the nature
of such generalizations, let us describe a variant of temporal—difference learning that approximates
the differential value function of an autonomous system. For this variant, the temporal difference
d; corresponding to a transition from x; to z;y1 is taken to be

di = g(t) — Gy + J(@eg1,7me) — J(@e,1e),
where g, represents an approximation to the average reward. These approximations are updated
according to
Tev1 = (1= 7)g; + veg(zt)
The weights of an approximate value function are simultaneously adapted according to

rip1 = e + Yede 2,

with the eligibility vector z; defined by
t

Zi41 = Z AT d(x,).
=0
. . [VanRoy98,Tsitsiklis99a ! . . .
It is shown in [[60, 58] that for any A € [0, 1) and under appropriate technical conditions, g, converges
to the true average reward and the weights r; converge to values that offer an approximation to the

desired differential value function.
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6.2 Independent Actors

An actor is a parameterized class {9|0 € R} of policies. If it were possible to compute gradients
Vg, of the performance with respect to parameter settings, one could improve performance via
a gradient method. However, because the space of decisions is often discrete the gradient is not
generally well-defined.

It is convenient to expand the class of policies under consideration to include those that select
decisions randomly. By doing this, the discrete space of decisions can effectively be transformed into
a continuous one. In particular, let us define a stochastic policy to be a function p: S x U — [0,1]
with }° ., u(z,u) =1 for all € S. Each u(x,u) represents the probability with which decision u
is selected when at state x.

Consider now a parameterized class {ug|d € R'} of stochastic policies for which the probabilities
1o (z,u) are continuously differentiable functions of §. Each stochastic policy p generates an average
reward g, defined by

yu :]\}E)noo _E [Zg $t7ut ‘| ’

where the system is controlled by decisions u; sampled at each time step according to probabilities
po (e, ). It is well-known that there exists a deterministic policy that attains the optimal reward,
and hence, max, g, = g*, even when the maximum is taken over all stochastic policies. We define
a differential value function J# associated with each stochastic policy by letting

JH(z) = lim E lZ( (T, ur) = 9,) ‘xo = .73‘| .

N—oo
t=0
It is also convenient to define () values associated with each stochastic policy:
Q(z,u) =Elg(z,u) =7 + J*(f(z,u,0))]
If po(z,u) > 0 for all z and wu, one can imagine employing a steepest ascent method of the form

am—i—l =0m + Wmvgypgm

Unfortunately, obtaining the gradient Vyg,, poses a computational challenge. Monte Carlo simu-
lation techniques, however, can generate estimates, which in turn can be employed in a stochastic
gradient iteration. Such an iteration adapts the parameters according to

0m+1 =0, + YmUm,

where each v, is an estimate of the gradient given parameters 6,,. Gradient estim tlo% t%c}él%lques
have been studied extensively in the infinitesimal perturbation analy51s literature [’

Let u dlﬁculﬁgsgr}g sto %]aggtlc gradient method, which was recently proposed by Marbach and
Tsitsiklis [35, 34]. The algorithm simulates a single endless trajectory of the system, updating the
parameters of an actor upon visits to some distinguished state T € S. Let t,,, be the mth time at
which state T is visited. For times t = t,,,...,tm+1 — 1, controls u; are sampled at each state x
according to probabilities ug,, (@, -). The algorithm generates a sequence of estimates to the average
reward according to

tm41—1

Tt1 =Tm +¥m D (9(@6, 1) = Fom)-

t=tm
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Each gradient estimate is given by

tm4+1—1
~ Vo, (T¢, ug)
Uy = Qt——F———",
" tzt ,U/am(mt)ut)

where

+
Z w‘r; uT ym)
arbach98a,Marbach98b B

M.
It is shown in [35, 34] that under appropriate technical conditions, the average rewards g g, 8SSO-
ciated with the sequence of parameter vectors ,, converges, and that

Jim Vi, =0
with probability one. Hence, one should expect the asymptotic behavior of this stochastic gradient
method to mimic that of its deterministic counterpart.

To provide some motivation for the structure of this algorithm and also to set the stage for
integration of actors and critics in the nexE s%ct]h%%él let. bléschgéicuss the algorithm’s relation to a
characterization of the gradient provided in [35, 34]

Vofu, = D ’79(377“)Q”"(a:,u)w,

z€S,uclU /J,g(.’E, U)

where ng(z,u) = mg(x)ps(z,u) and mp(z) denotes the steady-state probability of state z when the
@ngg@ul&c%la lle Q5by policy pg. (Similar characterizations have also been employed in earlier work
12,20, 28].) Note that if we have access to Q"¢ (z,u) for every 0, z, and u, we could generate noisy
estimates v;fn according to

timt1—1
of = Z 0 (1, ug) L 010 (7t 00)
- )
"G T o (e, ue)

and it would turn out that
E[U;rn} = vegusm

This is a consequence of the fact that state—decision probabilities 7y, (z,u) are equal to the relative
frequencies with which state-decision pairs are sampled during a trajectory s, , T¢,, +1;- - - s Tty —1-

Since we do not have access to the desired values Q*¢m (x¢,us), an estimate Qt is employed in
computing v,,. To see why @; may constitute a suitable estimate, note that if g,, = gy, we have

E [Qt'mta ’U/t] = ngm (mta Ut) — JHom (E)

It turns out that the constant term J##m (T) bears no consequence on computation of the gradient,
because for any 6,

> no(m,u)M = Y mo(@)Veus(z,u)

T, U
z€S,uelU ,ug( ’ ) z€S,uelU
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= Z m9(2)Vy (Z 40 (a:,u))

zeS u€eS
= Y m@)Vs(1)
€S

and therefore v (2, )
T,u
Vil = D M (2, u) (@ (1, u0) — J#om (z)) L0

echmey 1, (T, 1)
Hence,
tma1—1
o — mi 0 Vouo,, (T, ut)
— gm0
" P— ,U/am(mt)ut) ’

serves as a noisy estimate of Q#¢= (x;,u;) for the purpose of gradient estimation.

6.3 Using Critic Feedback

The stochastic gradient algorithm described in the previous section made use of estimates in place
of Q*(z,u). Each estimate was generated based on a single sample trajectory from the state z
to a distinguished state Z. High variance associated with such estimates can impede progress in
stochastic gradient algorithms. In some sense, being based solely on a single sample, the estimate
should not be expected to provide a close approximation to the expectation.

One possible motivation for the introduction of a critic in conjunction with an actor is as a
mechanism for variance reduction in stochastic gradient algorithms. In particular, if a critic is able
to offer accurate approximations of Q*(z,u), their use in place of single-sample estimates, may
dramatically accelerate stochastic gradient methods.

As a con rete o %%%%b&et us introduce an actor—critic algorithm that is similar in spirit to those
proposed in %Uﬁ%’lw—algorithm involves an actor pg and a critic that approximates —functions
via a parameterization of the form

K

Q(z,u,r) = Z r(k)or(z,u).

k=1

Parameters 6; and r; and an average reward estimate g; are adapted during simulation of the system.
At each time t, a decision u; is sampled according to probabilities pu(xy, ), and the weight vector 7,
is updated by temporal-difference learning. In particular, defining a temporal difference by

dy = g(20) = Gy + Q(@er1,70) — Q(a4,71),
the weights at the next time step are given by
Ter1 = Te + YVedi 2,

with the eligibility vector z; defined by

¢
241 = Z MN=Th(z,, uy).
7=0
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The average reward estimate follows

Gop1 = (1 =) + veg(we)-

At the same time, to improve performance, the actor’s parameters are adjusted according to
Or11 = 0 + Brog,

where f3; is a step size (possibly different in value from +;) and the noisy estimate v; of the gradient
is given by
Vg = Q(xt,utﬁt)w-
Mo, (.CL‘ ) u)

One interpretation of this algorithm involves viewing the parameters of the critic as evolving
much faster, and therefore converging faster, than those of the actor. In practice, this is achieved by
keeping the step sizes 3; of the actor extremely small relative to oy, the step sizes of the critic. In
the extreme case, one might imagine that the parameters of the critic converge so fast that at every
point in time Q(mt, ug,7¢) looks to the actor as though it has already converged to an approximation
of Q"¢:. We would then have

VGNG (ZL',U)

Vog,, ~ Z n(z,u)Q (¢, ue, mt) 16(2, 1)

zES,uelU

and estimates of the @) values would no longer be noisy, possibly leading to a significant reduction
in variance of gradient estimates.

In general, the reduction in variance brought about by using Q(wt,ut,rt) in place of a single
sample estimate as was done in the previous section may come at a cost incurred by bias in the
estimate. In particular, if ()*%: is not in the span of the basis functions ¢1,..., ¢k, we should not
expect to generate a good approximation. As discussed earlier in the context of critic—only methods,
one might try to select basis functions based on engineering insights. In the context of the actor—

critic algorith gs{l%a}agvseutdc%%%ibed, however, there is another approach that leads to appropriate
EZU 50]. To und

basis functions [[30, understand this approach, note that each component of the gradient
_ Opg(x,u)/06;
\% = ’ he )
( 9gua)k Z ’l’}a(.’li' U)Q (.CE U) ,LI,Q(CL',’LL)

zES,ueU
can be interpreted as an inner product between functions Q¢ and
Opo(-,-)/90;
N9('7 )
where the inner product is defined by
<f:h) = Z n9($au)f($7u)h(mau)a
zeS,uelU

for any scalar functions f and h with domain S x U. Let K = (recall that [ is the dimension of
), and suppose we select basis functions

Opg(z,u)/00;

¢k(x7U) - /‘9('%“)
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for k = 1,...,K. Then, given a projection Q of Q¢ onto the span of the basis functions, with
projection defined with respect to the inner product space under consideration, we have

(Vo )k = <Q’”’ W> <Q’ W>

This — tog(}thgr ﬁm}b hg fﬁctgghat temporal—difference learning does indeed approximate such a
projection [57,60] = suggests that the selection of basis functions is an appropriate one.

The approach we have described for basis function selection is appealing because it is automated.
That is, given an actor with a current policy pg,, one can generate a small collection of basis
functions that is sufficient for approximating Q*¢: to an extent that facilitates improvement of actor
performance just as the actual function @Q*¢¢ would. Note, however, that the selection of basis
functions is contingent on the value of §;. As a consequence, the choice should probably change
over time as 6 evolves. Understanding the dynamics of actor—critic algorithms coupled with basis

functions that change with the actor’s evolving policy is an interesting open i SUE, 0 Sutton0o
30, b0], the critic is

In our motivation of actor—critic algorithms, as well as existing analyses

viewed as converging much faster than the actor. Essentially, the actor “waits” until the critic
converges before computing the desired gradient. The potential speed—up brought about by the
critic’s evaluation hopefully reduces variance in gradient estimation, thereby speeding up the actor’s
convergence. However, it is not known whether the delays brought about by “waiting” for the
critic to converge end up slowing down the actor’s dynamics to an extent that negates potential
improvements in gradient computation. A related research topic of interest involves understanding
the dynamics of actor—critic systems where both actor and critic evolve on the same “time scale;”
that is, where the actor does not “wait” for the critic to converge before attempting to compute
gradients.

6.4 Historical Notes

Actor—critic methods have as long a history as does temporal—difference learning, and their stories are
intertwined. Some of the earliest research in artificial intelligence on reinforcement learning involved
interacting actors and critics, in which critics adapt gggtoors(;i%% fo I‘lc&nporal—difference learning. This
includes the work of Barto, Sutton, and Anderson MWL algorithms with some similar
ingredients had been proposed earlier on in control theory ]Fﬁg]ﬂ?artiﬁcial intelligence, actor—critic
models were inspired in part as modj%gar(%g %g{)amu%givity, and their role in neuroscience has been
explored by Barto, Houk, and Adams [3, 1111ams93

On the technical side, Williams and Baird %Sﬁmoped some of the earliest theoretical results
about deterministic variants of actor—critic methods that employ exhaustive representations both of
policies and of value functions. Again in a context involving exhaustive representations, convergence
of a stochastic simulation—based meth lrbegre the actor and critic operate on separate time scales
was established by Borkar and Konda 39

7 Closing Remarks
The “curse of dimensionality” can be viewed as the primary obstacle prohibiting effective solution

methods for stochastic control problems. It is interesting to note that an analogous impediment
arises in statistical regression. In particular, given an ability to collect data pairs of the form
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Abounadi98

(z,J(z)), the problem of producing an accurate approximation J to the underlying function J
becomes computationally intractable as the dimension of the domain increases. Similarly with the
context of stochastic control, difficulties arise due to the curse of dimensionality. In the setting of
statistical regression, a common approach to dealing with this limitation involves selecting a set
of basis functions ¢1,. .., ¢k, collecting a set of input-output pairs {(z1, J(21)),. .., (@m, J(Tm))},

and using least—squares algorithm to compute weights r(1),...,r(K) that minimize
m K 2
3 (st - rwene)
i=1 k=1

The result is an approximation of the form

J(z) =Y r(k)pu(2).

k=1

Though there is no systematic and generally applicable method for choosing basis functions, a
combination of intuition, analysis, guesswork, and experimentation often leads to a useful selection.
In fact, the combination of basis function selection and least—squares is a valuable tool that has met
prevalent application.

The utility of least—squares statistical regression provides inspiration for neuro—dynamic pro-
gramming. In particular, neuro-dynamic programming algorithms can be viewed as analogs to
least—squares algorithms that are applicable to stochastic control rather than statistical regression.
Given a stochastic control problem and a parameterized representation of the value function and/or
policy, the intent is to compute parameters that lead to an effective approximation.

Though existing results provide a starting point, the development of streamlined methods and
analyses applicable to general classes of stochastic control problems remains largely open. Our hope,
however, is that the range of problems that can be addressed in such a manner will broaden with
future research. A goal might be to eventually produce neuro—dynamic programming algorithms
that are as useful and widely accessible in the context of stochastic control as is least—squares in the
context of statistical regression.

Our brief account of ongoing research in neuro—dynamic programming is by no means exhaus-
tive. We have chosen to focus discussion on temporal—difference learning and actor—critic methods,
two research directions for which substantive results have been generated in recent years and in
which many problems remain open. Among other interesting areas of neuro—dynamic programming
research is the study of how problem structure and should influence choices of parameterized value
functions and/or policies. One current thrust here, for example, aims at exploiting hierarchical
structure of complex decision problems in defining abstractigns h’}@r q,f;;r ngsc;ﬁncpe viewed as pa-

1ef.'!:er1 vern

rameterizations of value functions and/or policies (see,Fee.ﬁ il 9540, 30] and reterellées therein). We

refer the reader to books by Bertsekas and Tsitsiklis nd Sutton and Barto or excellent
coverage of many additional topics.
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