MARKOV DECISION PROCESSES
Models, Methods, Directions, and Open Problems

Sean P. Meyn
Department, of Electrical and Computer Engineering
and the Coordinated Sciences Laboratory
University of Illinois at Urbana-Champaign
Urbana, IL 61801, U.S.A.

May 28, 2000



Chapter 1

Stability, Performance
Evaluation, and
Optimization



Abstract

In this chapter we discuss various aspects of stability and control for
MDP models. These ideas are centered around fluid models as approxima-
tions to the MDP model, and stochastic Lyapunov functions for verifying
stability and bounding performance.



1.1 Introduction

This chapter considers stability of controlled Markov chains, and the re-
lationship between criteria for stability; current approaches to bounding
performance for the chain; and the construction of optimal policies. With
stability taken as a central issue, the reader must soon realize that we will
be considering large state spaces. In this chapter very little structure will
be imposed on X, or its associated sigma field F. In other ways however our
viewpoint will be fairly narrow. This chapter only considers the cost mini-
mization problem, and only the average cost optimality criterion. Moreover,
the assumptions that we impose will imply that the average cost is indepen-
dent of the starting point of the process. By restricting attention in this
way we hope that we can make the methodology more transparent.

One sees in several chapters in this volume that the generalization from
finite state spaces to countable state spaces can lead to considerable techni-
calities. In particular, invariant distributions may not exist, and the cost
functions of interest may not take on finite values. It would be reasonable
to assume that the move from countable state spaces, to MDPs on a general
state space should be at least as difficult. This assumption is probably valid
if one desires a completely general theory.

However, the MDPs that we typically come across in practice exhibit
structure which simplifies analysis, sometimes bringing us to the level of
difficulty found in the countable, or even the finite state space case. For
example, all of the specific models to be considered in this chapter, and most
in this volume, have some degree of spatial homogeneity. The processes
found in most applications will also exhibit some level of continuity in the
sense that from similar starting points, and similar control sequences, two
realizations of the model will have similar statistical descriptions. We do not
require strong continuity conditions such as the strong Feller property. An
assumption of -irreducibility, to be described and developed below, allows
one to lift most results in the discrete state space setting to models on a
completely general, non-countable state space. This is an exceptionally mild
assumption on the model and, without this assumption, the theory of MDPs
on a general state space is currently extremely weak.

This surprising fact, that one does not lose much in moving from count-
able state space to -irreducible chains on a general state space, can be
regarded as a consequence of the Nummelin-Athreya-Ney construction of an
‘atom’. This construction involves a time homogeneous Markov chain, where
the atom @ is a single point in an enlarged state space. The v irreducibility
assumption makes this construction possible, and moreover ensures that the



atom is reachable with positive probability from any initial condition. In
this setting it is clear how to generalize many of the well known concepts in
a finite state space setting. An invariant measure will be given by
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where 14 is the indicator function of the set A. In words, the quantity u{A}
expresses the mean number of times that the chain visits the set A before
returning to 6. This expression assumes that the return time 7y is almost
surely finite. If the mean return time Eg[7y] is finite then in fact the measure
w is finite, and it can then be normalized to give an invariant probability
measure. Finiteness of the mean return time to some desirable state is the
standard stability condition used for Markov chains, and for MDPs in which
one is interested in the average cost optimality criterion.

Unfortunately, the split chain construction is cumbersome when devel-
oping a theory for controlled Markov chains. The sample path interpre-
tation given above for the invariant probability u is appealing, but it will
be more convenient to work within an operator-theoretic framework. To
motivate this, suppose first that we remain in the previous setting with an
uncontrolled Markov chain, and suppose that do have an atom satisfying
Py{m9 < oo} = 1. Denote by s the function which is equal to one at 8, and
zero elsewhere: That is, s = 1y. We let v denote the probability measure
on X given by v(A4) = P(0,A), A € F, and define the ‘outer product’ of s
and v by

s@v(z,A) 2 s(z)v(A).
We can then write in operator theoretic notation,
Po{mp > n,z, € A} =v(P —s@v)" 11,4, n > 1.

For example, in the finite state space case the measure v can be interpreted
as a row vector, the functions s and 14 as column vectors, the kernel s ® v
is the standard (outer) product of these two vectors, and any kernel such as
P or s ® v can be interpreted as an N x N matrix, where N is the number
of states.

Hence the invariant measure p can be expressed in this notation as

o
WA => v(P-s@v)" 1y, A€F. (1.1)

n=1



It is this algebraic description of u that will be generalized and exploited in
this chapter.

How can we mimic this algebraic structure without constructing an
atom? First, we require a function s: X — R, and a measure v on F
satisfying the minorization condition,

P(z,A) > s(z)v(A), zeX, AeF.

In operator theoretic notation this is written P > s®v, and in the countable
state space case this means that the transition matrix P dominates an outer
product of two vectors with non-negative entries. For this bound to be useful
we usually require s to be strictly positive on some suitably “large” set, and
we require v(X) > 0. Unfortunately, this assumption excludes a large class
of models, even the simple linear models to be considered as examples below.
One can however move to the resolvent kernel defined by

K(z,A) = ZﬁtPt (z,4), zeX, AeF, (1.2)
t=0

where 8 €]0, 1] is some fixed constant. For a t-irreducible chain the required
minorization always holds for the resolvent K. Much of the analysis then
will involve the potential kernel, defined via

ALY (K -sov)i(z,4), zeX, AcF. (1.3)
t=0

The move to the resolvent is useful since almost any object of interest can
be mapped between the resolvent chain, and the original Markov chain. In
particular, the invariant measures for P and K coincide.

The next question is stability. The t-irreducibility assumption will im-
ply a reachability condition on s, analogous to the irreducibility condition
that P,{7p < oo} > 0 for all x € X. Generalizations of the more useful
stability conditions such as L, bounds OES:fgaal{go‘lress straightforward. We
will summarize known results in Section ey observation is that the
most natural stability assumption is equivalent to the existence of a Lya-
punov function, whose form is very similar to the Poisson equation found in
the average cost optimality equations (or ACOE). This connection will be
exploited in our development of dynamic optimization theory below.

We conclude with an outline of the topics to follow. In the next section
we review a bit of the general theory of i-irreducible chaing, and develop
some stochastic Lyapunov theory for such chains following [39]. Following
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this, in Section m develop in some detail the computation of the average
cost through the Poisson equation, and the construction of bounds on the
average cost. All of these results are developed for time homogeneous chains
without control. In Section ﬁiﬁo'%le stability theory is applied to gl_el fi%%lx)ﬁj%eﬂzx
of the value iteration and policy iteration algorithms. Sections [I.5 and II.6
illustrate the theory with a detailed application to linear models, and to
network scheduling. The chapter is concluded with a discussion of some
open problems.

1.2 Stability

In this section we consider a Markov chain & with uncontrolled transition
function P. The state space X is assumed to be a locally compact, separable
metric space, and we let F denote the (countably generated) Borel o-field
on X. Unless other references are given, all o _1;he results described here
together with their derivations can be found in [39].

1.2.1 -irreducibility

Throughout this chapter we assume that v is a o-finite measu]r_?(izn F. The
chain is called v-irreducible if the resolvent kernel defined in (I[.2) satisfies

K(z,A)>0,zeX <<= yY(4)>0.

We then call ¢ a (mazimal) irreducibility measure. We let F* denote the
set of all measurable h: X — R satisfying ¢)(h) > 0. For A € F we write
A € F* provided 14 € F*. That is, 9)(A) > 0. If the chain is ¢-irreducible,
then from any initial condition x, the process has a chance of entering any
set in F1 in the sense that P,{r4 < oo} > 0, where 74 is the first return
time,

T4 =min{t > 1:x; € A}.

A function s: X — R, and a non-trivial measure v on F are called petite
if the resolvent K satisfies the minorization condition,

K(z,A) > s(z)v(4), z€X, A€F. (1.4)

One can show that a Markov chain is t-irreducible if and only 4[ here is,
a function s: X — (0,1) and a probability measure v satisfying (I:ZE). This

bound is the most powerful consequence of the w-lrred(liec:lbol_%let% Assumption

since it allows the construction of the potential kernel
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A set C C X is called petite if its indicator function 1o is a petite
function. Equivalently, for some probability measure v and ¢ > 0,

K(z,A) > év(A), zeC, AcF.

The superlevel set {z : s(z) > n} is always petite, for any > 0, if the
function s is petite. Consequently, for a t-irreducible chain, there always
exists a countable covering of the state space by petite sets. The “petite
property” can also be defined using hitting times: It is not difficult to show
that, for a y-irreducible chain, the set C is petite if for each A € FT, there
exists n > 1, and § > 0 such that

Py(ta <n)>¢d  forany z € C. (1.5)

. . . . . e:accessible
In applications we typically find that the function s used in (I.4) can be

taken positive everywhere, and continuous. In this case we find that every
compact set is petite, in which case the Markov chain is called fsjm_g’;cchaz'n.
It will be convenient to restrict attention to T-chains in Section [I.

1.2.2 Recurrence and stability

The fundamental stability assumption for a Markov chain is the property
that the state visit ‘important’ sets with probability one from any starting
point. A ¢-irreducible chain is called recurrent if there exists a set Xg € F
satisfying ¥{X§} = 0, and Py{r4 < oo} = 1 for any A € F*, and any
z € Xp. If in addition the chain admits an invariant probability measure pu,
then the chain is called positive recurrent. Although these definitions require
us to consider an infinite number of initial states and sets A, there are several
equivalent characterizations of recurrence which are easier to verify.

Theorem 1 The following are equivalent for a 1-irreducible Markov chain

x:
(i) x is recurrent.
(ii) For some petite set C,

Py{rc < 00} =1, z € C.

eee . . . . . . . le:accessible
(iii) For any pair (s,v) satisfying the minorization condition (bsz
seFT,

o
éz K—s®u s:l.
t=0



If any of these three equivalent conditions hold, then there exists a o-finite
measure (. which is invariant for the kernel P. It is unique in the sense that
any o-finite invariant measure is a constant multiple of the measure given

by
p(A) =vH{A} =) v(K-s®v)' {4}, AcF. (1.6)
t=0

84 ,MT
Proof. The proof can be found in um, . However it will be useful to

explain the main ideas, and in particular show why p* defines an invariant
measure.

To show why (iii) should hold for a recurrent chain we first make some
definitions. To avoid dealing with potentially infinite sums, let A > 0 and
define the kernels

Hy(z) =) N"NK—-sgv)" Gi(z)=) N"'K"
0 0

Note that H; = H is the potential kernel. These kernels are uniformly
bounded in z for any A > 1. We denote ay = v(H)s) and By = v(G)s).
Applying the kernel A~ K to the function H)ys gives,

AN 1KHys = N YK —s®v)Hys+ (s @v)Hys
= Hys—X"'(1—ay)s

Iterating this equation we find that for A > 1,
n—1 o
Hys =X (1—a))) A'Kis=AT"K"Hys >0, n— o
0

This shows that Hys = (1 — a))Gys, and hence that ay = (1 — ay )0 for
A > 1. Since all of the terms are positive we also see that o) < 1. Letting
A | 1 and applying the monotone convergence theorem we do see that a1 <1
and in fact that,

aq

B

_1—(11’

from which we see that vHs = a1 = 1 if and only if #; = co. It remains
to show that an infinite value for (; is equivalent to recurrence. This is
not difficult t lgg&e e but due to lack of space we ask that the reader look
elsewhere, e.gjﬁﬂ,_if’é%“



To establish invariance of u*, first apply the kernel (K — s®v) to p* on
the right to obtain,

o
’u*( —S®I/) Z t+1—,u,*—1/.
t=0
Now by recurrence and (iii) we have p*(s) = 1, which shows that p*

K-invariant: p*K = p*. Using the identity
PK=KP=p1K+(1-p8bI, (1.7)

one can conclude that p* must then be P-invariant. n

. . . . Jfe:inv2 . . .

The invariant measure given in (1.6; will be finite, so the chain x is

positive recurrent, provided that the mean return time to a petite set C is
bounded:

sup E;[1¢0] < o0. (1.8)
el

In terms of the variables used in the previous proof, this is equivalent to
requiring that o < oo, where the prime denotes the left derivative of «
with respect to .

While these definitions lead to an elegant theory, in practice one can
typically take Xy = X in the definition of recurrence. In this case the chain
is called Harris, and it is called positive Harris if there is also an invariant
probability measure. The chains we consider next exhibit a far stronger
form of stability.

1.2.3 c-Regularity and Lyapunov functions

The next level of stability that we consider is more closely related to steady
state performance, which moves us closer to the average cost optimality
criterion. Suppose that ¢: X — [1,00) is a measurable function on the state
space. For a t-irreducible chain, a set S € F is called c-regular if for any
AeFt,

TA—1

ilEIIS)E [Z xt] < 0.

. B . le:PetiteTime B .
From the characterization in (II.5) we see that a c-regular set is always petite.
The Markov chain is called c-regular if the state space X admits a countable



covering by c-regular sets. A c-regular chain is automatically positive Harris,
and by using the previous representation of the invariant measure one can
show that a c-regular chain possesses an invariant probability measure p
satisfying p(c) £ [ e(z) u(dz) < oo L he following result is a consequence
of the f-Norm Ergodic Theorem of [39, Theorem 14.0.1].

t:little-f-norm| Theorem 2 Assume that c: X — [1,00) and that  is c-regular. Then, for
any measurable function g which satisfies

() <

the following ergodic theorems hold for any initial condition:

(i) lim —Zg z)

n—oo N

p(g),  as. [Pyl

(i5) lim %ZEx[g(:vt)] = u(g)-
t=1

Thus we see that one level of complexity is removed when considering
c-regular chains since the steady state performance as captured by p(g) does
not depend upon the initial condition of the chain.

One approach to establishing c-regularity is through the following exten-
sion of Foster’s criterion, or Lyapunov’s second method. In general, such
approaches involve the construction of a function V on the state space, tak-
ing positive values, such that V' (z;) is in some sense decreasing whenever the
state z; is ‘large’. In our context this decreasing property can be formulated
as follows: Find a function V: X — R, and a constant J € R, such that

PV (2) 2EV(zi) |zt =2] < V(@) —c(z)+J, zeX.  (1.9)

However, for this to imply any form of stability, the difference c¢(z) — J must
be positive for ‘large’ x. This requires some assumptions on c¢. We say that ¢
is near-monotone if the sublevel set S, 2 {z € X': ¢(z) < n} is petite for any
7 < |l¢|loc- The supremum norm ||¢|l = supgex ¢(x) may be infinite. The
function is called norm-Ilike if the sublevel set S, is a precompact subbset

orferghomar93,bor91 ,MT
the metric space X for any 1. Related assumptions on ¢ are used in I[ 5, 39].

t:LyapunovRegular‘ Theorem 3 Assume that ¢c: X — [1,00) is near-monotone, and suppose

that J < ||c||c- Then,
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(i) If there exists a finite, positive-valued solution V to the inequality (1.9),

then there exists dy < oo such that for each A € FT,
TA
E, [Z c(:vt)] <doV(z) +d(4), zeX, (1.10)
t=0
where d(A) < oo is a constant. Hence, each of the sublevel sets S, =
{z : V(z) < n} is c-regular, and the process itself is c-reqular.

(ii) If the chain is c-regular, then for any c-regqular set S € FT, the function

7S

V*(z) = E, [Z c(xt)}, z€X, (1.11)

t=0

le:cFoster
is a near-monotone solution to (2.97.
e:cFoster
Proof. The bound (I 9% is eqc;%?valent to the drift condition PV < V) —

c+blg, where S is petlte if ( olds, we can take Vy = doV and b = dyJ,
ith dp sufficiently large. The result is then an immediate consequence of
, Theorem 14.2.3]. .

1.3 Performance

1.3.1 Poisson’s equation

Poisson’s equation originated in the analysis of partial differential equations:
Assuming that f is some given function on R", the equation is written

Ah=—f

where h is an unknown function on R”, and A is the Laplacian. The prob-
abilistic interpretation of this equation becomes evident when one realizes
that A is the generator for a Brownian motion on R" - a similar equation can
be posed for any Markov process in continuous time. When time is discrete,
we then define the generator as A = P — I, and the Poisson equation then
takes on the exact same form, where we take f = ¢ — p(c).

The probabilistic motivation for looking at this equation foll Wstr m
our prior stability analysis. First note that the drift inequality J;_Q)Tg—
gests a simple approach to obtaining performance bounds. By iterating this
equation one obtains,

n—1

0 < Ey[V(xn)] < ZIE [e(z)] + nd.



Dividing by n and letting n — oo then gives the upper bound,
A 1 n—1 B
J(c) =limsup — E, [Z c(xt)} < J.
n—oo T =0

The question then is, by choosing V carefully can we get a tight upper
bound? The answer is yes, provided the chain is c-regular, and in this
case, the minimal upper bound J, is evidentally p(c), with p equal to the
invariant probability for the chain. The following result surveys the relevant
consequences of c-regulariry, and introduces the form of the Poisson equation
that we will analyze in the remainder of this chapter.

Theorem 4 Assume that c: X — [1,00) and that @ is c-regular. Then,
(i) There exists a measurable function h: X — R satisfying the Poisson
equation
Ph(z) 2 Bglh(zy41) |20 = 2] = h(z) — c(z) + J, =z €X, (1.12)
where J = p(c).
(ii) One solution to ﬁﬁfﬁhmay be expressed,
o0

h(z)=KHe(z) =) (K-s@uv)ex), z€X, (1.13)

where ¢ = ¢ — J, and the pair (s,v) is petite with s € FT.

(iii) Suppose m%@ﬁ%ﬁ?iﬁ,ﬂﬁghe function c is near-monotone. Then the solu-

tion h to (I. 15 uniformly bounded from below, infzex h(z) > —oo.
It is essentially unique in the following sense: If h' is any function
on X which is uniformly bounded from below, and solves the Poisson
inequality
Ph(z) < h(z) —c(z) + J, z eX,
with J = m(c), then there ezists a constant a such that
R'(z) > h(z)+a, z €X;
h(z) = h(z)+a, a.e. z €X [].
. i . e:cFoster _
(iv) If V is any solutiop to AT.9] with J < |[c|| and c near-monotone,
then the solution (I1.13] salisfies the uniform upper bound, for some

dp < oo,
h(z) < do(V(z) + 1), zeX

10

|e:fishFormula
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Proof. Again, the proof can be found elsewhere (see Y, , Tollowin %15 N
22]). However, the fﬁct%.t]&et the solution to the Poisson equation (I
e:Il ormula

can be taken as in (I is easy to explain, and shows some attractive
symmetry with the earlier construction of an invariant measure. Consider
first the function

1>

ho(z) =He =) (K —s®@v)e(), zeX
t=0

Observe that by the definition of J and ¢, and the construction of u*, we
must have v(hy) = 0. Thus,

Kho(z) = (K — s®v)ho (x) = ho(z) — ¢(z).

That is, hg so(leyggstolfi%EPI?isson equation for the kernel K. By again applying
the identity (I.7) we see that h = Khy = (K — s ® v)hq solves the Poisson

equation for original transition kernel P. .

1.3.2 Simulation

We have now seen that the Poisson equation has a direct role in performance
evaluation. Although we have not given any explicit algorithms, it is clear
that an approximation of the solution h will lead to an approximation of
J = p(c). With some structure imposed on the model this idea does lead to
algorithms for com};ﬁ{%egglgg&% u(r)ﬂ514aJ . For example, this is the essence of
the main results in [35, 36], where performance bounds are obtained in the
network scheduling problem. If the cost is linear, and if any of the linear
programs constructed in these references admits a feasible solution, then the
solution to Poisson’s equation is approximated by a pure quadratic function.

Perhaps the most obvious approach to estimating J is through Monte
Carlo simulation via

The Poisson equation again plays an important role in analysis, and in the
generation of more efficient simulation approaches.

The effectiveness of the Monte Carlo method depends primarily on the
magnitude of the Central Limit Theorem variance, also known as the time-
average variance. Under suitably strong recurrence conditions on the Markov

11



chain this can be expressed

2= i 5| St

An alternative expression for the time-average variance is computed through
the formula

32 = p(l?) = p((Ph)?) = 2(he) — u(@), (1.14)

:£ishMT
with h any solution to (el 12) I39]

There are many variants of the simple Monte Carlo estimate, some of
which may have far smaller variance. After all, if {A; : ¢ > 0} is any
sequence of random variables satisfying %28_1 Ay — 0, n — o0, then the
modified estimator,

n—1

~ 1
JB = - D (elm)+4y), neN,
0

is another consistent estimator of J. An optz al choice for A; is computed
using the solution h to Poisson’s equation ( 1.12; by setting

AI = Ph (.’Et) - h(.’l)t),

we obtain a time-average variance of zero. Of course, computing A} involves
a computation of J, so this approach is nonsensical! If however an approxi-
mation g to h can be found, then the choice Ay = Pg (z;) — g'gm Qawill lead
to reduced variance if the approximation is sufficiently tight ZZﬁL

This is a useful result for our purposes since we will discover such ap-
proximations when we attempt to solve some optimization problems below.

1.3.3 Examples

In this chapter we will restrict ourselves to two general examples: the linear
state space model, and a family of network models. In this section we look at
some special cases without control. Controlled linear systems, and controlled
network models are considered as examples in the final two sections in this
chapter.

The linear state space model is defined through the multidimensional
recursion,

Tiy1 = Az + W41, teN, (1.15)

12

e:linear-0



where x4, w; € R%, and w is i.i.d. with wy ~ N(0,X). Let F by any matrix
of suitable dimension satisfying FFT = X. If F is d x q for some ¢, then the
controllability matriz is the d x (dq) matrix C = [A4=1F|AT=2F|... |AF|F],
and the pair (4, F) is called controllable if the matrix C has rank d. The
process is -irreducible with 1) equal to Lebesgue measure if the pair (A, F)
is controllable, since in this case P!(z, -) is equivalent to Lebesgue measure
fi ol aérégssgibalréd any t > d. By continuity of the model it is easy to check that
(E?%)_h_olﬁﬁith s continuous, and v equal to normalized Lebesgue measure
on an open ball in R%. We conclude that all compact sets are petite if the
controllability condition holds, so that x is a T-chain. A samp 12 yath from
a particular two dimensional linear model is shown in Figure [I.T where it
can be seen that when the state is large, the sample path behavior appears
almost deterministic.

* %

L L |
-100 -50 0 50

Figure 1.1: A sample path of the linear state space model with a ‘large’
—100)

initial condition xg = ( 100

To find a stochastic Lyapunov function V with c(z) = 327 Qx, first solve
the Lyapunov equation

ATPA=P-Q. (1.16)

:cFost
If P > 0, then V(z) = 27 Pz is a solution to (e.gcg.oslgrfact, the function
V is also the essentially unique solution to Poisson’s equation, with J =
trace (PX).

13



For the nonlinear state space model
Ti1 = F(zy, wip1), teN,

the y-irreducibility condition can still be v jrﬁed under a nonlinear controlla-
bility condition called forward accessibility [39, Chapter 7]. The construction
of a Lyapunov function is however far more problem-specific.

Over the past five years there has been much research on algorithmic
methods for constructing Lyapunov functions for network models. One is

based upoe:lirge%r _programming methods, and is si ilag ég)athe Lyapunov
equation (EITR%)'}%Lsed for linear state space m %le];s]ﬁlgjt};% describe here
a recent approach based upon a fluid model%ﬁ'ﬁ% an example we
consider here the simplest case: An uncontrolled M/M/1 queue.

When the arrival stream is renewal, and the service times are i.i.d., then
the waiting time for a simple queue can be modeled as a Markov chain with
state space X = R,.. The dynamics take the form of a one dimensional linear
state space model, where the state space is constrained to the positive half
line. The queue length process is itself a Markov process in the special case
where the service times and interarrival times are exponentially distributed.

v _applying uniformization (i.e. sampling the process appropriately - see
, the queue length process & obeys the recursion

Tip1 = T+ (1 — L) m(we) + g, teN,

where I is a Bernouli, i.i.d. random process: A = P(I(t) = 1) is the arrival
rate, and p = P(I(t) = —1) is the service rate. The function 7 plays the role
of a ‘policy’, where in this simple example we take 7(z) = 1(z > 0). Time
has been normalized so that A+ p = 1.

To construct a Lyapunov function, first note that stability is a ‘large
state’ property, so it may pay to consider the pr tc:ensuglstarting from a large
initial condition. In the left hand side of Figure 1.2 we see one such simu-
lation. As was seen in the linear model, when the initial condition is large
the behavior of the model is roughly deterministic.

Suppose we take the cost function c(z) = z. To construct a Lyapupoy
function we would ideally like to compute the expected sum given in (ﬁ—ﬂ'j,*
with S equal to some finite set, perhaps S = {0}. While this is computable
for the M/M/1 queue, such computation can be formidable for mor%%gﬁlplex
network models. However, consider the right hand side of Figure 1.2 which
shows a sample path of the deterministic fluid, or leaky bucket model. This
satisfies the differential equation ¢ = (—p + \)7(¢), where 7 is again equal

14



400
300 q
200

100~

L L L L
0 4000 8000 12000 0 4000 8000

Figure 1.2: On the left is a sample path z; of the M/M/1 queue with
p=Ap = 0.9, and zp = 400. On the right is a solution to the differential
f.mmi| equation ¢ = (—u + A)mw(¢) starting from the same initial condition.

the indicator function of the strictly positive real axis. The behavior of the
two processes look similar when viewed on this large spatial/temporal scale.
It appears that a good approximation is V*(z) ~

1>

V(z)

/ o(t)dt, (0) =z,
(17
1

2N
If we apply the transition kernel P to V we find, for z > 1,
PV(z) = ANV(z+1)+uV(x—1)
= (A 1)+ (- 1)?)

2(p—A)
1
= V(:c)—:v+2( )’
while for z = 0 we have,
PV(@)= 2 < V(@) -zt
t)=————=<<V(@)—o+-—7——
2(p—A) 2(p—A)

ehc oissﬂevrve see that this approach works: The stochastic Lyapunov criterion
(T.9) does hold with this function V' derived from the fluid model, where
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J = (2(x — A\))71, under the stability condition that p = A\/u < 1. The
actual steady state mean of c¢(z) = z is given by J = A(u — A) !, which is
indeed upper-bounded by J.

What about the more exact Poisson’s equation? Can the fluid model be
used to approximate a solution?

With the cost function ¢(z) = z, the Poisson equation for the M/M/1
queue becomes

Ph=Mh(z+ 1)+ ph((z —1)T) =h(z) —x + J.
One solution is given by

2
e+
h(z) = —
:fluidVal

which is similar in form to the fluid value function given in (el .1 7ui.1 S

For a general class of network models it can be shown that the value func-
tion for the fluid model and the solution to Poisson’s equation are roughly
equal for large x in the sense that

hx) = V(z)(1 + o(1))

where the ‘ﬁse:rnréltggl) — 0 as x — 0o. Some results of this type are described
in Section [I.6.

The M/M/1 queue illustrates nicely the difficulties one faces in using
simulation to esimate steady state performance measures since the time-
average variance constant 2 grows quickly with the ‘system load’. To obtain
bounds on 72 note firstly that the solution to Poisson’s equation for the
M/M/1 queue is a quadratic of the fogr_réli%\(,;gl) = b(1 — p)~1(2? + z), where
b is a bounded function of \. Using (I.14) we conclude that +? is of order
(1 — p)~* in this example since pth moments for the M/M/1 queue are of
order (1 o p)_p' henmey99a

It is shown in m—gﬁf this growth rate on 72 continues to hold for
a general class of network models. The large variance indicates that in
heavy traffic (where p ~ 1) it is computationally expensive to compute the
mean performance through standard Monte Carlo simulation. This provides
ample motivation to find methods for approximating solution’s to Poisson’s
equation to construct reduced variance estimators for net grke nélgélels. The
use of the fluid value function is one promising approach%ﬁlf_y;
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1.4 Optimization
With this background we are now ready to turn to MDP models.

We now assume that there is a control sequence taking values in the
action space A which influences the behavior of &. The state space X and
the action space A are assumed to be locally compact, separable metric
spaces, and we continue to let F denote the Borel o-field on X. Associated
with each z € X is a non-empty and closed subset A(z) C A whose elements
are the admissible actions when the state process x; takes the value x. The
set of admissible state-action pairs {(z,a) : z € X,a € A(x)} is assumed to
be a measurable subset of the product space X x A.

The transitions of & are governed by the conditional probability distri-
butions {F,(z, B)} which describe the probability that the next state is in
B for any B € F given that the current state is x € X, and the current
action chosen is @ € A. These are assumed to be probability measures on
F for each state-action pair (z,a), and measurable functions of (z,a) for
each B € F. We will primarily restrict attention to stationary Markov poli-
cies. Recall that such a policy, denoted 7 € II%, is a measurable function
7 : X — A such that 7(x) € A(z) for all z. When the policy 7 is applied to
the MDP, then the action 7(x) is applied whenever the MDP is in state z,
independent of the past and independent of the time-period. We shall write
Pr(z, B) = Pr(y)(z, B) for the transition law corresponding to a policy .

The state process ™ 2 {zF :t > 0} of the MDP is, for each fixed policy

7, a Markov chain on (X, F), and we write the ¢-step transition probabilities
for this chain as

Pl(x,B) =P(z € B |z} = ), re€X, BeF, teN.
In the controlled case we continue to use the operator-theoretic notation,
t A T g
Prh(x) = E[h(z}) | 25 = ]

In the remander of this section we will first recall the ACOE for an MDP,
and then develop two algorithms which can be used to construct solutions
to these equations. The value iteration algorithm (VIA) will be considered
first, which is simply the successive approximation procedure. The results
describe mainly stability of the policies generated by the algorithm, %Iéde 99a
some bounds on steady state performance. These resulﬁ%}%&z based on ﬁO%L
The policy iteration algorithm (PIA), first proposed in , may be viewed
as a version of the Newton Raphson method, and is consequently consider-
ably more complex than value iteration. It is however far easier to analyze.
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We find under the assumptions we impose that it exhibits nearly mono-
tone convergence, and that the algorit 1 %)es generate successively better
policies. These results are taken from .

More backeround and conyergence results fqr such aloorithing may be o) cno6a

found in [T, 5, 7, 8, 27, 29, 28, 48, 54].

1.4.1 Regular policies and the ACOE

We now suppose that a one-step cost function c: X x A — [1,00) is given:
we assume below St:}iag c af‘&ilssﬁtles a near-monotone condition so that the
results of Section 1.2 and %.23 may be applied. For any policy m we denote
cr(y) = c(y,w(y)), and we denote the steady state average cost by

n—1

J(m, ) 2 lim sup 1 E, {Z Cr (w?)] .

n
n—o0 t—0

A policy , will be called optimal if J (7., x) < J(m,z) for all policies 7, and
any initial state x.

The policy 7 is called regular if the controlled chain ™ is a c,-regular
Markov chain. This is a natural and highly desirable stability property for
the controlled process. If the policy is regular, then necessarily an invariant
probability measure i, exists such that p,(c;) < co. Moreover, for a regular
policy, the resulting average cost is independent of the starting point of the
chain: J(m,z) = pr(cq)-

When J, = J(m, x) is independent of z, then the associated ACOE
are given as follows, where the function h, is known as the relative value
Sfunction.

Ji + he(z) = min) [c(z,a) + Pyhy ()] (1.18)

a€A(z
m«(x) = argminfc(z,a) + Phy (7)), z e X. (1.19)
a€A(x)

If a policy 74, a measurable function h,, and a constant J, exist which solve

these, equations, the, typirally the,policy, - is optimal (see for example
1, b, 26, 48, 53| tor a proot ot this and related results).

Theorem 5 Suppose that the following conditions hold

:0E1
(a) The pair (J., hs) solve the optimality equation (e1.187;
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:0E2
(b) The policy m. satisfies (e1.197, so that
Cr. (%) + Pr.hy () < ¢, a) + Pyhy (), r€X, a€A).

(¢) For any x € X, and any policy 7 satisfying J(m,z) < oo,
1
—Ph, (z) — 0, n — oo.
n

Then 7, is an optimal control, and J, is the optimal cost, in the sense that

1 n
lim — Z]Ex [en, (7)) = iy
t=1

n—o0o N

and J(m,x) > Ji for all policies w, and all initial states x. .

The assumption (c) is unfortunate, but examples show gh@{c some addi-

tieo%gll conditions on h, arggaggg%lei&ego rgasegseé%ks;';)%% gﬁ?rgg )5 , Chapter 7 of

, or the examples in [T, 16, 4%, 5UJ15. The following result gives a con-
dition i Spﬁgggﬁ({:) whi sh nigtg}gten verifiable in practice, as we shall see in
Section ;.5 and Section [I.6.

If the controlled chain ™ is v,-irreducible and the resulting cost J 2
pr(cn) = [ cx(z)pr(dz) is finite, let S, denote any fixed c,-regular set for
which pr(Sz) > 0. We then define the function

Tn—1
Valw) = Ea[ Y exlaf)]. (1.20)
t=0
ere T, = Ts,. Since pr(Syz) > 0, the function V; is a.e. [u,] finite-valued
, Theorem 14.2.5]. Note that by [39, Theorem 14.2.3], the particular c,-
regular set Sy chosen is not important. If Sl and S2 give rise to functions
V! and V2 of the form (I[.20), then for some constant y > 1,

TV (@) < VE(z) <4V, (), zeX
ey97b

Theorem 6 (Meyn [42]) Suppose that
:0Elle: 0OE
(a) The optimality equations (el. 28,e2. 29)7 hold for (my, hy, Ji), with h, bounded
from below;

(b) For any policy w the average cost Krcy is finite and norm-like, and all
compact sets are petite for the Markov chain x™;

(c) For any policy 7 there exists some constant dy = do(w) < co such that,

|hs(z)] < doVi(), z eX. (1.21) [e:relativeBound

Then 7 is a regular, optimal policy.
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s:via

Proof. To show that ., is regular we consider the Poisson equation for
the Markov chain with transition kernel K, :

Kw*hf* = hy — Kﬂ'*cﬂ'* + Js.

Unde t;qliet gfglgprgtrlgn that h, is bounded from below, it follows from The-
L that the “K

orem r.-chain” is K c,, -regular, and regularity of m, follows.
To prove optimality suppose that 7 is any policy, and note first that if
J(m,z) = oo for all z, then there is nothing to prove. If not, then since all
compact sets are petite, the Markov chain &7 is a positive recurrent T-chain,
with unique invariant probability p,, and J; = pr(cr) is finite %9, Theorem
14.0.1].
Under the assumptions of the theorem, we can show inductively that

n—1
PrVe=Ve = Pllcr — sq),
t=0

where s; > 0 and satisfies pir(sz) = pr(cr). This function can be written
explicitly as

Te—1
su@) = [ Prlo,dy) B, [ Y exlan)]
Sx =0
T
It follows from [3), Theorem 14.0.1] that Pr'Vz(z)/n — 0 as n — oo for a.e.
e relativeBound ” . .
[ux] z € X. By (I[.2T), we also have PI'h, (z)/n — 0, and it easily follows
that J(m,z) > J(m,) for such z. To generalize to arbitrary x we use the

norm-like assun%gt%% on ¢ which implies that J(m,x) > pr(cy) for allz € X

(for details see .

1.4.2 Value iteration

The ACOE can be viewed as a fixed point equation in the variables (A, J).
By ignoring the constant term and applying successive approximation to this
fixed point equation we obtain the VIA: Suppose that the positive-valued
function V,, is given. Then the policy 7, is defined as

7n(x) = arg min[P,V,, (z) + c¢(z,a)], z eX,
a€A(x)

and one then defines

Vot1(x) = cr, () + Pr, Va(z) = aIEIE(I:lc) (PaVa (z) + ca()),
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which then makes it possible to compute the next policy mp41.-
This is in fact the standard dynamic programming approach to con-
structing a finite horizon optimal policy since for each n we may write,

|
—

V(z) = minIEa;[ c(D(t), a(t)) + Vo(@(n))], (1.22)
t

where {a(t) : ¢t > 0} is a sequepce of actions determined by some Markov
l 22(% 18 with

policy, and the minimum in (IT. respect to all such policies.
To simplify notation we define ¢, = ¢, , P, = Py, , and we define the
resolvent for the nth policy by

I
<)

K, 2(1-8)) B'F, n=>0, (1.23)
t=0

where 3 €]0, 1 as before. We let E™ denote the expectation operator induced
by the stationary policy .

Let v denote some fixed finite measure on F - we will impose conditions
below which ensure that v(V},) is finite-valued. We then define for each n
the normalized value function, and the incremental cost,

hn(z) = Vo(z) — v(Vy); () = Vpta1(z) — Vo (z), zeX,neN.
(1.24)

From the definitions, for each n we have the familiar looking identity P, h,, =
hn — ¢ + Yn- For this to imply any form of stability for the policy m, we
require that 7, be bounded from above. When this is th . cage_we define
Jp = sup, Y (x), so that we have the following solution to ‘(71_%

PV <V —cp + Jn. (1.25)

Useful bounds on +, will in general require conditions on the initial
condition V. We show here that a sufficient condition is that 1} act as a
Lyapunov function for some policy. We assume that at least one regular
policy 7_; exists, and that for some constant J < oo,

P Vo <Vo—cn_, +J. (1.26)

The existence of a pair (Vp, 7_1) satisfying (ﬁ%}aﬁlsiﬁlatural stabilizability
assumption on the model.

The assumptions below ensure that the algorithm can be initialized to
generate stabilizing policies. Condition (A2) relates the average optimality
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| e:ValueFunction

| e:almostFish-a




t:VIA—c—regular‘

problem with the discounted optimal control problem: this assumption is
satisfied if the state dependent cost Vj is norm-like, where Vg(x) denotes the
optimal cost for the discounted optimal control problem when the discount
factor is equal to (3, and the initial condition is z. Assumption (A3) is a
uniform minorization condition on the MDP model.

(A1) For each n, if the VIA yields a value function V,,: X — Ry, then the
minimization

T () e arg min [c(x, a) + PV, (m)]
a€A(z)

admits a measurable solution .

(A2) For each fixed z, the function ¢(z, -) is norm-like on A, and there
exists a norm-like function ¢: X — Ry such that for the policies m,
obtained through the VIA,

oo > Kpep (z) > c(z), for any z € X, n € N.

(A3) There is a fixed probability v on F, a 6 > 0, and an initial value
function Vy with the following property: For each n > 1, if the VIA
yields the value function V,,, then for any policy 7, given in (A1),

K, (z,A) > ov(A) forallz € S, Ac F, (1.27)
where S denotes the precompact set

S ={z:c(x) <2J}. (1.28)

h, 99
The following result is largely taken from 0] —

Theorem 7 Suppose that (A1) and (A2) hold, and suppose that for each of
the policies {mn} obtained through the VIA, all compact sets are petite for

the Mg{ko.v chain ™. Assume moreover that the initialization V satisfies
e:st e-1cC
(;.265. The

n7
(i) Each of the policies {m; : i € N} is regular.
(ii) The upper bounds {J,} are decreasing:

Jo>Ji> > dp >

(iii) If in addition Assumption (AS8) holds, then the sequence {hy} is uni-
formly bounded from below.
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Proof. The main defi is s to. app ly the following bound on the resolvent,
(I 25;.

which follows from

KV<W—JLK%+JLJ (1.29)

1-p 1-p

This inequality is a version of (h_é:{oss‘frslcre V,, > 0, provided that .J, is finite.

The minimization in the value iteration algorithm immediately leads
to the bound Py, > Yn+1- From this we deduce by induction that the
Jn, are finite and decreasing, which proves (ii). The initialization of the
induction relies on the assumption hat the initial condition Vj satisfies
(E_Zﬁ%)lymg T heoremﬁld I]E\I;fhlcItllmlrzt apphcable under (A2) for the kernel
K,,, we see that the Markov chain with transition kernel K, is c-regular.
This implies (i).

To prove (iii) note first of all that hy,(z) > —v(V,,) > —oco for all z. It
remains to obtain a bound independent of n. For any n we have

Kphn < hy — Kpep +J < hy + J1g
Letting s = 615 we then obtain, for some measure v,
(Kp — 5@ )y < hy +J6 s

and by iteration, for any N,

N-1

—v(Vo)(Kp —s®u)N1<( —S®I/)Nh < hy,+J6 12 —S®l/)i8

=0

By c,-regularity of the nth chain one can show that for any =z,

o0

Z(Kn —s®v)c(z) < oco.

=0

Since ¢ > 1 it follows that (K, —s® v)N1(z) — 0 as N — oo for any z.
This then gives the bound

o0
0 < hy+J6  Hys 2 J671Y (K — s @ v)'s.
i=0
The proof is completed on noting that Y oo (K, —s®v)is () < (6(1—6))7!
for all = (this can be seen by noting that this sum is rgg ional to the
hitting probability to an atom for the split chain as in
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Convergence of the algorithm is subtle. This is not surprising since it is
rare in optimization to prove global convergence ofllsél(éc%%%ive approximation.
The countable state space case is considered in ﬁﬂ%@e it is shown that
(A1), (A2), and a strengthening of (A3) do imply convergence of {hy} to
a solution of the ACOE. To generalize this result to general state sigaces it

may be necessary to impose a blanket st% ?Lé‘@f con&ltlon as in or the

stronger stability assumption imposed in

1.4.3 Policy iteration

The PIA, which is again a recursive algorithm for generating useful policies,
follows natural as a refinement of the VIA. Recall that the key observation
in Section 1.4, 2 was the drift inequality,

P V1 < Vo1 —cp—1+ jn—l,

From this bound we discovered easily that the next policy m, has cost
bounded by J(m,,z) < Ju-1, = € X. We have Seen that there are an
infinite number of solutions to the drift inequality (}'I_%JTTM' some give bet-
ter bounds than others. The optimal solution is the solution to Poisson’s
equation, since this gives the minimal possible value for J. If the function
V1 is replaced by the solution to Poisson’s equation in the VIA recursion
then one obtains precisely the PIA.

To give a precise description of the algorithm, suppose that at the (n —
1)th stage of the algorithm a policy 7,1 is given, and assume that h, 1
satisfies the Poisson equation

Py_1hp—1=hp—1—cp—1+ Jn—l,

where P,_1 = Py, _,, cn-1(z) = ¢r,_, () = c(z,mp-1(x)), and J,_1 is a
constant (equal to the steady state cost with this policy).

Given h,_1, one then attempts to find an improved policy 7, by choos-
ing, for each z,

Tn(z) = argmin|c(z, a) + Pohy_1 (z)]. (1.30)
a€A(x)

Once m, is found, polices 7,11, Ty12, ... may be computed by induction, so
long as the appropriate Poisson equation may be solved, and the minimiza-
tion above has a solution.

Recall that the relative value functions {hy} are not uniquely defined:
If h,, satisfies Poisson’s equation, then so does h, + b for any constant b.
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The main results to follow all apply to specific normalized versions of the
relative value functions.

We find that the PIA is more easily analysed then the VIA since we
know a great deal about the structure of solutions to Poisson’s equation. To
begin, consider the pair of equations

Pohy = hy—cy (1.31)
Pohp—1 = hp—1—20Ch+ Yn, (1.32)

. e:almostFish .. .
vxéh%e_) Oy = Cn— Jn, and 7y, is defined through (I.32;. From the minimization

(h_.m have

cn+ Pohp 1 <cp1+ Py 1hpa,
and from Poisson’s equation we have
Cn-1+ Po1hp_1=hp_1+ Jy_1.

Combining these two equations gives the upper bound ~,(z) < J,—1

‘leidFoster
z € X, which shows that the PTA automatically generates solutions to (Ig ;,

provided the functions {hy} can be taken to be positive. Through these
observations we will show that the sequence {J,,} converges monotonically,
which shows that the limit superior of {7,} is bounded from above by zero.
Under suitable conditions we also show that the sequence {h,} is bounded
from below, and this then gives a lower boynd on {v,}: Since pur,(cn) = Jn,
it follows from the Comparison Theorem [[39, p. 337] that pr, (v,) > 0.

Thus, for large n, the error term 7, is small, and hence the function h,_;
almost solves the Poisson equation for P,. One might then expect that h,
will be close to h,_1. Under mild conditions, this is shown to be true in a
very strong sense.

_;A Jyas the case with the value iteration algorithm, I ;Rﬁhd8§ the analysis
of ocuses on {Kp,} rather than {P,}, as given in (ﬁ;??)._’if‘o invoke the
algorithm we must again ensure that the required minimum exists. Condi-
tion (A g‘lrsi é‘ilso identical to our earlier assumption on the one step cost in
Section [T.24.2.

(A1) For each n, if the PIA yields a triplet (mp—1, hn—1, Jn—1) which solve
Poisson’s equation

Py_1hn—1=hp_1—cp—1 + Jn—1,
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with h,_1 bounded from below, then the minimization

T () 2 argmin [c(z, a) + Pyhy—1 ()]
a€A(z)
admits a measurable solution 7.
(A2) For each fixed z, the function c(z, -) is norm-like on A, and there

exists a norm-like function ¢: X — R, such that for the policies 7,
obtained through the PIA,

oo > Kpep (x) > c(z), for any z € X, n € N.

Under Assumptions (Al) and (A2), the algorithm Draduces stabilizing
policies recursively. The proof is identical to Theorem 7.

ey97b
t:PIA—c—regular‘ Theorem 8 (Meyn i42|i Suppose that (A1) and (A2) hold, and that for

some n, the policies {m; : i < n} and relative value functions {h; : i < n}
are defined through the policy iteration algorithm. Suppose moreover that

(a) The relative value function h; is bounded from below, i < n — 1.

(b) All compact sets are petite for the Markov chains {x™, i <n—1}, and
i . . . :
) n .
for ™, where , is a policy given in (A1)

Then, the PIA admits a solution (7p, hn, Jn) such that

(i) The relative value function hy, is bounded from below;
(ii) Each of the policies {m; : i < n} is regular.

(iii) For all 0 < i < n the constant J; is the cost at the ith stage: J; = J(m;),
and the costs are decreasing:

Jo=Jv = 2 Jn;

To obtain convergence of the algorithm, we strengthen assumption (b)

of Theorem E to the following uniform accessibility condition:

(A3) There is a fixed probability v on F, a § > 0, and an initial regular
policy mg with the following property: For each n > 1, if the PIA yields
a triplet (mp—1, hn—1,Jp—1) with hy,_1 bounded from below, then for
any policy 7, given in (A1),

K,(z,A) > 0v(A) forallze S, AeF, (1.33) |e:nuAccessibility]

where S denotes the precompact set

S = {: clo) < 2. (1.3
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. t:PIA-c-regular A A
If the assumptions of Theorem & hold, so thaf the relative value functions

are b u¥1d d from below, then the mlnlmal solutlon hy to P01sson S equa-
tion ;.12; which is bounded from below, and w 1<%h i%tlsﬁq_s v Q is
deﬁned through the potential kernel in equation (I eoremnh_THese
particular versions are in fact convergent:

ey97b
Theorem 9 (Meyn i4%|i Suppose that (A1)-(A3) hold, and that the ini-
tial policy mq is regular. Then for each n the PIA admits a solution (1, hy, Jy)
such t.hat T s, Fequlgr, and the sequence of relative value functions {hy} de-
fined in (1. satisfy,

(i) For some constant N < oo,

inf —N;
ze%ﬁI}nZO hn ($) > ’

(ii) There ezists a sequence of functions {gn : n > 0} such that
gn(2) < gn-1(z) < -+ < go(z), ze€X, n>0,
and for some sequence of positive numbers {ag, O},
gn(z) = anhp(z) + Bn, 1 >0, z€X,
with o, | 1, B | 0 as k — oo.

These properties together imply that the relative value functions are point-

wise convergent to the function h(x) 2 fim, gn(x). .

We have already remarked that the average cost optimal control prob-
lem is pl Uﬁld with counterexamples It is of some interest then to see why
Theoremag_dwgfa‘ll into any of these traps. Consider first counterexam-
ples 1 and 2 of [0, p. 142]. In each of these examples the process, for any
policy, is completely non-irreducible in the sense that P(zf < zf) = 0 for
all times ¢, |and 19 e]:S)OI{)CJfS 7. It is clear then from the cost structure that
the bound (I.33) on the resoﬂvenkc%%gm%t Pold A third example is given in
the Appendix of . Here (I.33) 1s directly Lassumed! However, the cost is
not unbounded, and is in fact designed to favor large states.

The assumptions (A2) and (A3) together imply that the center of the
state space, as measured by the cost criterion, possesses some minimal
amount of irreducibility, at least for the policies {mp}. If either the un-
boundedness condition or the accessibility condition is relaxed, so that the
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process is non-irreducible on a set where the cost is low, then we see from
these counterexamples that optimal stationary policies may not exist.

Now that we know that {hy} is pointwise convergent to a fupctign h, we
can show that the ﬁ% Xsiglsds a solution to the ACOE. Theorem :U is similar
to Theorem 4.3 of which also requires a continuity condition related to
(A4). Weaker conditions are surely possible for a specific application.

(A4) The function c: X x A — [1,00) is continuous, and the functions
(Pyhp (x) : n > 0) and P,h (x) are continuous in a for any fixed z € X.

ey97b
Theorem 10 (Meyn i4%|i Suppose that (A1)-(A8) hold, and that the ini-
tial policy mo is reqular. Then,

(i) The PIA produces a sequence of solutions (7, by, Jy) such that {e@(}E S
pointwise convergent to a solution h of the optimality eq gtagg 18),
and any policy m which is a pointwise limit of w, satisfies (1.19). More-
over, the costs {J,} are decreasing with n.

(ii) Any limiting policy m is cr-regular, so that for any initial condition
z €X,

J(m,z) = lim —ZE ler(z])] = pr(cx)-

n—oo n

t:PIA-opt . . e:0E

Observe that Theorem [I0 still does not claim that the solution to (l.l8=
gives rise to an optimal policy. For this one must impose extra conditions.
For ir}stance, t.he limiting po.lif:y will be optim % Bﬁovided the ggzl%;cni\ger a\ﬁleue
function h satisfies the conditions of Theorem 5 or Theorem % Because of
the monotone convergence, this will be implied by a bound on the initial
condition (o, ho)-

We now illustrate the theory with some general examples.

1.5 Linear models

The controlled linear state space model is defined through the recursion,
Ty+1 = Az + Bag + wiy1, teN, (1.35)

where wy, z; € Rd, and a; € RP. The cost ¢ in the linear-quadratic control
problem takes the form

c(z,w) = 127 Qz + Lw" Ruw, (1.36)
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with Q > 0, and R > 0. If w is i.i.d., then this is a Markov decision process
with transition function

Py(z,C) =P(wy + Az + Ba € C).

The optimization of J (7, ) is known as the LQG (linear-quadratic-Gaussian)
problem in the special case where w is Gaussian white noise. Note that the
assumption ¢ > 1 fails in this example. However, ¢ is positive, so that we
can add 1 to the cost function to satisfy the desired lower bound on ¢ and
the MDP is essentially unchanged.

In the Gaussian case one may obtain a solution (7, hy, Ji) to the ACOE
with h, quadratic, and 7, linear in z, by solving a Riccati equation. Why
then should the solution give rise tg an optimal policy? This question can be
answered using Theorem LS: Suppose that 7 is any (measurable) nonlinear
feedback control. From the assumption that ¥ > 0, the process ™ }es Kl
irreducible, with 1) = Lebesgue measure. The function V; given in ( 23;)
then satisfies the lower bound

o
Va(z) > 27" Pley () > Vy(2) — b, (1.37)
t=0

where Vi is the value function for the discounted problem, and b is a finite
constant. To see this, let 7, = 75_, and write

00 Tr—1 [e's}
Vi(2) <) 27'Pren (@) = Eo[) | 27%en(al)] + Bal Y 2 en(a)]
t=0 t=0 t=Tr

VAN

(e}
Vi(2) + Eo[27™ )2 Fen(a] )]
t=0

e:1qg-A4
The lower bound (II 37 i on V, then follows from the strong Markov property,
and re')g'ularlty off the set S,r.. If (A,/Q) is observable so tha‘gﬁ :Tgémdg)rgléilg‘.ues
a positive definite quadratic, then we see from Theorem % that the lin-
ear/quadratic solution (7, hs) to the ACOE does yield an optimal policy
over the class of all nonlinear feedback control laws.

The linear state space mo g}éikfes an gécellent test—'case for interpreting
the assumptions of Theorems [/=9. Condition (Al), which demands the ex-
istence of a minimizing policy, is satisfied because the model is continuous.
The assumption of an initial regular policy is simply stabilizability of (A, B).
The norm-like condition (A2) is implied by the standard observability

Q4g-cost
%&& on (A,+/Q), where Q is the state weighting matrix given in (el.3§i <02
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. . el e1e L. le:nulccessibilityVIA
To verify the uniform accessibility condition (II.27) in (A3), suppose the

initial policy 7y is linear, so that each subsequent policy is of the form
mn(z) = =Kz, and let A, = A— BK,, denote the closed loop system matrix.
Then the accessibility condition (A3) holds if ¥ > 0, and the steady state
costs {J,} are bounded. For both the PIA and the VIA, the boundedness
condition holds automatically under (A1) aundFG (Ml tgggg}%h %‘%%lf;lrity of the
algorithm, which is guaranteed by Theorems [7 and B, e

From these results it follows that Theorem bmﬁﬁown properties
of the Newton-Raphson technique applied to the LQG problem. Consider
the well known decreasing property of thte:ﬁgl_%gi,%%% «LAH} to the associated

Riccati equation. The proof of Theorem 9 depends upon the bound

b (%) < [1 4 2(Jn—1 — Jn)]Pn-1(x) + bn, (1.38)

where b,, is a constant. In the case of linear controls, it can be shown that the
relative value function h, takes the form hy,(z) = hy,(0) + 27 Apz. Letting
T — 00, it follows from the previous inequality that

Ap < [1 + 2(Jn—l - Jn)]An—la n 2> 1 (1'39)
£90 i90 :h-bdds2
It may be shown directly that A, < A, ulg, G0] ,lso the bound (e. 2 &gscrease

not tight in the linear model. However, the semi-decreasing property
is sufficient to deduce convergence of the algorithm.

There is no space here to consider the VIA in further detail. We note
however that it is well known that the successive approximation procedure
generates stabilizing policies for the linear statt:%ixgg_golglegrprovided the
initial policy is stabilizing and linear. Theorem ( shows fﬁa’ﬁ it is enough to
assume only stability.

1.6 Network models
-_s :netEx

We now apply the general results of Section HELEO the scheduling problem
for multiclass queueing networks. For simplicity we discuss here only a
relatively simple class of network models which can be formulated through
an extensijne oggghe M/M/1 model. A treatment of general network models

is given in .
Consider a network composed of d single server stations, indexed by
o =1,...,d. The network is populated by £ classes of customers: Class k

customers require service at station s(k). An exogenous stream of customers
of class 1 arrive to machine s(1), and subsequent routing of customers is
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deterministic. If the service times and interarrival times are assumed to be
exponentially distributed, then after a suitable time scaling and sampling of
the process, the dynamics of the network can be described by the random
linear system,

14

Te41 = Tt + th+1(k) "+ — €¥ay(K), (1.40)
k=0

where the state process & evolves on X = N¥, and z;(k) denotes the number
of class k customers in the system at time ¢. An example of a two station
network is illustrated in Figure [I.3.

The random variables {I,, : n > 0} are i.i.d. on {0,1}*1, with

P{> i In(k) =1} =1, and E[I, (k)] = 1.

For 1 < k < 4, uy denotes the service rate for class k& customers. For k = 0,

we let ug £ ) denote the arrival rate of customers of class 1. For 1 <k</¢
we let eF denote the kth basis vector in R¢, and we set e? = ef*1 2 0.

The sequence {a; : t > 0} is the control, which takes values in {0, 1}¢+1.
We define a4(0) = 1. The set of admissible control actions A(z) is defined

in an obvious manner: for a € A(x),

(i) Forany 1 <k </{,a,=0or 1;

(ii) Forany 1 <k </, zp = 0= a; = 0;

(iii) For any station o, 0 < 374 cy—par < 1;

(iv) For any station o, Ek:s(k):a ar = 1 whenever Zk:s(k):a x> 0.

If a = 1, then buffer k is chosen for service. Condition (ii) then imposes
the physical constraint that a customer cannot be serviced at a buffer if that
buffer is empty. Condition (iii) means that only one customer may be served
at a given instant at a single machine o. The non-idling condition (iv) is
satisfied by a aoptimal policy with this cost criterion: An inductive proof
is given in ased upon value iteration.

Since the control is bounded, a reasonable cost function is c(z,a) = ¢!z,
where ¢ € R is a vector with strictly positive entries. For concreteness, we
take c(z,a) = |z| 2 > x(k). Since A(x) is a finite set for any z, it follows
that (A1) holds with this cost function.
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A x, (1) x,(2)
x.... ].11 —> 000 uz

Machine 2
Machine 1
x,(3)
Figure 1.3: A multiclass network with d = 2 and £ = 3.
The transition function has the simple form,
Po(z,z 4+ —ef) = ppap, 0<k<L

¢
Po(z,2) = 1- Zukak
0

The accessibility condition (E.ﬁ?)%l%slﬁ%vith s everywhere positive, and v =
89, with @ equal to the empty state @ = (0,...,0)7 € X. This follows from
the non-idling assumption.

Associated with this network is a fluid model. For each initial condition
xo # 0, we construct a continuous time process ¢*(t) as follows. If m = |zg|,
and if ¢m is an integer, we set

1
£ —
¢°(t) = —Tm-

For all other ¢ > 0, we define ¢*(¢) by linear interpolation, so that it is
continuous and piecewise linear in ¢. Note that |¢*(0)| = 1, and that ¢* is
Lipschitz continuous. The collection of all “fluid limits” is defined by

L2 N1 [2[>n)
n=1

where the overbar denotes weak closure. This set of stochastic process of
course depends on the particular policy « which has been applied. The
process ¢ evolves on the state space Rﬂ and, for a wide class of scheduling
policies, satisfies a differential equation of the form

l
S ot) =3 maleh ™" — Fhua(h), (1.41)
k=0
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where the function u; is analogous to the discrete control, and satisfies. S%m aiveioh
ilar constraints (see the M/M/1 queue model described earlier, or iB ¥
for more general ee'}ﬁ%mples)

Stability of (h7[07 in teﬁm%gf c—regt@grl‘%y c&gsely connected with the

stability of the fluid model [I3, 35, l4j e fiwid model £ is called L,-stable
if

Jim sup E[J¢(1)] = 0.
t—o0 ¢€£

ey96a
It is shown in [35] that Lo-stability of the fluid model is equivalent to a form

of c-regularity for the network.
kummey96a

Theorem 11 (Kumar and Meyn [35]) The following stability criteria are
equivalent for the network under any nonidling policy.

:cFost
(i) The drift condition (ei.ycjoﬁsoelilrs for some function V. The function V is

equivalent to a quadratic in the sense that, for some v > 0,

L+qlz? <V(z) <14+y7Yz, zeX (1.42)

(ii) For some quadratic function V,

[ZL’vn] < V(z), z €X,

where gy s the first entrance time to @ = 0.

(iii) For some quadratic function V and some J < oo,

N
ZE$[|$,L|] < V(x)+NJ, forallz and N > 1.

n=1

(iv) The fluid model L is Ly-stable.

The previous result can be strengthened: i gh 7{211uid model is Lo-stable,
then in fact ¢(t) = 0 for all ¢ suﬂicﬁegt%iblarge il

Using this result it is shown in at when applying policy iteration
to a network model, on performing the fluid scaling one obtains a sequence
of fluid models which are the solutions of a policy iteration scheme for the
fluid model. Moreover, the algorithm convergence to yield a policy which is
optimal for both the network and its fluid mod 1.:e i

Let us turn to the VIA: In view of Theorem [T, how should we initialize
the algorithm? Two possibilities are suggested:
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126, W)

w4k Standard VIA

............ Initialized with optimal fluid value function

12.2F - - - Initialized with a quadratic v, (x) = XxTQ x
12F!

11.81

1141

1120 R

1k R

Figure 1.4: Convergence of the VIA with V; taken as the value function for
the associated fluid control problem, or a pure quadratic function obtained

through a linear program.

(i) Given the previous analysis of the M/M/1 queue it appears natural to
set Vp equal to the value function for a fluid model,

Vo(z) = min/ooo 6| dt B(0) =z, 7€ X,

where the minimum is with respect to all policies for the fluid model.

One can Ellé?gg ;Elrll%% r,}l%%gvggsyo does approximate the relative value

function [41, 42, 25].

(ii) The conclusion that the relative value function is ‘nearly g adratic’
suggests that we search for a pure quadratic form satisfying (.9 E,

Vo(z) = 27Qz, z € X.

ey96a . .
In (gﬁ ?08!1 near program is constructed to compute a qun%u(}nrkaﬁtl'%&%? %%Qa%tsi%a

to or network models, based on prior results of [[36, 46].

We conclude with a numerical experiment to show how a careful ini-
tialization can dramatically speed convergence of the VIA. We consider the
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three buffer model illustrated in Figure E_fél%vith the following parameters:
Mpg = 9/10; A/u1 + A/us = 9/11; and p1 = ps. The optimal value func-
tion can be computed explicitly in this case, and a pure quadratic Lyapunov
function can also be computed easily.

Two experiments were performed to compare the performance of the
VIA initialized with these two value functions. To apply value iteration
the buffer levels were truncated so that x; < 45 for all 4. This gives rise
to a finite state space MDP with 453 f::r_,l%llal% states. The results from
two experiments are shown in Figure mr comparison, data from the
standard VIA with V5 = 0 is also given. We have taken 300 steps of value
iteration, saving data for n = 10,...,300. The convergence is exceptionally
fast in both experiments. Note that the convergence of J,, is not monotone in
the experiment shown using the fluid value function initialization. However,
this initialization leads to fast convergence to the optimal cost J, =~ 10.9.

1.7 Extensions and Open Problems

It is hoped that the development in this chapter has suggested to the reader
some interesting topics for further research. We list here some areas which
have been of interest to the author.

Continuous time There is very little of interest to say in the continu-
ous time framework unless one specializes to an interesting class of models.
In this chapter the analysis has been restricted to a resolvent kernel, and
the same approach can be followed in continuous time where the resolvent
becomes

o0
Rs = / Be PPt dt
0

with 8 > 0. Again one can show that any variable of interest (the in-
e clkoster

variant measures, solutions to Poisson’s equation, or solutions to (I. can

be mapped between the res%leerétlbaré(einggg continuous time process. Further

discussion may be found in [4Z]

Geometric ergodicity and risk sensitive control The risk sensitive
control criterion is given via

—

Jy(m, ) 2 li:zn sup % log (IE;C [exp (fy jz:%l cw(m?))] ) .
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where the ‘risk factor’ v is typically assume to l;e a small, positive number.
Models of this sort were first considered in )3, p. 329] for finite state space
o%jaetl and ggmplete solutions to the optimization problem were given in
132, 51], agaln in the finite state space case. This control problem has at-
tracted more recent attention because Off th;sn%i_‘[%}rn%%‘%lil% cog%nectlons between
risk sensitive control and game theory [33, 21T, 60].
Under a norm-like condition on the model it can be shown that when
this cost is finite valued, the M%rliov %]galgo Xhl?éts a strong form of stability
known as geometric ergodicity [[2, 6] bonversely, such stability assumptions

&lmI% a?:’; gtehcav he cost is finite, and ensure that an optimal policy does exist

Our present understanding of the optimization problem for Markov chains
on an infinite state space is currently very weak, but this appears to be an
area worthy of further study.

Simulation The use of simulation will become increasingly important in
both evaluating and synthesizing policies. Much of the burden of finding an
optimal policy surrounds the solution of Poisson’s equation, for which now
there are several simulation based algorithms such as temporal difference
learning, and there retgllggasimulation based versions of both value and
policy iteration (see %ﬁi

Complexity This has always been one of the most challenging issues in
optimal control. Markovian models are frequently too ‘fine grained’ to be
useful in optimization. One solution then is to seek some form of aggrega-
tion. For general MDP models one can directly discretize the state space
to obtain a finite state space model. In the case of network models, either
fluid models or Brownian motion models provide approaches to aggregation
which deserve further study.
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