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Chapter 1

On the Poisson equation for
countable Markov chains:
Existence of solutions and
parameter dependence by
probabilistic methods



Abstract

This paper considers the Poisson equation associated with time-homogeneous
Markov chains on a countable state space. The discussion emphasizes prob-
abilistic arguments and focuses on three separate issues, namely (i) the ex-
istence and uniqueness of solutions to the Poisson equation, (i) growth
estimates and bounds on these solutions and (iii) their parametric depen-
dence. Answers to these questions are obtained under a variety of recurrence
conditions.

Motivating applications can be found in the theory of Markov decision
processes in both its adaptive and non-adaptive formulations, and in the the-
ory of Stochastic Approximations. The results complement available results
from Potential Theory for Markov chains, and are therefore of independent
interest.



1.1 Introduction

Let P = (pgy) be the one-step transition matrix for a time-homogeneous
Markov chain {X;, t = 0,1,...} taking values in some countable space X.
This paper is devoted to the corresponding Poisson equation with forcing
function ¢ : X — R, namely

h(z) + J = c(x) + Zypzyh(y), reX (1.1)

for scalar J and mapping h : X — R. This equation arises naturally in a
variety of problems associated with Markov chains as the following examples
indicate. . | eci3 . . '

1. As shown in Section IT.3; solving the Poisson equation provides a means
to ggg‘lzuat?e c;ch&l g-run average cost J associated with the cost function
c [30[: If (T.I) has a selption (h, J) and some mild growth conditions are

- :Lemma 3.1
satisfied, then Lemma 2 sfafes that

J = hmt EN

14
t+1 ZC(Xs)] (1.2)

s=0

where p is the initial distribution and E, is the corresponding expectation
operator. The function h measures the sensitivity of the cost to the initial
state, and represents a second-order effectlpﬁ?"ﬁ captured through the “devi-
ation matrix.” The fu tion h can also serve as a “Lyapunov function” in
establishing ergodicity , and plays A key role in proving the convergence
of the policy improvement algorithm EZHI

2. In recent years, there has been widespread interest in stochastic approx-
imation aﬁgg’iégg’slﬁsshﬁ“means to solve increasingly complex engineering
problems [T, 5, 14, I5].  As a result, focus has shifted from the original
Robbins-Monro algorithm to (projected) stochastic approximations driven
by Markovian “noise” or “state” processes. Properties of solutions to an

appropriate Poisson equation play an essentwP ’rﬁ}}&Men a%ighéﬂgl ;che

iam,MPa,]
a.s. convergence of such adaptive algorithms [I, 16, 20, 22, 23, 3

3. In the context of Markov decision processes (MDPs), the need for adap-
tive policies can arise j response to both modeling uncertainties and com-
putational limitations . Several adaptive policies have been proposed as
“implementations” to a ,M?ﬁs f&gfﬁgﬁl% a?lOliCy’ and shown to yield the
same cost performance [3, 16, 17, 21, 34]. Here too, the analysis requires
precise information on tlig%ﬁf%ution to the Poisson equation associated with
the non-adaptive policy ;




In many of these applications, it is natural to view the forcing function
c and the transition matrix P as parametrized, say by some parameter 6
(which may be loosely interpreted as a control variable). The requisite anal-
ysis then typically exploits smoothness properties (in 6) of the solution h
together with various growth estimates (in z) for h. In addition, estimates
on the moments of {h(X;), t = 0,1,2,...} are required, with the added
difficulty that the resulting process {X;, ¢t = 0,1,2,...} is not necessarily
Markovian (say, under the given stochastic approximation scheme or adap-
tive policy).

Our main objective is to develop methods for addressing the concerns
above in a systematic fashion. We emphasize a probabilistic viewpoint,
whenever possible, and focus mostly on the following three issues:

eq: (1.1)
1. Existence and uniqueness of solutions to the Poisson equation (I.I);
2. Growth estimates and bounds on these solutions; and

3. Conditions for smoothness in the parameter of these solutions when
dealing with the parametric case, as would arise when establishing
the a.s. convergence of stochastic approximations and the self~tuning
property of adaptive policies.

Answers to these questions are given under a variety of recurrence con-
ditions. As we try to keep the exposition relatively self-contained, we have
included some standard material on the Poisson equation. In addition to
its tutorial merit, the discussion given here provides a unified treatment
to many of the issues associated with the Poisson equation, e.g., existence,
uniqueness and representation of solutions. This is achieved by manipulating
a single martingale naturally induced by the Poisson equati L. 4y

Questions of existence and uniqueness of solutions to ((ﬁl—(."l')_lﬁfe obvi-
ous an S}g?ﬁu 1 points of contact with the Potential Theory for Markov
chains [I3, 27T However, it is unfortunate that many situations of inter-
est in applications, say in the context of MDPs, are not readily covered
by classical Potential Theory. Indeed, the classical theory treats the purely
transient and recurrent cases separately, with drastically different results for
each situation. This approach is thus of limited use in the above-mentioned
situations, where the recurrence structure of the Markov chain is typically
far more complex in that it combines both transient and recurrent states.
Here, in contrast with the analytical approach of classical Potential Theory,

em eh%iis Bas been put on giving an explicit representation of the solution
to ('I.Ii with a clear probabilistic interpretation.



This probabilistic approach allows for a relatively elementary treatment
of questions of existence and uniqueness, under a rather general recurrence
structure. We accomplish this by focusing on the discrete space case, and by
keeping the assumptions as transparent as possible. The intuition developed
here applies to the gel}&m}e%? e-spage case, under mild conditions on the
existence of petite sets [9, 24, Z5]. Results are obtained in various degrees of
completeness for both finite and countably infinite state spaces; recurrence
structures include multiple positive recurrent classes, and transient classes.
A representation for h is derived in detail in the case of a single positive
recurrent class under integrability conditions involving the forcing function
c. The derivation uses elementary methods, and provides intuition into more
general situations. This representation is shown to also hold in the multiple
class countable case, and readily lends itself to establishing natural bounds
on the growth rate of h (as a function of the state), and to investigating
smoothness properties in the ameterized problem.

Similar results are given in [9] for the ergodic case on general state spaces.
When the forcing function ¢ is positive and “increasing” (i.e. when its sub-
level sets are compact), there is an elegant theory that relates geometric
ergodicitc:;un% ;ulhe Poisson equation; details and references are available in
Chapter é coc:D

The paper is organized as follows: The set-up is 13/1e1} in Section 1.2 fo-
gether with the basic martingale associated with (ﬁ’f’)_Vlsreig}gs uniqueness
results on the the solution (J, h) are 4discussed in Section I.3. We give two
decomposition results in Section }174;'_fhe first is based on the decomposition
of the state space X into its recurrent and transient classes, while the second
is an analog of the standard Green decomposition and relies on an expansion
of the forcing function in terms of more “elementary” functions. To set the
stage for the countably infinite ca; e, we briefly re%%l(%ien algebraic treatment
of the finite-state case in Section ,IS In Section II.6 an explicit representa-
tion for the solution is developed in terms of some recurrence times, under
a single s%(g§i7tive recurrent class assumption. An example is developed in
Section h_.'?_fo illustrate the material of previous sections. Bounds and ex-
tensions to unbounded forcing functions and multichain structures are given
in Section ﬁ_?g.._sEquipped with this probabilistic representation of solutions,
we can now investigate the smoothness properties of solutions to the param-
eterized problem; methodﬁsggoié pr s}gicn% Ocontinuity and Lipschitz continuity
are developed in Sections [[.9 and [T.T0, respectively.

To close, we note that most of the ideas which are discussed here in
the context of countable Markov chains have extensions to fairly general
state spaces. This is achieved by means of the so—called splitting technique




M,Meyn,MeynTyee,Num A
, 24,25, which in essence guarantees the existence of an atom on an

enlarged state space.

1.2 The Poisson equation and its associated mar-
tingale

sec:2

First, a few words on the notation used throughout the paper: The set of all
real numbers is denoted by R and 1[A] stands for the indicator function of
a set A. Unless otherwise stated, lim;, lim, and lim; are taken with ¢ going
to infinity. Moreover, the infimum over an empty set is taken to be oo by
convention. The Kronecker mapping § : X x X — R is defined by 6(z,y) =1
if z =y, and 6(z,y) = 0 otherwise. Finally, the notation ) .y is often
abbreviated as ).

1.2.1 The set-up

The notion of a Markov chain we adopt in this paper is more general than
the elementary one used in most applications. We do so with the view of
broadening the ap'plicability of the material' deﬁﬁé?ﬁ?gn p}iﬁggi a%ilﬁggi’iuzn 'l:l:,OSMman
problems of adaptive control for Markov chains [I6, 17, 20, 21, 33, 34J.

The state space is a countable set X, and the one-step transition mech-

anism is given by the stochastic matrix P = (pgy), i, 0 < pgy < 1 and
Zypzy =1 for all x and y in X. We assume the existence of a measurable
space (§2,F) large enough to carry all the probabilistic elements considered
in this paper. In particular, let {F;, t = 0,1,...} denote a filtration of F,
i.e., a monotone increasging sequence of o—fields contained in F such that
Fi C Fiyr forall t =0,1,..., and let {X;, t =0,1,...} be a sequence of
X—valued rvs which are F,—adapted, i.e., the rv X; is F;—measurable for all
t=0,1,....

The Markovian structure of interest is defined by postulating the exis-
tence of a family {P;, = € X} of probability measures on F such that for
all z and y in X, we have

2.[Xo = 4] = 6(z.1) 13)

Po[Xit1 =y | Ft) =px,y Po—a.s.t=0,1,... (1.4)

With any probability distribution p on X, we associate a probability measure

and



P, on F by setting

PW%:ZM@&W,AGE (1.5)
Obviously, when g is the Dir CMSRYE (5% concentrated at some z in X,
then P, reduces to P;. Using (I% if; I.%i we easily see that
PuXo=2] = p(z), zeX (1.6)
and
PuXev1 =y | F] = pxy zyeEX Py,—as t=0,1,... (1.7)

Hence, under the probability measure P, the rvs {X;, t = 0,1,...} have the
Markov property with respect to the filtration {F;, t = 0,1,...}, and are
said to form a time-homogeneous F;—Markov chain with one-step transition
matrix P and initial probability distribution x. In many instances, we take
Fi to be the o—field generated by the rvs Xg,... ,X; forall t =0,1,...,in
which case the definition above coincides with the elementary definition of

a Markov Ceai_li etia)2.2)
;From (T:3-(1.5) we readily conclude for p-a.s. all z in X that

P,[A|Xo =1] =P, [A], A€cF (1.8)

and P, has the useful interpretation of conditional probability (under P, for
any initial distribution measure p).

Throughout it will be convenient to denote by E, and E; the expectation
operator associated with [P, and IP;, respectively.

1.2.2 The Poisson equation

Let ¢ be a given Borel mapping X — R. Throughout, it is understood
that a constant J and 2 :Izliz%gping h : X — R constitute a solution pair to
the Poisson equation (I[.I) with forcing function ¢ whenever h satisfies the
integrability conditions

Zypwylh(y)l < oo, z€X (1.9)
and the relations
W) +J = (@) + ) payhly), w€X (1.10)

hold. The Poisson equation is termed homogeneous if ¢ = 0.
For any initial distribution u, we introduce several classes of R-valued
mappings defined on X. The mapping f : X — R is said to be an element of

eq:(2.2)

eq: (2.3a)

eq:(2.3b)



l:Lemma 2.1

1. Z, if E,[| f(X¢)|] < oo forall t =0,1,...;
2. By if sup; Eu[|f(X¢)|] < o0
3. S, if f belongs to Z,, with lim; $E,[f(X;)] = 0; and

4. U, if the rvs {f(Xy), t=0,1,...} are uniformly integrable under P,,.

When p is the Dirac measure é, for some = in X, we substitute the simpler
notation 7, By, S; and U, to Z;,, Bs,, S5, and U, , respectively.
For any initial distribution u, it holds that

U, CB,CS, CI, (1.11)
and for any = in X such that p(z) > 0, we have Z,, C Z,, B, C B, and
U, CUy.
Since any mapping‘(eé::(?{.ﬁ) R can be viewed as a column vector (f(z)),

the Poisson equation can be written in matrix notation as

h+ Je = c+ Ph (1.12)

where e denotes the column vector with all its entries equal to one, i.e.,
e(x) = 1 for all z in X. For any vector f = (f(z)) and any subset E of
X, denote by fr the restriction of f to E and similarly define Pr as the
restriction of P to E. The identity matrix on X is denoted by I.

1.2.3 A martingale property

Many of the general results on solutions to the Poisson equation can be
traced back to the following observation.

: (2.5a)
%er_rz%)l Let the pair (h,J) be a solution to the Poisson equation (ez.ysf 2

. with forcing function c. If the mapping h belongs to I, for some
probability measure p on X, then the following statements hold:

1. The forcing function c is necessarily an element of 1,; and
2. The rvs {My, t =0,1,...} defined by My := h(Xo) and
t
Myyr = h(Xp1) + Y o(X,) — (t+1)J, t=0,1,... (1.13)
s=0

form an integrable (P,, F;)-martingale sequence.



sec:3

l:Lemma 3.1

Proof. Iev_o(lai e5b1§/[arkov property, we can reformulate the Poisson
equation (I.9)—(I.10) as

h(Xt) +J = C(Xt) + Eu[h(XH-l)Lft]a t= O, ]_, c. (114)

and the IP,—integrability of the rvs {c¢(X;), t = 0,1,...} follows from the
assumption on h. This proves Claim 1.

To establish Claim 2, we first conclude from the first part of the proof
that t e 1y, =0,1,...} are well defined and indeed PP, —integrable.
From ( We then get

t
Eu[My1|Fe] = Bu[h(Xe1)|F] + ) e(Xs) — (t+1)J, t=0,1,...
s=0

because the rvs X e a,ggt are all Fy—measurable, and the martingale prop-
erty follows from (I.14). .

1.3 Uniqueness results

In this SGT]IOI&[Q B Ea%%)collected several uniqueness results for the Poisson

equation ( n that respect, we first note that if the pair (h, J) is a
solution to the P01sson equation, so is the pair (h+«ae, J) for any constant a.
In other words, uniqueness can only be obtained up to an additive constant.
We also observe that for ¢ in Z,,, the definition

—TZ}Q4 (1.15)

s=0

is well posed. The next lemma is a version of a Jﬁdar ﬁmsu It from the
theory of MDPs under a long-run average criterion emma 3.1].

J(u) = mt EN

eq:(2.9)

leq: (2.5a)

%er:rz%)Z Let the pair (h,J) be a solution to the Poisson equation (1.9 5*

“with forcing function c. If the mapping h belongs to Sy for some
probability measure p on X, then

J=J(p) =lim; E

%des)] - (1.16)



oI Since h is an element 1t 21s also an element of Z,, by virtue of
( y Claim 2 of Lemma We Toadi y obtain the equahtles E,[My] =

E, [Mt+1] for all t =0,1,... or, equivalently, in expanded form,
t
B0 =B+ B [0 e pa (L)
s=0
Simple rearrangements yield
1 < 1
Eu |71 ;C(Xs)] =J- 1 {Eu[h(Xp41)] — Eu[n(Xo)]},  (1.18)
:(3.2) : (3.4

and the result (eI 16) is now immediate upon letting ¢ T co in (l I8 since h
is an element of S,,. .

. ) (2,69) (2.5b .
If the Poisson equation (I.bHI 10} a&mlts a solution (h,J) with h

bounded, then c is necessarily bounded, so that both ¢ and h belong 19 e%lﬂa 3.1
(thus S,) for any initial distribution p. It then follows from Lemma bhat
J(u) is obtained as a limit which does not depend on the initial distribution
-

The uniqueness of solutions to the Poisson equation is now briefly studied
in the class of “uniformly L;-bounded” solutions, i.e., solutions in B, for
some initial state distribution p. If the state space contains a set I of isolated
states which are not reachable from X\I and if p(I) = 0, then clearly the
chain never visits the states in I. To simplify the exposition we find it
convenient to reformulate the problem on the reduced state space X — 1.

The next lemma is preparatory in nature and will greatly simplify the

resenfatio bFor (h1, J1) and (hg, J2) solution pairs to the Poisson equation
(I 9= (% Nl;, we define

AJ:=Jy—Jy and Ah(z):= hi(z) — ho(z), zeX (1.19)
emma 31 Let (hl, J1) and (ha, J2) be two solutions of the Poisson equation

(|1 9)—(1. 1(}} lj Ah belongs to Z,, for some probability measure u on X, then
the rus {AR(X;) —t-AJ, t =0, 1,. .} form a (P, F;)-martingale sequence
with

1
AJ = —(IE“[Ah(XHS)] —Eu[Ah(Xt)]), t=0,1,...;55=1,2,... (1.20)

S



t:Theorem 3.3|

) (2.8)
Proof. Denoting by {M/, t =0,1,...} the rvs (el l3§ associated with the
solution pair (h;, J;), i = 1,2, we define the rvs {AM;, t =0,1,...} by

AM; := M} — M} = Ah(X;) —t-AJ, t=0,1,...

It is plain that (Ah, AJ) is a solution t ‘:cilgm%é)rﬁl.olgeneous Poisson equation
Ah + AJe = PAh. Applying Lemma i fo this Poisson equation, we con-
clude that the rvs {AM;, ¢t =0,1,...} indeed form an integrable (P, ;)
martingale sequence, whence E,[AM; ;] = E,[AM,] for all s,t =0,1,....
In expanded form, these equalities become

E [AR(Xpys)] — (t + 8)AT = B, [AR(X,)] —tAJ, t=0,1,...

eq: (3.6
and we obtain (l.b(); a%’cer simple rearrangements. n

The basic uniqueness result can now be developed.

Theolrel{)z ‘é Pg g@}, J1) and (ha, J2) be two solutions of the Poisson equa-
tion (1.9)—(1.10).

1. If Ah belongs to S, for some probability measure i on X, then Jy = Ja;

2. If in addition Ah is an element of B, then Ah is constant on each
recurrent class of the Markov chain P,,.

Proof. If Ak belongs to S, the its is also an element of 7, and Claim 1
follows by letting s T oo in (I[.20) and using the fact that AQ l)ongs to 8.

The proof of Claim 2 starts with the observation (I.I l) made earher
that since Ah is an element of B, it it is also an element of S,,. Therefore,
Ji = Jy by Claim 1 and the rvs {Ah(X}), t = 0,1,...} form a (P, F;)-
martingale sequence with sup; By, [|Ah(X¢)|] < co. By a standard martingale
convergence theorem [7, 12], the martingale sequence {Ah(X;), t =0,1,...}
converges P,-a.s. to a proper rv.

If all the states in X form a single recurrent class under P, then any two
states in X, say = and y, are visited infinitely often P,-a.s. It is now plain
that h(z) = h(y) by virtue of the P,~a.s. convergence of the martingale
{Ah(Xy), t=0,1,...}, and Ah is therefore constant on X.

More generally, let R be a recurrence class under P, i.e., a closed irre-

u(ngl s% og recurrent states. Since pyy = 0 for all z in R and y not in R,
’9) T U% 1mp ies

hir+ Jer = cr + Prhjr, ©=1,2. (1.21)



c:Corollary 3.4‘

The matrix Pgr can be interpreted as the matrix of one—step transition prob-
abilities for an irreducible Markov chain on R with all its states recurrent,
and the problem is now reduced to the previously considered case. There-
fore, h1,gr — ho g is constant on R and the proof is complete. "

When h; and hy belong to U,, the Ergodic Theorem can be used to
derive this result along the lines of [9, Propesifion e¥n1:l zUnder conditions

weaker than the ones assumed in Tl}ﬁ)orlggnl E[ e can obtain the following
refinement of Claim 1 of Theorem II ]

Coro[llarx E I( té{zjl, J1) and (hg, J2) be two solutions to the Poisson equa-
eq: (2.g})

tion (1.9)—(I.10)."If for some probability measure p on X, hy belongs to S,
and ho belongs to I, then

. 1
limy ;Eu [ho(Xy)] = Jo — Ji - (1.22)

Proof. First we note that if Ay is an ?l%nm%gt 39£ S, and if hy belongs to
Z,, then Ah belongs to Z,,. By Lemma lB we get

AJ = %{Eu[Ah(Xt)] CEJARX))}, t=1,2,... (1.23)

:(3.10 :(3.11)
and (el 525 foliows upon letting ¢ T co in (el 53) and using the fact that h; is
ne eilslt of §,. The existence of the limit is a consequence of the equalities

It is very easy to demonstrate the non-uniqueness of solutions to the
Poisson equation: Consider the Markov chain P = (p,,) on the non-negative
integers N with p; ;41 = 1,2 =0,1,...,andlet ¢ = 0. Then (hy, J2) = (0,0)
is obviously a solution to the Poisson equation with h;(0) = 0. However,
the pair (hg,J2) = (z,1) is also a solution to the Poisson equation with
hg(()) = 0. Forall t = 0,1,..., we have X; = Xg +t P,a.s, whence

E,lh2(Xt)] = E,[Xo] + ¢, and under thez copdition E [Xo] < 00, hg is an
element of Z,,, but,}lot of §,. In fact, ([ 52) Eo;ds as hmt tIE [hg(Xt)] =1#
0. In Section we dlscuss the non-uniqueness issue for a more elaborate
example of a positive recurrent system.

Although in practi%e:TLteorrneilg}&t. 3be hard to verify the L;—boundedness
conditions of Theorem hmﬁharacterization of the set B, is available
in a special yet important case. Recall that a probability measure v on B(X)
is an invariant measure for the one—step transition matrix P if

V@) =D YWpya, TEX. (1.24)

10



1l:Lemma 3.5

Under P, the Markov chain {X;, t = 0,1,...} forms a strictly stationary
sequence with one-dimensional marginal distribution «, so that the following
characterization is immediate.

Lemma 6 If v is an invariant probability measure for the one—step transi-
tion matriz P, then I, = B, = U, = L1 (X, B(X),7).

In ;Fij Derman and Veinott consider the uniqueness issue for Markov
chains with a single positive recurrent class (in which case the invariant
measure - is unique). They show uniqueness in the class DV of mappings
f : X — R such that

T-1

> |f(Xt)|] <00, zeX (1.25)

t=0

Eg

where T := inf{t > 0 : X; = z} for some distinguished recurrent state z.
Under these assumptions, for ever Iglapping f : X — R, we conclude by
standard results on Markov chains %’tha‘c

E. | £
E,[|f(X2)]] = BT , t=0,1,... (1.26)

and DV is seen to coincide with B,,.

1.4 Decomposition results

1.4.1 A state decomposition results

t:Theorem 3.3
With the uniqueness result of Theorem m consider the decompo-
sition of the countable set X induced by the recurrence structure of P: Let
T'r denote the (possibly empty) set of transient states, and let {R,, a € A},
for some countable index set A, denote the recurrent components. The sets
{Tr,R,, a € A} form a partition of X. Moreover, for all o in A, py = 0 for
z in R, and y not in R,, and the restriction P, of P to the recurrent class

s?e%'iﬁg irreducible and recu rent, i 5X\gith the vector notation of Section
-2, the Poisson equation (I.9)—(IL. can now be partitioned as

hi, +Jer, = cr,+ Pahray @ €A (1.27)
and
hry + Jer, = CTT-I-ZaeATahRa-FPTrhTT (128)

11



t:Theorem 4.1 |

where the matrices {Ty, a € A} and Pr, are determined from the decom-
position of P aSSO(.:l.ated |g(vll:t& tﬁ% s&uslig“ T, Ra,. a€ A} . . .

The decomposition (I.27)—(I.28) of the Poisson equation motivates in-
troducing the following family of Poisson equations

ho +Joer, = cr, +Poho, a€A (1.29)
and

h+Jer, = ¢+ Proh (1.30)

where for each a in A, cg, and h, are mappings R, — R, while ¢ and h are
mappings Tr — R, with

¢= o+ ZaeATaha. (1.31)

The ne;xt reggl:t( Ehz%\a/s (H} 2‘ﬁ/)hat sense the solu'tions to the Prf)jected P(?is—
son. egiiatigng, (T.29)—(1.30) determine the solution to t%g_(&lgﬂ&ql( £9ygtion
(ed: ARG - he proof is a simple consequence of (T-27)-(.28) and of
(T-29)—(I1.30), and is omitted in the interest of brevity.

. . leq: (2.ka} (2.5b) . .
Theorem 7 The Poisson equation (I.9)—(1.10] has a solution if and only
if the following two conditions hold:

leq: (4.2a)
1. For each a in A, the Poisson equation (1. on R, has a solution

(ha, Ja) such that Jo = J for some scalar J independent of o and

@]

eq:(4.3)

3y Tl < o0 12)
: (4.2b) : (4.3)
2. The Poisson equation (e1.32i5, with forcing function ¢ given by (3.315

has a solution (h,J) such that J = J.

. . leq: (2./6a) (2.5b) . ]
A solution pair to (1.9/=(1.10] s necessarily of the form (h,J) with h

determined by hr, = hq for all a in A and hp, = h.

leq: (4.4)
Condition (1.52 J, which is eaman%%ically satisfied when X is finite, guar-
antees that ¢ (and therefore (l.%()) j is well defined.

1.4.2 A Green-like decomposition

:(2.5a)
et ]5,0371) and (he, J2) be two solutions of the Poisson equation (e.b)f :
IF( g.gi

. with forcing functions ¢; and co, respectively. Then for any § in R,

12



sec:5

(

we have

ith forcing function Bc; + c2. Indeed, by definition, for all z in X,

h(z)+J = B(hi(x)+ J1) + (ha(z) + J2)

B (Cl(iv) +> pwyhl(y)) + (02(53) + Zypzcth(y))

= (Ber(z) + o +Z Pay(Bh1(y) + h2(y)), (1.33)

where the last sum is well defined owing to the definition (FSTC(J%_O% solution.

This simple fact can be used as follows: For each v in X, define the
function ¢, : X — R by ¢,(z) := §(v; z) for all z in X, and let (h,, J,) denote
a solution to the Poisson equation with forcing function ¢,. The obvious
decomposition

c(x) = Zvc(v)cv (), zeX (1.34)

then leads naturally to the formal representation

J = Z c(v)d, and h(z)= Z c(v)hy(z), zeX (1.35)

It remalﬁs t&eg)to check that (L. E35) mdeed defines a legitimate solution.

In view of ( is is the case whenever c is constant except at a finite
number of pomts In the more general cas& t11119 chegk2 can be done through
the constructive arguments of Corollary rough the verificati n re§ult
of Theorem malculatlon is performed directly in Section 1.7

1.5 Finite state spaces

(2,/6q) (2.5b)

A complete picture of the solution to the Poisson eq11%t18}r1 étl b) (T. I()i 1S

available when X is a finite set, and can be found in n the finite
space case any solution necessarily belongs to U, for every initial probability
distribution p. Let P* denote the stochastic matrix defined by

t

: (2.5a)
(éc ) (ﬁhl + ho, BJ1 + J2) is a solution to the Poisson equation (l.b)f :
I. IU% wit

1
P* o= limy o > P (1.36)

s=0

its exi enﬁle 1sl§uaranteed by classical results from the theory of Markov
chains e matrix I — P + P* being invertible, the definition

hi=(I—P+P*)HI—-Pc (1.37)
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is well posed, and the easy identities P*P = PP* = P*P* = P* lead after
some simple algebra to the relation

h+P*c—c—|—Ph (1.38)
leq:(2,6@) (2.5b)

A Je comparison of (Il 68) Wlth (IT: {1-10J suggests that h defined by
(%33%11 solve the Poisson equation (?b ) 3l'fg_vvlfenever the vector P*c
is proportional to e, i.e., all the components of the vector P*c are identical.

To investigate the matter further, we introduce the canonical decompo-
sition of X into the recu rec it, and transient components induced by P, as
already done in Section Here, it can be assumed that P induces m
recurrent classes, say Ri,...,Rn, as well as a (possibly empty) set Tr of
transient states, with the sets {Ryi,... , Ry, Tr} forming a partition of X.
For any vector f, let fi denote the restriction of f to Rg, k=1,... ,m.

Recall that pyy = 0 for x in R and y not in Ry, and the restriction Py
of P to the recurrent class Ry is irreducible and positive recurrent on it.
Possibly upon rearranging P into a block lower triangular form, we see that
the restriction (P*); of P* to Ry, coincides with (Py)* given by

t
1
(Pp)* == 1imtt+—12P,g, k=1,...,m (1.39) |eq:(5.4)
s=0

with all its rows being identical to the long-run probability distribution
associated with the irreducible chain P. Conseque%!tly gP ¢)x = Jxex where

the scalar Jj, depends on the class Ry. Therefore ( can be decomposed
as
hip + Jyer, = cx+ Pohg, k=1,...,m (1.40)
and .
hre + (P*c)re = crr+ Y Tihy + Trhyy (1.41)
k=1
where the matrices 771,... ,1;, and Tr are chosen appropriately from the

decomposition of P associated with the sets {R1,... ,Rp,TT}.

: (2.5a)
t:Theorem 5.1] eh_e&rggl 8 The pair (h,J) is a solution to the Poisson equation (91.957 :
(‘2 10) of

and only if the conditions

=Jn=J and (P*c)r, = Jer, (1.42)

hold, in which case h_is &’L’U —uniquely up to an additive const int @}Ggach
recurrent cl 55 (504 ;1 7], and J is the constant appearing in ((2.22?. T'he
conditions ﬁgzw_a[ways hold when the Markov chain P has a single recur-
rent class.

14



Proof. The first_ ay, s immediate from the discussion given earlier since .
P*c = Je under ([:42). The uniqueness follows from Theorem &I and from

the fact that I — T'r is invertible. To conclude the last part, it suffices to
observe that under the assumption of a single recurrent class R; for the
Markov chain P, the rows of P* are all identical and of the form (v,0r;)
where v coincides with the long-run probability distribution vector associ-
ated with the irreducible chain P; "

1.6 A probabilistic formula for solutions

Consider now the situation where the state space X is countably infinite.
The matrix P* is still well defined, but in general the invertibility of I —
P + P* cannot be guaranteed anymore owing to the intricate nature of the
recurrence structures for Markov chains over gélcr}‘%ably infinite state spaces.
As a result, the algebraic discussion of Section [I.5 cannot be carried through.

In some situations however, probabilistic arguments can be used to prove
the existence of a solution pair to the Poisson equation. Such a situation
arises when there exists a distinguished state in X, say z, which is positive
recurrent in a sense made precise below. In thi Jnore restricted set-up, a
possible approach would mimic the arguments of [30, Section 6.7], and would

yield the solution as the limit of the discounted cost associated with c, W%%’]\g

the discount factor tends to 1. This line of arguments was developed in
and does yield a probabiljgtic representation of the solution already obtained
by Derman and Veinott]%{‘ through algebraic means.

Here, we take a different route for deriving this probabilistic represen-
tation of solutions to the Poisson equation. ergga sp jn several steps by
exploiting the martingale property of Lemma msely state the con-
ditions, we define the first passage time to the state z as the JF;—stopping
time 1" given by

T :=inf{t > 0: X; = z}. (1.43)
The recurrence condition (R) enforced thereafter is the finite mean condition
(R) T(z)=E,[T] < oo, ze€X. (1.44)

The condition (R) is automatically satisfied when the set X is finite and
the Markov chain P admits a single (positive) recurrent class decomposition
X = RUT'r into a set R of positive recurrent states and a (possibly empty) set
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t:Theorem 6.1 |

Tr of transient states. However, when the set X is not finite, the condition
(R) is far more stringent. Indeed, not only does it imply the single class
decomposition X = R UT'r, but it also prohibits the chain from wandering
too long or exclusiveﬁlsyégceiglongst the transient states. We relax the first
restriction in Section

We also find it convenient to consider the following integrability condition
(I), where

S
-

(I Ci(z) =T, [ 9 |c(Xt)|] <oo, zeX (1.45)

t

Il
o

Under (I) the quantities

C(z) :=E; ri c(Xt)] , z€X (1.46)

=0

are well defined. Under the recurrence condition (R), any bounded mapping
¢ will satisfy the integrability condition (I); in fact the conditions (R) and
(I) coincide for ¢(x) =1 for all z in X.

The Jext ) ge%glit is a consequence of the martingale property given in
Lemma

Theorem 9 Assume the recurrence conditioy l%)( %b old and let (h,J) be
a solution pair to the Poisson equation (1.9)- h is an element of

I, for some x in X, then

lim,, {Ez [1[n < Th(X,)] + Ey

]
t=0
= JT(z) + h(z) — h(z). (1.47)

1:L 2.1 :(2.8)
Proof. By Lemma [T, the v {M;, t =0,1,...} given by (e rm a
(P, Fi)-martingale. By Doob’s Optional Sampling Theorem [[7, , the
stopped process {Mran, n = 0,1,...} is also a (P, Fra,)—martingale, so
that

Ey[Mran] = Ez[My] = h(z), n=0,1,... (1.48)

1:L 2.1
By Lemma T v:emgaee that c is an element of Z, because h belongs to Z,, and
therefore, for alln = 0,1, ..., the three rvs h(Xran), TAn and ZT/\" Le(Xy)
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are integrable und( gz From the definition of Mra, we conclude by direct

inspection of (II. EISi that

TAn—1
h(z) = Eg |h(X7an) = (T AR)T+ ) c(Xt)]
t=0
= h(2)P[T < n] + Eg [1[T > n]h(X,)]

TAn—1
> c(Xt)] : (1.49)

t=0

— JE,[T An] +E,

Under (R), we have lim,, Pz[T' < n] =1, Jwhereps limy, By [T An|=T(z)
by I;orzgt Jie convergence, and the result (l E17) follows upon letting n T oo

in ]

As we impose additional conditions, we Se8. E]}e form of the probabilistic
('I 7).

representation emerge from the relation

c:Corollary 6.2 Corollary 10 Assume the recurrence aon gzgq R) fo hold, and let (h, J)

be a solution to the Poisson equation (I.9J—(I.10). If h belongs to Uy for
some z in X, then the relation

h(x) = lim,, B, f c(Xy)| — JT(x) + h(2) (1.50)
t=0

holds. If in addition, the integrability condition (I) holds, then
h(z) = C(z) — T(z)J + h(z). (1.51)

Proof. Under (R), we have lim,, P,[T" > n| = 0. The uniform integrability
under Py of the rys {h(Xy), t = 0,( . } yields lim,, E; [1[T > nlh(X,)] =
0, so that (II. ollows from ( nder (I) we get

TAn—1 T—1
lim, By | D Ee | c Xt)] (z) (1.52)
t=0 t=0

leq: (6.8) (6.7
by domm(gtgsi convergence, and (l %l ) is an immediate consequence of (l Bl)i

and (I .

By carefully inspecting this last proof, we can extract additional infor-
mation on the interaction b >tween, Ille uniform integrability of solutions and
the integrability condition (I e define the positive and negative parts
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of the forcing function ¢ by ci(x) := max{0, +c(x)} for all z in X, so that
) eq:(6.3)
c(x) = cy(z) — c—(z) and |c(z)| = c4(z) + c—(z). In analogy with (Iﬁé;,
we introduce the quantities

Ci(z) =E,

T—1
> ci(Xt)] , reX (1.53)
t=0

which are both well defined, although possibly infinite. The relation C'(z) =
C4(z)—C_(z) holds provided at least one of the quantities C (z) and C_(x)
is finite, while the equality C,(z) = C1(z) + C_(x) is always valid.

c:Corollary 6.3‘ Corollary 11 Assume the recurrence jgnggfz% g{gbéo hold, and let (h,J)

be a solution to the Poisson equation h belongs to Uy for
some z in X, then the relation

h(z) + C_(z) = Cy(z) — JT(z) + h(2) (1.54)
holds. If in addztzgn & zss)ezther bounded above or below, then Cy(z) is finite

and the relation olds.

Proof. The fact that h is an element of U, (thus of Z,) implies that c
belongs to Z,, and membership of ci in Z, follows. Therefore, for each

T the rvs YLt ei(X;) are infegrable under P;. The relation
(IL EIQ) gerlved in the proof of Theorem b, still holds and can be rewritten

h(z) + By f c_ (Xt)] = h(2)Pe[T < n] + By [1[T > n]h(X,)]
— JET An]+Ey | Y c+(Xt)] :
t=0

Under (R), we have lim, P,[T < n] = 1, and lim,, Ez[T An] = T(z)
by monotone convergence. Moreover, the uniform integrability of the rvs
{h(Xt), t =0,1,...} under P, implies lim,, E;[1[T > n]h(X,)] = 0, and
C’i xg = lim,, E,; [ZTA" ! ci(Xt)} by monotone conver%ence The result

( o ows from these facts upon letting n 1 oo in (I

To establish the second statement, we note that ¢ belng either bounded
above or below implies that at least one of the quantities Cy (x an C.( 2)
is finite, whence both are necessarily finite in view of the relation (l %Zi)
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t:Theorem 6.4|

c:Corollar
Corollary [[0 states %Eaf under conditions (R) and (I), any “uniformly

integrable solution (h,J) of the Poisson equation is necessarjl  Given by
(; 51) %up to an additiye copsta ) n a sense, we can view (%el")@sghe
“minimal” solution to (lb; ( II:;: l:}owever as we next show, (EST)?BeS

define a solution even when there may exist no uniformly integrable one.

Theorem 12 Assume both the recurrence condition (R) and the integrabil-
ity condition (I) to hold. Then the pair (h,J) given by
C
(2)  nd h(z) = Ca)— J-T(z), w€X (1.56)

T ()
q:(2.a} (2.5b)
s a solution to the Poisson equation (|1 9)~(1.10] with h(z) = 0.

W en ‘%h §tate space X is finite and the chain has a single recurrent
class, (. %éi provides a probabilistic 1ntiﬁ1r retation for the solution described
through purely algebraic means in ?2_35{7

Although condition (R) may seem quite restrictive, it is in so g sense
close to being necessary. Indeed, as shown by Cavazos—Cadena [4, Cor.
2.1-2.2, p. 105] if the Poisson equation admits a bounded solution for every
forcing function ¢ which vanishes at infinity, then (i) P admits a single
recurrent class, which is necessarily positive recurrent; and (ii) a condition
stronger than (R) holds, namely sup,7(z) < cc.

Proof. The algebraic manipulations below are validated through the fol-
lowing summability conditions

. e .(6.3) .
In view of the cor{lgnﬁBt following (II .EK)' ), we only need to establish the second
., . . e : > .
condition in (1.57) as the first one reduces to it when ¢ = 1. By the Markov
property, we get

Ci(z) = |e(z)] + Z PoyCily), z€X (1.58)

eq: (6.14
and the second summability condition in (I 57 ) follows from the integrability

condition (I) since |C(z)| < Cy( aFe) f(eg :%E):n in X.

The arguments that lead to (| also show that

eq:(6.15)

Cla) = cl@)+)_  puCly), z€X (1.59)

and
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c:Corollary 6.5‘

T(z) = 143 paT@), z€X. (1.60)

leq: (6.1)69: (6.17)
Fix z in X. For any scalar J, we use (|1 59 (I[.60) to write

O@)=J-T(@) = |e@)+Y. , puC)]

7 [1+Z PaT()] . (L61)

Now, with the choice J = C(z)/1'(z), (}1361«;')_1%%)00mes
Cla)—J - T(x)+J = +Z  Pry[Cly) = J - T(y)]
= @)+ Y pay [CW) ~ T T

and (h, J) is indeed the postulated solution of the Poisson equation. .

We conclude this section by showing in what sense uniform integrability
comes close to being necessary to ensure unique%es 6’113115 will follow from

the next result which is a simple consequence of ( once we observe that
TAn—1
C(z) = lim,E, Z C(Xt)]
t=0

whenever C,(z) is finite.
Corollary 13 Assume the recurrence condjtio Joslpld and let (h,J)
be a solution pair to the Poisson equation (I1.9)—(1.10). h is an element
of Iy for some z in X and if Ci(x) is finite, then
lim,E; [1[n < T)h(X,)] = h(z) — h(z) — [C(z) — JT'(z)] . (1.62)
:(6.20)

Ve geigom (el .%2) that this solution h in Z, coincides with that given
by (1.56) provided lim, E; [1[n < T]h(X,)] = 0, a condition reminiscent of
uniform integrability (i.e., h in U,) and indeed implied by it.

1.7 An example

In this section we specialize the results obtained so far to a simple reflected
random walk. The solution given by the probabilistic representation is com-
puted explicitly, and shown to belong to B, (= U, where v is the invariant
distribution) whenever the forcing function ¢ is an element of B,. In that
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case, we also identify a class of solutions which are not uniformly integrable;
in fact, we calculate all solutions to the Poisson equation, thereby exhibiting
non-uniqueness for a pos'%t_g%zgéfecurrent Markov chain. The calculations are
carried out in Appendix

The situation considered here is that of a random walk on the non-—

negative integers with reflection, i.e., X = N and

P00 =Prilz=1—p:=q and pgzr1=p, x=01,... (1.63)

for some 0 < p < 1. With a queueing—theoretic interpretation in mind, we
define p := p/q, and note that this Markov chain is positive recurrent—and

condition (R) holds—whenever p < 1 (or equvalg;t}g& <p<1/2). In

that case, making use of the defining relation (I we readily determine
the invariant distribution v to be
Y(z)=(1—-p)p*, x=0,1,... (1.64)
. . . . leq: (2./6q) (2.5b
For any forcing function ¢, the Poisson equation (II.9)—(IL- akes the form
ph(0) + J = ph(1) 4 ¢(0)
and
Mz + 1)+ J =qgh(z) + ph(zr+2) + c(x+1), z=0,1,... (1.65)

:(7.3)
Before addressing the existence of solutions to (F%Sﬁve show that such
sol tio gye not unique. Indeed, if (h;, J;), i = 1,2, are two s hé ion pairs
to (I %g; félen their difference (Ah, AJ) (in the notation (I.IS%) solves the
homogeneous equation Ah + AJe = PAh, which can be rewritten as
p[AR(Ll) — Ah(0)] = AJ (1.66)

and
p[Ah(z +2) — Ah(z + 1)) = AJ + q [Ah(z + 1) — Ah(z)] (1.67)

forall z =0,1,.... For Y, va_g_}l o)f AJ it is a simple matter to show that
all the solutions to (Il .60)—(I.67) are given by

Ah(z) = AR(0) + 2L {1 —r

+z|, zeX 1.68
p—q| 1—p ] (1.68)

and parameterized. by the initial condition Ah(0). Therefore, if (hq,.J1) is
a solution to (1.6'55,' S0 s ({17 gt Ah, J; + AJ) for any choice of AJ (in R)
where Ah is given by (l.%Si with that value of AJ. In other words, even
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leq: (7.3)

when all solutions to (hjfﬁ'&)ﬁe required to have identical ini iﬁ]sszonditions—
a normalizing condition yhich dictates Ah(0) = 0 in (I.68)—we conclude
that the solution set to (Tll’%S_)*must necessarily be non-countable provided
it is mot empty. This non-uniqueness is independent of the choice of ¢, and
holds also when p > 1, i.e., the chain is null recurre (‘g or t.l;oa)nsient.

When 0 < p < 1, we observe that Ah given by ?ﬁ@{ﬁn never belong
to U, unless AJ = 0, thereby conﬁrmgr'l,lghthe uléi%ueness of solutions in U,

%:gggﬁiatrhag.glerives from Theorem iy ia%oare;nnaependently from Corollary

. It now remains to determine conditions under which the solution in I/,

exists.
1(6.13) :(6.17)
With the representation (el %éi in mind, we take z = 0 and use (eI.b()i to
obtain
0(0
Ty = LoD T o (1.69)
q—>p

sec:A
calculations are outlined in Appendix h_[ﬂ

. . L. . . sec:4.2
Next, intent on using the Green decomposition technique of Section [1.4.2,

we compute for each v in X the cost per cycle function C, as gc_i%eﬁyvith
(i g 3.

the cost ¢y : X = R: x — 0(v,z). Since J, = v(v), we invoke o get
1
C,(0) = 1,T(0) = 2{o)= = 1" (1.70)
:A
In Appendix ﬁgfﬂ we also show that
v=0,1 Cylx) = wv/qg, z=1,2,... (1.71)
v=2 Cy(1)=p?/p, Cy(z) = 1/¢* v=2,3,... (1.72)
v=3,4,... Cylz) = p"/p*, z=1,2,v—1 (1.73)
1 TAv—1 '
v=3,4,... Cylz) = ; Yoo a=34,... (L74)
§=0

. . eq: (7.6Rq: (7.10b) Jleq:(6.13) . .
Substituting (I.%Q )—E [-74) nto (I.56), we obtain the solution h, to the
Poisson equation with forcing function c¢, in the form

ho(z) = Cy(z) — JyT'(z) = Cy(z) — gpv, z=1,2,... (1.75)

with h,(0) = 0 by virtue of (Wnspecﬁon of (%ﬁ%ds that
Cy(z) is bounded in x, and the splution h, thus er wg)linearly is z. There-
fore, invoking Lemma iﬁ%ﬁonjunction with (E’%Zg)',fwe see that h, is an
element of U/, and is therefore the unique solution in that class.
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sec:4.2

Using the Green decomposition technique of S ect.i n IE.ZI.'Z,' we can iden-
tify a large class of forcing functions for which (I.bg) will have a unique
solution in U,; details of the derivation are available in Appendix T.T2.1.

t:Theorem 7.1] Theore e :lél"gonsz'der the random walk with reflection at the origin defined
through K(E??)'??Wth 0 < p<1. Letc be a forcing function X — R such that
le(z)] < K(1+r®) for all z in X f()[ ome positive constants r and, 5:11@‘
rp < 1, then the decomposition (1.35) %where (hy, Jy) is given %/q. NN
all v in X) provides a solution (h,J) to the Poisson equation (1.9)—(1.10],
and this solution is (unique) in U.,.

1.8 Bounds and extensions

In this section, we exp ore 5o of the advantages afforded by the proba-
bilistic representation (IT.56). We use it to develop various bounds on the

solution to the Poisson equation and to obtain an existence result for un-
bounded costs under a multichain structure.

1.8.1 Bounds

The following gLow eh 1%§timate is an easy consequence of the probabilistic
representation (I

t:Theorem 8.1| Theorem 15 Assume the recurrence condition (R) to hold. If c is bound_egé3

eq:(6.13)
i.e., A := sup, |c(z)] < oo, then the solution pair (h,J) given by (I:56)
satisfies the growth estimate

Ih(z)| < (A+ J)T(z), ze€X. (1.76)

t :Theorem 8.1

In general Theorem hfﬁmhold when c is not bounded. However,
in many situations of interest, the underlying Markov chain is “skip-free to
the left” with respect to z. For example, in discrete-time queueing systems
it is often the case that the decrease per unit time in the total number of
customers is bounded above by the maximal number of available servers, say
K. As a result, with z representing the empty state, we obtain the relation
| X¢| < KT, 0 <t <T, where | X;| denotes the total number of customers
at time ¢, and 7' is here the time until the system empties. With this in

mind, we introduce the following condition: There exists a positive constant
K such that

Pyld(z, X;) < KT, 0<t<T]=1, ze€X (1.77)
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t:Theoren 8.2]

leq: (6.13)
for some metric d on X. Under such a condition, the representation (l.%é)

implies the following bound.

Theorem 16 Assume both the recurrence condition (R) aed_ ( 62)integm—
bility condition (I) to hold. If the Markov chain satisfies (1.77), and if c
erhibits the growth condition

le(z)] < A(1+d(z,2)°), zeX (1.78)

eq: (6.13)
for positive constants A and 0, then the solution h given by (I:56) salisfies
the growth estimate

Ih(z)| < B (T(:c) +E, [TMD , zeX (1.79)
where

B = max{A4 + J, AK’}.

In other words, the growth rate of /Et iﬁ-ﬂ%&%ﬁnglﬁed by the growth rate of
moments of 7. In particular, Theorem [I6 shows ho g;nents of recurrence

:%%p%
times can be used to check that the solution (eI.%G) mdeed belongs to By,
or U, for some p. Such information is of interest when studying the a.s.

%ﬁpvpfsrgiencgp%f stochastic approximations schemes driven by Markov chains
7 7 N

:(8.4)
Proof. Note that (el.79; is  automatically satisfied for z = z since then
h(z) = 0. Now, fixing z # z in X, we observe from the definition of C(x)
that

C(2)| < Ee

T-1
> |C(Xt)|]

S+ d<z,Xt)a)]

t=0

IA

AR,

T—1

> (KT

<A (T(w) +E,;
t=0

)

A (T(x) + KR, [TJHD (1.80)

Wh@{ ‘51}6 seco; gsld the third inequalities were gb@)ined by maki 4se of
(eI. 78 i “and (eI. (i i, respectively. The form of (el Bé ) now yields (el . 798; .
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Bounds w e also developed by Glynn and Meyn % in terms of Lyapunov
functions. In Meyn provides quadratic estimates for the solutions to the
the Poisson equation associated with a queueing network, when the forcing
function is linear. Assuming the existence of Lyapunov functions, he obtains
properties of solutions for general state spaces. In particular, if the forcing
function is large outside a small set, then the solution can be bounded below
as follows.

Theorem 17 Assume both the recurrence condition (R) and the integra-
bility conditio, & J% ld, and let (h,J) be a solution pair to the Poisson
eq.
equation (I1.9)- the forcing function c is bounded below, and has
the property that for some € in (0,1), the set S given by
S:={zeX: (1-¢g)c(z) < J} (1.81)

is finite, then h is bounded below.

If ¢ is “norm-like” in the sense that the set {x € X : ¢(z) < M} is finite for
; 81) is f

each M, then S in (I. s finite. However, our condition is much weaker.

Proof. We first consider the case when c is non—negative. With S and ¢
as above, we see that J — ¢(z) < —ec(z) for x not in S, whence

J—clz) < Jllz € S] —ec(z), ze€X (1.82)
by the non—negativity of c. The fact that (h,J) is a solution pair yields
" puhy) = )+ T ela)
< h(z)+ Jl[z € S] —ec(z), zeX. (1.83)

1:L 2.1
Consequently, fix x in X and proceed as in the proof of Lemma T: The
fact that h is in U, implies membership of ¢ in U,. Hence, the rvs {M;, t =
0,1,...} defined by My := h(Xp) and

t
Mgy o= h(Xp1) + ) (ec(X) — J1[X, € S]), t=0,1,...
s=0

are integrable under P, and form a (P, F;)— up martingale sequence. Ap-
plying Doob’s Optional Sampling Theorem [[7, 12], we conclude that the rvs
{Mrpn, n = 0,1,...} form a (P, F;)-supermartingale sequence, whence
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h(z) = Eg[Mo] > Ex[Mran] for all n = 0,1,.... Letting n go to infinity in
this last relation, we readily conclude that

T-1
h(z) > h(z)+e€E, [Zc

T—1
ZleeS]]
s=0

T—
Z (X, eS] (1.84)

=0

Y

upon using the non-negativity of ¢, the integrability conditions (I) and (R),
and the fact that h belongs to U,. By the finiteness of S, we get

h(z) > h(z) — JsupT(y), z€S. (1.85)
yeS

On the other hand, for x not in S, we consider the first hitting time o of
S, ie, o:=1inf{t = 1,2,... : X; € S} (with the usual convention). The
definition of ¢ and the strong Markov property readily yield

T-1

D 11X, € 8]

s=0

e : lowerBd2
by standard arguments. Consequently, (T.85) holds throughout X i.e.,

Eq SE[T(X,)], =¢S (1.86)

h(z) > h(z) — JsupT'(y), z€X
yes

and h is bounded below as c%aim‘ed. ‘ o lowerBd
In general, we note that if ¢ is bounded below and satisfies (I.81 ;, then

so does the function z — c(z) — infy c¢(y) (with the same e but with appro-

priately modified J), and the result follows from the first part of the proof.

1.8.2 Multiple classes

When the state space contains several positive recurrent classes, it is con-
venient to use a decomposition of the state space X into its transient and
recurrent components {I'r, R,, « € A}, and to partition the Poisson equa-
@erét%gcordingly. The treatment is similar to the one sketched briefly in

K7 o . . E%i:_‘lt
With the decomposition and notation of Section .4, the results of the
previous section extend to the multiple class case. For every a in A, select
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t:Theorem 8.3|

a state zo in R, and write Z := {z4, a € A}. We define the first passage
times to the states z,, a in A, and to the set Z := {z,, a € A} by

T, = inf{t>0:X;=2,}, a€cA (1.87)
and
T = inf{t>0:X; € Z}. (1.88)

Since each recurrent class is closed under P, at most one of the rvs {T,,, a €
A} is finite Py—a.s. for each z in X, so that

T = Z T[T, <oc] on [T <oo] P, —a.s. (1.89)
under the convention 0 - oo = 0. For future use, we also define
To(z) :=Ep[Tollly, < <]], a€ A, zeX. (1.90)

The appropriate version of condition (R) for the multiple class case is the
finite mean condition

(Rm) T(z):=Ez[T] <00, zeX (1.91)

Note that_ R( : i))is essentially R)( byj with the first passage time T defined
through (II 59; rather than by ( [43). Ejnder (Rm), it is plain that for each =
in X, we have T' < oo Py—a.s. and that for each a in A, T, (z) = Ez[T,] < 00
whenever x lies in R, with the implication that all recurrent states are
positive recurrent. Condition (Rm) also implies that starting at any state
z in X, the process eventually reaches the recurrent classes and does so in

finite expected time.

. .\de gjlow impose conditions (Rm) and (I) (with 7" defined through
18977, For every a in A, the following expressions
( y : g exp

Ta—1

Z C(Xt)] , TER, and J,:= Ca(zq)

Cu(z) =E,; T (20)

(1.92)

are then well defined.

Theorem 18 Assume the recurrence condition (Rm) and the integrability
conditions (I) to hold. If there exists a scalar J such that J, = J for all
in A, then the pair (h,J) with h : X — R given by

h(z)=C(z)—J-T(z), zinX (1.93)

is a solution to the Poisson equation with the property that h(z) = 0 for
every z in 4.
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Proof. The proof proceeds in two steps.

Step 1: First assume the set 1'r of transient, states t(?,lfe empty. In that
case the result follows readily from Theorem me shown that for
each « in A, the AT (ghﬁe, Jo) is indeed a solution pair to the projected
Poisson equation %%WRQ. That this is indeed the case can be seen
as follows. The recurrence condition (Rm) implies that the restriction of
the Markov chain P to the recurrence class R, satisfies th% :cr?l%giggno%.gR)
imposed in the sin Glze I 4c.1igent case. Therefore, by Theorem e projected
Poisson equation ?FI%Z';)WRQ admits as solution the pair (hq, J,) given by

ho(x) = Co(x) — Jo - Tp(z), x € Ry (1.94)

:(8.10
with J, given by (el.b2§. lg]owever, under (Rm) note that for z in Ry,
T =T, < 00 Py—a.s., whence T'(x) = Ty (z) and C(x) = Cy(z). As a result,
we find that

_ Ca(2a) _ C(z2a)
To(za) T(za)
so that h(xz) = ha(x) for all z in R,.

Step 2: When 1'r is not empty, the difficulty in obtaining a solution
to the Poisson equation is related to the existence of transient states from

which morg than, o Ceppyrent class can be reached. First observe however
that now (I[.56) (L.57) have to be replaced by

T(z)=1+ Zyeszy:r(y), reX (1.95)
and
C(z) = c(z) + ZyézpzyC(y), zeX. (1.96)
:(6.18y: (6.14) : (6.16)
Therefore, i g avay that (e. —(IL. ead to (el.%gi, it is easy to
see that (I[.95)—(I.96) imply

[Cl@) = T-T@) +7 = @)+ Y, paylCl) = TT()
—c(a) + Y palCE) = T-T@] (197

for each z in X, where the last step follows from the fact that C(z) = J-T'(2)
for every z in Z as was noted in the first part of the proof. This time algebraic
manipulations are validated through the summability conditions

eq:(8.17)

Zygzp‘”yT(y) < oo and Zyezpwy|0(y)| <oo, z€X (1.98)
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. eq:(8.18Y: (8.16) X . .
which follow from (Ibé )f% l.béi and the integrability condition (I). .

. eq: (4.2b) . . .
. :I&“&lalds case (I.BU) also has a solution, as can easily be seen by using
( .59) and the fact that for all z in X and y in R,, the n—step transition
probabilities p;(v"y) each converge to P;[T, < oo - Véa) where (@) is the in-

variant distribution of the Markov chain P when restricted to R,,.

1.9 Parametric dependence: Continuity

In several apphﬁﬁ‘ﬁﬁoﬁévﬂﬁscmiﬂ% i&%c}ﬁggtic adaptive control and stochastic
approximations [T, 3, 16, 20, 22, 23], the analysis simultaneously deals with

a parameterized family of Markov chains, rather than with a single Markov
chain, and crucial to the arguments is the smoothness (in the parameter) of
solutions to the associated Poisson equations. Of particular interest are con-
ditions on the model data which guarantee that the solution to the Poisson
equation is continuous, or even Lipschitz continuous in the parameter. In
‘g}elés e§md ;celz}:e: fext sections we show how the representation results of Sections
h_.ﬁnd hTB?rovide a natural vehicle to explore this question. Our intent is
not to get the best possible results, but rather to suggest ways of attacking
these parametric issues. . )
In order to simplify the notation, the discussion in Sections ﬁ%'fa?nd ﬁ_.ef()&
is given in the following framework: Only the case of a scalar parameter
set is discussed as similar arguments can be developed mutatis mutandis
for more general situations. Let the parameter set © be an open subset of
R, and consider a family {P(#), 6 € ©} of one-step transition probability
matrices on the countable set X, with P(6) = (pgy(0)). For each 6 in © and
z in X, let ]P’g and Eg denote the probability measure and corresponding
expectation operator induced on (2, F) by P(0) given that Xy = z.

For every 6 in @i%%évg:g Apping c¢(0): X > R:z — c(f,x) drives the

Poisson equation (L. associated with P(0), i.e.,

h+J = c(0)e + P(6)h. (1.99)

sec:6
As was the case in Section [I.6, we assume the existence of a distinguished
state z in X, independent of 6, with respect to which the integrability con-
ditions (R) and (I) both hold for the Markov chain induced béf %(0) for all
0 in ©. Hence, with the F;—stopping time 7' still given b (el ZBGF.WG assume
m . o . t ?eq:p(e.ggt %lq:%’;s.f)llg y L &
the appropriate versions of (I.44) and (I.45) to hold for each 6 in O, and set

T0,z):=E2[T], zeX (1.100)

29



t:Theorem 9.1|

and

T—1

C(6,z) =& [Z c(Xt)] , zeX (1.101)

t=0

. . [t : Theorem 6.4
Undellae th(% (Eslforced assumptions, we may invoke Theorem o conclude

that ( admits at least one solution (h(#), J(6)) where J() is a scalar and
h(0) is a mapping X — R : z — h(#,x). With the requirement h(6,z) = 0,
this solution (h(#), J(6)) has the representation

C(,z)

J0) = T(0,z)

and h(0,z) =C(0,z)—J@O)-T0,z), zecX. (1.102)

The next result identi €5.245¢ of natural conditions for establishing con-
tinuity of solutions to (T.99). Such a regularity property was required, for
example, in [3].

Theorem 19 Under the foregoing conditions, suppose that for each x in X,

(i) the mapping 0 — c(0,x) is continuous on O;

(ii) the mapping 0 — pgy(0) is continuous over © for all y in X;
(iii) the family of probability measures {p,.(0), 6 € O} on X is tight;
() the rvs {(T,P%), 6 € ©} are uniformly integrable; and

(v) the rvs {1t (8, X1)|,P2), 6 € ©} are uniformly integrable.

Then for every x in X, the mappings 0 — T(0,x) and 0 — C(0,z) are
continuous over ©.

In many applications, ¢(f,z) = c(z) for all z in X and # in © so that
(i) automatically holds, while (iii) is satisfied whenever one—step transitions
have some uniform (in #) nearest-neighbor properties. The conditions (iv)—
(v) are usually checked by (stochastically) bounding the original system
uniformly in 6 by means of another system which is naturally suggested by
%%e original system. This approach was taken by Rosberg and Makowski in

]' t:Theorem 9.1
The next two lemmas are needed in the proof of Theorem hQ;_fhelr;proof
is elementary and is omitted in the interest of brevity.
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1l:Lemma 9.2

1l:Lemma 9.3

N . t:Theorem 9.1 .
Lemma 20 Assume (ii)—-(iii) of Theorem II9. For all x and y in X, and
k =1,2,..., the mappings 0 — Pz[T = k] and 6 — Pg[Xt =y, T =k,
1 <t <k, are all continuous on ©.

. [t : Theorem 9.1 .
Lemma 21 Assume (iii) of Theorem T9. For eacht =1,2,... and z in X,

the family of distributions {(X;, P?), 6 € ©} is tight.

t:Theorem 9.1
To prepare the proof of Theorem 19, we set

TAm—1
Cm(6,2) :=FS (1T <m] > (6, X)|, z€X, m=12,... (1.103)
t=0

t:Theorem 9.1
A proof of Theorem m a fixed element in X. By a standard
decomposition argument, there is no loss of generality in assuming c(0, ) >
0 for all z in X and 8 in ©. Moreover the first claim follows from the second
one upon using ¢(0, z) = 1. .

In the general case, standard facts from analysis H imply the de-
sired continuity result if it can be established that the mappings 6§ —
Cn(0,x), m=1,2,..., are continuous on O, and then that the convergence
lim, Cr, (0, z) = C (6, x) is uniform in 6.

To establish the first step, it suffices to show th i, :t(}&e 6I)nappings 0 —
E? [1[T = k]c(6, X;)], 0 < t < k, are continuous for (E—?TDBS)Tan be written
as

k—1

Cm(0,) =Y Y EI[A[T = kle(6, X)], m=12,... (1.104)
k

=1 t=

1:L 9.3
Fix 0 < t < k. Because the rvs {(X;,P?), § € O} are tight by Lemma bI,efT)n;‘a
every & > 0 there exists a finite subset G, (8) of X such that supyce P2[X; ¢
Gz(9)] < 4. The easy bound

E} [1[T = kJ1[X; & G2 (8))e(8, X2)] < EJ |1[X; & G (6)] 2_: c(6, Xs)
s=0

and the uniform integrability condition (v) together imply that for every
g > 0 there exists some §(¢) > 0 such that

supy EY [1[T = K|1[X; & G4(5(e))]e(6, X;)] < €. (1.105)

On the other hand, the mapping 0 — E& [1[T = K|1[X; € G ((e))]c(0, Xy)]
is continuous by virtue of Lemma B since Gy (6(¢)) is finite. The desired
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continuity of the map ein:%g(99—> E2[1[T = k]c(6, X;)] readily follows from
this remark and from (IL. y using a standard decomposition argument.
Details are left to the interested reader.

For the second step, start with the estimate

T-1

1m <711 (6, X;)

t=0

0<CH,z) — Crn(8,z) =E° , m=1,2,...

and observe that the uniform integrability of the rvs {(T,P?), 8 € ©} yields
lim,,supyP?[T" > m] = 0. This fact and the uniform integrability condition
(v) immediately imply the uniform convergence

lim,,, sup, EZ
t=0

1[m < T] 2_: c(8, Xt)] =0, (1.106)

and the proof is now complete .

1.10 Parametric dependence: Lipschitz continuity

Metivier and Priouret EE?] have shown that the a.s. convergence of stochas-
tic approximations passes through the Lipschitz cont'gn%ig . gf the solutions
(h(8),J(0)) to the parameterized Poisson equation (%Q%rguments for
establishing this Lipschitz continuity are now outlined in a s gav&léla.t e
stricted set-up which nevertheless often occurs in applications%ﬁTo
that end, we postulate that for all z in X the probability measures {p,.(), 6 €
©} on X are mutually absolutely continuous, i.e., if pyy(6) = 0 for some y
in X and 6 in O, then pgy (') = 0 for all ¢ in ©. As a result, for each
m=1,2,..., the probability measures {IP’g, 6 € ©} are mutually absolutely
continuous on the o—field F,. If L% (6,60") denotes the Radon—Nikodym
derivative of IP’?; with respect to P (on F,), then

-1
Lfn(o,o'):nﬁ M m=12,... (1.107)
i—0 pX¢X¢+1(‘9)

where the convention 8 = 0 is adopted. With L§(0,6') = 1, the rvs
{L2,0,6"), m = 0,1,...} form a (P?, F,,)-martingale, and for any non-
negative Frap,—measurable rv X,

EY [X] = E% [L%,,(0,0') - X], m=1,2,... (1.108)

b
by standard results on absolutely continuous changes of measures %T
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t:Theorem 10.1]| Theorem 22 Under the foregoing conditions, suppose there exist a constant

K > 0 and a mapping X — (0,00) : x — K(x) such that for all 6 and 0" in
o,

Doy (0) — Py (0')] < Kpoy(0)-160—6'|, z,yeX (1.109) |eq:(10.3)
and
le(0,z) —c(0',z)] < K(z)-10-6¢], zeX (1.110) |eq:(10.4)
If the moment conditions

T —

[ 1
K(z) := supy E¢ K(Xt)] <oo, z€X (1.111) [eq:(10.5)
L t=
and
~ [ T-1
Clz) == supg B [T(1+8)" ) |e(6,X)|| <0, ze€X(1.112) [eq:(10.6)
L t=0

are satisfied for some 0 < 6 < 1, then for every x in X, the mappings
0 — C(0,x) are locally Lipschitz continuous over ©. In fact, whenever
0 — ¢'| < L&, the Lipschitz estimates

|IC(0,z) — C(0',z)| < L(z)|0 — ¢, zeX (1.113) |eq:(10.7)

hold with L(z) := KC(x) + K(z) for all z in X.

t:Th 10.1
A few observations are in order before proving Theorem b?: err?résulf
on the Lipschitz Continu;:t.yn%foglelg H}g{)pings 0 — T(0,z), z in X, is readily
(?l:)qta(i{be%%fg@@oTel}eorem EZ upon using c(f,z) = L 11% J l%i)ch case conditions

(T.T10)—(I.112) are automatically satisfied, and Teduces to

T() = supy B} [72(146)"| <00, z€X. (1.114) [eq: (10.8)

eq: (10.6 leq: (10.8)
In fact, (L1 lZ; also reduces to (II.1 14; whenever the cost function is bounded,

ie., |c(f,z)] < B forall zin X and 0 i e®:(1 7
When the Lipschitz const ant d 5( . oes not depend on z, i.e.,
K(z) = K for all z in X then (E%TI‘?Teduces to the condition supy EZ [T7] <
oo for all z in X. eq: (10.8)

The uniﬁg?ggc%%gg& i(bf};@%:j%mn?e checked in a variety of ways. For
instance, in [I8, 19, 20, 33] the authors considered a particular model where
the distribution of the first passage timj(eij &g% T Pz is independent of 6

— of course a rare occurrence — so that ecomes a simple moment
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Ssiam
requirement. Some general methods are sketched in H{?Djl._Tn other situations,
specific arguments have to be developed, as we now do under the assumption
that for some distinguished 6* in ©, there exists a constant B > 0 such that
for all 8 in ©,

0
Pry( *) < B whenever pg,(0*) >0, z,yeX. (1.115)
Pay(6*)
eq:(10.2
In that case, fixing 6 in © and z in X, we observe from ([I. at

EY 1T <m](T Am)] <EY [1[T <m)(T Am)-B™™], m=1,2,...

:(10.9)
because 0 < L%, (6*,0) < BT"™ by virtue of (eI.I l5;, whence E? [T] <
Ez* [T . BT] by a simple limiting argument. The same reasgning%s?hows that

* : (1
EY [T%(1+6)"] < Ef [7? (1 @B)T} Consequently (e. olds under
the structural condition (T.115) whenever the more compact conditions

EY [T2((1 4 6)B)"] < oo

holds. t :Theorem 10.1

A proof of t’l‘_ll}lggl;'e%r% 22. Let z be a fixed element in X. As in the proof
of Theorem 19, there is no loss of generality in assuming c(#,z) > 0 for all
z in X and 6 in ©.

:(9.6)
. 1?1 g,and #' in ©, and m = 1,2,.... It is easily seen from (eI.IlBi and
( i g g

at

Cm(0', ) := B

TAm—1
1T < m]- L, (0,6") Z c(@',Xt)] .
t=0

With this relation in mind, we define

Ap(6,0") :=E?

TAm—1
UT <m] [1 = Lpa(0,6)] - C(G,Xt)]
t=0

and

B (0,0") :=E?

TAm—1 Thrm—1
1T < m]- %Am(e,e’)-[ o0, X) - > c(e',Xt)”

t=0 t=0

so that

Crn(0,2) — Cra (60", ) = A (6,60') + B (0, 6).
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: (10.3)
Condition (el -109 ; implies

/
1-— Pay(0') <K-|0—0'| whenever pyy(0) >0, z,y€X
Pry(0)
so that on the event [LF., (6,0") > 0], provided K|§ — ¢'| < 1,
(1-K|o—0)""™ < [£,,.0,0)< (1 +K]g—0)""™.  (1.116)

Now the easy identities

t
1+ K™ —1= / (EmK) - (1 £ Kr)™ldr, >0
0

yield
‘(um)“m - 1‘ < K(T'Am)-(1+08)TAm ¢, (1.117)
: (10.15)
when ever 0 4 < i 7 (where 0 < § < 1). Therefore, upon combining (e
and (I under the condition K6 — 6’| < 6 we find
| A (6,6)]
TAm—1
< K-ES (1T <m]-(TAm)-1+6)T™. 3~ c(0,Xt)] 16— ¢
t=0

and a simple limiting argument gives

T-1
(140 (6 Xt)] |o—6'|. (1.118)
t=0

On the other hand, for each m = 1,2,..., we have
TAm—1

LT <m] - Linm(6,6)) - D |6, X) — 0(9',Xt)\]
t=0

limy, |4 (0,6")] < K -Eg | T

| Bm(60,0')] <

E9

Zz

IN

ThAm—1
1T < m]- L, (0,6) - ) K(Xt)]-|9—0’|

0!
Ez

1[T < m) T/\i”: 1K(Xt)] |0 —46'],
t=0

: (10.4)
where the sec nd sy ality is a consequence of (I 10 ;, and the final equality
(T 108§ ?

follows from n the limit, we conclude
T

lim,, |B(6,0')] < EY [ZK X; ] )| -10 ¢ (1.119)

Jeq: (10.18)  leq; (10.20)
and the result now readily follows from (IL 118) and (I.I19).
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1.12 Appendices

1.12.1 The example

s on
To obtain (IL 69 from (IT 4], We apply (}TqGDmh z =0 to get
T'(x) = 1+pl'(z+1), z=0,1 (1.120)

and

T(z) = 1+pT(x+1)+ql(z—1), z=23,... (1.121)

7.2)
Since T'(0) = (/ ’yg ) by standard results o qul%gv chains, we can use (I bzii
L. %?} i (LI 69)

to obtain ( de ,El 2ghe validity of can be seen by substituting

(&n% 1 120)— (ﬁ 1217, so that T'(3) — T'(2) = T(2) — T(1). By virtue of
( his last equality propagates by indugfion, i.e. ,T(x+1)—T(z) =
T(x) —T(zx—1) forall z=2,... and (; 69) readily follows

Fixing v in X, we now set out to compute the cost per (%ytfls C, associated
(% 59) wh

with ¢,. To do so, we use the system of equations (II: which here takes
the form
Cy(z) = ep(z) + pCy(z + 1) + qCy(z — 1), z=0,1 (1.122)
and
Co(7) = cp(x) + pCy(z + 1) + qCy(z — 1), x=2,3,. (1.123)
leq: (A 4)leq: (A.5) 1 (7.8q:(7.9)
For v = 0,1 or v = 2, we use (u 122—(1.123) fo get ( - y

straightforward calculations. The case v > 3 is more involved: We observe

that Cy(x) = Cy(z + 1), x = v,..., which is readily derived from the def-
(EA25)°

inition of C, (which holds for v > 1). Moreover, as the relation
implies

p(Cy(z+ 1) — Cy(z)) = q¢(Cy(z) — Cy(z — 1)), z=2,...,0—1

we conclude that

Co(z+1) = (Co(z+1) = Cy()) + (Co(z) — Co(z — 1)) +
--+(Cv(2)_ v(l))‘l'cv()
= > pI(Cy(2) - Cu(1)) + Cy(1) (1.124)
j=0



. leq:(7.10a)
fer :&E];_% sy 1. Because ¢,(0) = ¢y(1) = 0, we obtain (el.ﬁl @fiom
and o3 nd combining this last relationship with (I.124), we
ﬁnally get ( “after some algebra, 7 1

A proof of T %'em 14. First, under the enforced assumptions, we

conclude from ( at
Z|c )| Ty <KZ (14+7r")(1—p)p” < o0 (1.125)
:(4.7)
because p < 1 and rp < 1Fe a.n((; Ej}e quantity J given by (T.Béi is therefore

well defined. Next, using (I[.69], and the fact p < 1, we see that

D A@)T(x) =1+ (1(172,)2 < oo. (1.126)

Finally, we claim that

Z Z le(v) ) < 0. (1.127)
z=0

leq: (A.10) leq: (4.7) leq: (A.9)
Before giving a proof, we combine (Il 127) with (I:35) and (I.I26) to

conclude that for each z in X, the quantity h(z) given by

h(z) = c(v)hy(z) = Zc )[Co(z) — J,T(x)]
v=0 v=0
= > c(v)Cy(z) — JT(x) (1.128)
v=0
is well defined since (aAu icpjﬁnite series are absolutely convergent.
leq: 1
To establish (;.127 J, we interchange the order of summation (by a simple

application of Tonelli’s Theorem), and note that

Y @) ) le@)|Colx) < KDY (1+7")) v(@)Colx)
=0 v=0 v=0 =0

= KO=p) Y0+ ) 7 Cla).
v=0

eq: (4 10) (7. %kg (7.100)
The desired conclusion (1L now follows from (II. once we ob-

serve that for v = 3,4, ..., the bounds

o z=0
Cy(z) =< Cp"®(1—p") z=1,...,v (1.129)
C(1-p") r=v,v+1,...
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hold for some positive constant C' which depends only on p. The calculations
are tedious and are omitted; the finiteness of the various infinite series follows

from the fact that p < 1 and rp )

. :QE‘IPBining (%’f‘fz%)giémd (F#&ﬂﬂiw)wh (E—C.‘T'%J)%e see et}:l% ]11) defined by
(}T?TZB’)_%Iongs to B, = U,. As the Poisson equation (I.I5§ mmvolves here
only a finite sum, it is immediate by substitution that under ‘gh:e( ‘tf\)ted
conditions, the pair (h,J) defined above is indeed a solution to (}1—?—'—5%106
for each v in X, the pair (hy, J,) is a solution to the Poisson equation.
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Chapter 2

Generic chapter for
in-volume reference
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