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1. Finite models

In this introductory section we consider Blackwell optimality in Controlled Markov Pro-
cesses (CMPs) with finite state and action spaces; for brevity,we call them finite models.
We introduce the basic definitions, the Laurent-expansion technique, the lexicographical
policy improvement, and the Blackwell optimality equation, which were developed at the
early stage of the study of sensitive criteria in CMPs. We also mention some extensions
and generalizations obtained afterwards for the case of a finite state space.

1.1 Definition and existence of Blackwell optimal policies. We consider an infi-
nite horizon CMP with a finite state space X a finite action space A, action sets A(z) = A,
transition probabilities pgy(a) = p(y|z, a), and reward function r(z,a) (x € X,a € Az, y €
X). Let m be the number of states in X.

We refer to Chapter 1 for definitions of various policies, of probability distributions
and expectations corresponding to them, and notations. We also use the notation

(1) K={(z,a): a € Alzx), z € X},
so that, in particular,

) P @) = Y pa(@f(),  (m )€K

yeX

For every discount factor 8 € (0,1) the expected total reward

(3) v(z,m, B) =vg(z,m) =K

Zﬂtr(a:t, at)]

t=0

converges absolutely and uniformly in the initial state x and policy m, so that the value
function
V(z,B) = Va(z) := sup vg(z, 1), reX
rell

is well defined and finite. Following Blackwell [3], in this chapter we say that a policy =
is B-optimal if vg(x, ) = Vg(z) for all z € X (not to confuse with e-optimal policies, for
which vg(m) > Vg — €; in this chapter we do not use them).

In the case of a stationary policy ¢ € II° it is convenient to write (3) in matrix
notations. In that case we have an m X m transition matrix P(¢) = P¥ with entries
Pay(p(x)) = pZ,, and (3) can be written in the form

(4) vp(p) =v§ =Y (BP?)'r¢ = (I - BP?) 1%



where 7¥ is a vector with entries 7(z, ¢(x)), x € X (formula (4) has sense also for complex
B with |3 < 1), (in the notation (2) P?f(z) = P*® f(z)). For every 8 € (0,1) there
exists a (-optimal policy g € II?; namely, one may set

g () = argmax [r(x, a)+ Z Pavg(a:)}, reX
a€A,
yeX
In the important case of undiscounted rewards, when 8 = 1, the total expected reward
in general diverges, and the simplest performance measure is the average expected reward
w(z,m) = w™(z) (see Chapter 1). For a stationary policy ¢

n—1

(5) w? = lim 1 Z (P?)tr = Q¥r¥ = lﬁl#rll(l — B)vg,

n—oo N
t=0

where Q¥ = Q(y) is the stationary matriz

. | RELA

(6) QY = ]\}1_)00 N+l 2 (P?)", and Q¥P¥=P¥Q¥=0Q".

The last expression for w?¥ in (5) follows from (3) and the fact that Cesaro summability
of a divergent series implies its Abel summability to the same limit. Howard [26] proved
the existence of average optimal policies in finite CMPs with the class 1I° of admissible
policies, and developed a policy improvement algorithm to find them, related with his
name. Almost at the same time Wagner [41] determined that such policies are average
optimal in the class II too.

However, the average reward criterion is unsensitive, underselective since it is entirely
determined by the arbitrarily far tail of the rewards; in accordance with this criterion,
two policies providing rewards 100 +0+ 0+ --- and 0 + 0 4+ 0 + - - - are equally good (or
bad). Blackwell [3] in his study of finite CMPs introduced a much more sensitive concept
of optimality, that bears now his name, and proved the existence of stationary policies
optimal in this new sense.

Definition 1. A policy w is said to be Blackwell optimal, if © is B-optimal for all values
of B in an interval By < B < 1.

A stationary Blackwell optimal policy ¢ is average optimal. Indeed, there exists a station-
ary average optimal policy ¢, and by (5)

Y — lim(1 — B)v? < lim(1 — B)v? = w?
w 11m v 11m v wr,
BTI( Bug < BTI( Bug

so that w? = wY. Since the last limit is the same for all Blackwell optimal policies,
stationary or not (as follows from Definition 1), and since by Theorem 2 below there is
a stationary Blackwell optimal policy, every Blackwell optimal policy m € Il is average
optimal.

Theorem 2 In finite CMP there exists a stationary Blackwell optimal policy.
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Proof. Since for every positive 8 < 1 there exists a S-optimal policy g € 11°, and because
the set II° of stationary policies is finite together with X and A, there exists a stationary
policy ¢ which is S-optimal for all 8 = 3,, where 3, 1 1. We claim that ¢ is Blackwell
optimal.

Suppose the contrary. Then, because X and II® are finite sets, there are a state xg, a
policy 9 € II®, and a sequence 7, 17 1 such that

vf(z0) < vf (o) for B=n, Yull

On the other hand, by the selection of ¢
vi(w0) > vj (wo) for B=pu11.

It follows that the function
£(B) = v§(wo) — v} (wo)

defined for all complex 8 with |[3| < 1 takes on the value 0 at an infinite sequence of
different points z, 1 1, and takes on nonzero values at the points v, 1 1.
By using Cramer’s rule to compute the inverse matrix, we find that each entry of
(I — BP¥)~! is a rational function of 3, and the same is true with ¢ in place of .
Therefore and by (4), f(8) is a rational function of the complex variable /3 in the circle
|B| < 1 (and hence on the whole complex plane). A rational function cannot have infinitely
many different zeros z, if it is not an identical zero. The obtained contradiction proves
that ¢ is Blackwell optimal.
O

The above proof is a purely existence argument, without any indication how to find
a Blackwell optimal policy ¢. Blackwell’s original proof also did not provide a complete
algorithm to obtain ¢, but it contained some essential elements in this direction. Blackwell
used, besides the limiting matrix Q¥, the deviation matrix D¥ corresponding to ¢ € II°.
If the Markov chain with the transition matrix P¥ is aperiodic, then

(7) D? =) [(P*) - @],
t=0
and the above series converges geometrically fast; in general
(7) PSRN o) o f S )
Noow N+17=43

An important property of this matrix is that D¥ is uniquely determined by the equations

(8) D#Q¥ = Q*D¥ =,
(9) DLP(I — P‘p) = (I — P‘P)DSO =1-Q¥
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(see, for instance, Kemeny and Snell [27]). Blackwell derived and utilized the expansion

h<P
(10) vh = : —_1ﬂ + h§ + o(1) as 311,
where
(11) h?, = Q%r?, hy = D¥r?,

and introduced the notion of a nearly optimalpolicy m € II. For such a policy Vg —vg = o(1)
as 1 1.

The existence of a Blackwell optimal policy ¢ € II* implies a similar expansion for the
value function

=

(12) Valw) = 15

It is easy to see using (12), that a policy 7 is average optimal iff v§ = h_1/a + o(1/a),
where a = 1 — 3, and that 7 is nearly optimal iff v§ = h_1/a+ ho + o(1).

+ ho +0(1) as p11.

1.2. Laurent series expansions and n-discount optimality. Average optimal and
nearly optimal policies, as well as relations (10)-(12), are at the start of a chain of notions
and equations developed by Miller and Veinott [30] and Veinott[38], which lead to a deeper
insight into Blackwell optimal policies and to an algorithm to find them. We present their
main ideas in a slightly modified form.

The approach is based on the Laurent series expansion of the resolvent

(13) Rg=(I-pBP) ' =1+p8P+p*P*+... (18] < 1)

of a Markov chain with the transition kernel P in the neighborhood of the point g = 1.
This expansion is a general fact known in functional analysis (see, for instance, [43]). In
the particular case of an aperiodic Markov chain, it follows immediately from the geometric
convergence of P' to the limiting matrix Q. Indeed, the difference

Ry = 5@ = (1= Q)+ B(P-Q) +F (P = Q)+,
in which |[|P™ — Q|| < C4™ for some 7 < 1, is an analytic function of the complex variable
B in the circle || < 1/ (we use the norm in the space of (m x m)-matrices generated by
the supremum norm in the space of m-vectors). The point 5 =1 is inside this circle, thus
Rg has the same singularity at the point 8 =1 as ﬁ@, i.e. has a single pole. Therefore
in some ring 0 < |3 — 1| < o a Laurent expansion

R_
(14) R6:f+R0+R1OA+R20¢2+"', a=1-p



holds. If the Markov chain is periodic, consider the least common multiple d of the periods
of all its ergodic classes. The chain with a kernel P¢ is then aperiodic, so that P™?
converges geometrically fast to a stochastic matrix @ as m — oco. Similar to the preceding
argument, it follows that the infinite sum

Rg =1+ pP+p%pP? 4 ...

is analytic in a circle |3|? < 1/ of a radius greater than 1, and thus has a simple pole at
B = 1. Then the same is true for

Rg=(I+BP+---+p* PR,

Instead of the Laurent series (14), one may write a similar series in powers of another
small parameter p equivalent to o, which has the meaning of an interest rate:

1-p8 « 1
15 = = : - —1-a
(15) p =17

Veinott [38] and most of the subsequent authors used series in p. Chitashvili [6][7][51] and
following him Yushkevich [44]-[50] used series in . We present both versions.

Theorem 3 In a finite CMP there exists a number By € (0,1) such that for every policy

pell’

(16) vg = (1+p) Z hep" = Z kfa™, Bo<p<1
n=-—1 n=—1

where

(17) h?, =k?, = Q%r? = w?, hy = k§ = D?r?

(cf. (10) and (11)), and where for n > 1
(18) hi = (=D?)"*hg,  kf=(1—D?)"kg.

A similar expansion is valid for the value function

(19) Va=(1+4p) Y hnp =Y kna", By<B<L

n=-—1 n=-—1



Proof. The existence and convergence of Laurent expansions (16) follow from expansions
in powers of p or o of BRY, respectively Rg, and from the formula v§ = REr? equivalent
to (4). To get the coefficients (17)-(18), observe that by (4) vg = r¥ + SP¥vf, so that by
(15) and (16)

(1+p) Y hEp™ =1%+P?Y hp™.
-1 -1

By the uniqueness of the coefficients of power series, this results in equations (to simplify
writing, we temporarily skip the superscript ¢):

(20) h_y = Ph_y,
(21) h()—l-h,_l :T+Ph0,
(22) hp + hp—1=Ph,  (n>1).

From (6) and (20) by iteration and taking a limit, we find h_; = Qh_;. For the stationary
matrix Q = QP = P(Q, and a multiplication of (21) by Q gives Qh_1 = Qr, so that
h_1 = Qr as in (17). A multiplication of (22) by @ provides Qh,, = 0 (n > 0). Using this,
the relation h_1 = Qh_1 and (8)-(9), we get after a multiplication of (21) by D = D%, that
D(I—P)ho+DQh_1 = Dr, or (I—Q)hy = Dr, or finally hg = Dr as in (17). Multiplying
(22) by D, in a similar way we get D(I — P)hy,, + Dhy,,_1 =0, or hy, — Qhy, = —Dh,,_1, or
hn = —=Dhy—1 (n > 1), and this proves that h, = (—D)™hg as in (18). Formulas (17)-(18)
for k¥ follow absolutely similarly from equations k_y = Pk_1, ko + Pk_1 = r + Pky and
kn + Pk,_1 = Pk, instead of (20)-(22).

Since the set II° is finite, we have the expansions (16) simultaneously for all ¢ € II°
in some interval (8p, 1). Formula (19) follows now from Theorem 2. O

Formulas of Theorem 3 are a generalization of (10) and (11). They stimulate a similar
generalization of the average optimality and nearly optimality criteria. The following
definition is due to Veinott [39].

Definition 4 For n > 1, a policy m* € II is said to be n-discount optimal, if for every
mell

(23) lim p"[v5 (1) — v3()] > 0
A1

(with « in place of p we have an equivalent condition).

By substituting in (23) a Blackwell optimal policy 7, for which vg(7) = V3 and vg(7*)—
vg(m) < 0, one may see that in finite CMPs condition (23) is equivalent to a simpler (and
formally stronger) condition

(24) lim p™" [V — vg(m")] = 0.



However, condition (23) appeared to be more suitable for an extension of sensitive criteria
to denumerable and Borelian CMPs. To avoid confusion, mention that in literature 0-
discount optimal policies are sometimes called bias-optimal or 1-optimal; the latter name
originates from Veinott [38]. Also, as seen from a comparison of (16) and (19), a stationary
policy is Blackwell optimal iff it is m-discount optimal for every natural m, or, briefly
speaking, is oo-discount optimal.

A convenient description of n-discount optimal policies can be made in terms of se-
quences of coefficients of series (16) and (19) and a lexicographical ordering in spaces of
them. Define

(25) H? = {h?,h¢,..}, K?={k?, k¢, ..},

let H? and K be the initial segments of H¥ and K% up to the n-th term, and let H, K,
H,, and K,, have the same meaning for the series (19) (each h¥ etc. is an m-vector). For
those sequences and segments we introduce a natural lexicographical ordering denoted by
symbols >, >, <, <. So, H¥ < HY means that H? # HY, and that there exists a number
N < oo and a state zo € X, such that HY_, = HY_, (if N > 0), and h% (x0) < h% (20)
while h% (z) < h%(z) for all other z € X. The relation H® < HY means that either
HY = HY or HY < HY. The relations H¥ = H¥ and HY > HY¥ are equivalent to
HY% < HY and H¥ < HY.

With this notation we have H¥ < H and K¥ < K for every ¢ € II®, and the policy
¢ is n-discount optimal (or Blackwell optimal) iff H? = H,, or K¥ = K,, (respectively, if
H¥Y =H or K¥ = K).

The following theorem due to Veinott [39] shows that in finite CMPs the n-th discount,
optimality of a stationary policy for large values of n coincides with its Blackwell optimality.
Let ®@,, be the subset of I1° consisting of all stationary n-discount optimal policies (n > —1),
and let ®,, be the set of all Blackwell optimal policies in I1°. Evidently,

q)_qu)()D(I)lD"', (Doo:ﬂq)n
n

Theorem 5 In finite CMPs with m > 2 states

Proof. Tt is sufficient to show that &, ; = ®,,. Consider any policy ¢ € ®,,,_1. We have
H? | = Hp,,_1, or in more detail

(26) b =h,, n=-1,01,...,m—1.

n

Since m > 2, both hy and hy are present in (26). We claim that m column m-vectors
ho,h1,...,hym_1 are linearly dependent. It is sufficient to show that m row vectors of the
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corresponding square matrix are linearly dependent; these rows are {ho(x), ..., hpm—1(2)} =
{h&(x),...,h? _1(z)}, z € X. In fact even the infinite sequences

(27) {h§ (@), hT(2),... hf(2),...}, z€X
are linearly dependent. Indeed, in the finite Markov chain generated by P¥ there exists a

stationary distribution {u(z), € X}. The total discounted expected reward correspond-
ing to the initial distribution p and policy ¢ is equal to

(28) vi(u) = (o = ulx Z T (e, p(t)) =

z€X reX t=0
=B w(@) B r(ze, (x) = Zﬂt EY 7 (ze, 0(z4)).
t=0 zeX t=0

Here the P¥-distribution of 4 does not depend on ¢ because p is a stationary distribution,
and hence the factor at A in (28) is some constant C. Thus

(29) =0 p=- —cltl_

(14 p)

+Zo p]

(cf. (15)). On the other hand, by (28) and (16),

v = (140 3 " n@)hg(a)

n=—1 zeX

A comparison with (29) together with the uniqueness of the Laurent coefficients show that
> u(x)hE(z) =0 for all n > 0, so that the sequences (27) are linearly dependent.
x

Now, by (18)
(30) he 1 =-D¥h¢,  hnpy1=-DYh, (n=0,1,2,...)

where ¢ is a Blackwell optimal policy. Let ¢ be the maximal integer such that the vectors
ho = hg,...,hy = h{ in (26) are linearly independent; such ¢ > 0 exists if only hy # 0, and
as just proved, t < m — 1. If hg = 0, then by (26) also h§ = 0, and by (30) hY =0 = h,
for all h > 0, so that H¥ = H and ¢ € ®. If there is the required ¢, then hyyq = h{ ; is
a linear combination of hg = hf, ..., hy = h{:

t t
(31) heyr =Y Cihi,  hf =) Cihf.

1=0



Due to (30) multiplying the first identity by —D¥ and the second by —D¥, we only increase
every subscript in (31) by 1, and since hy = h; for 0 < i < ¢t 41, we get hf 5 = hpo.
Repeating this, by induction we get h¥ = h,, for every n > 0, so that ¢ € ®. m|

The sets ®,,_o and ®,,_; are in general different. The following example, taken from
[39], confirms this statement. To make it more visual, we present it for m = 5.

Example 6. There are m = 5 states 1,2,...,5 with mandatory transitions 2 - 3 — 4 —
5, the state 5 is absorbing. In the state 1 there is a choice between two actions, which
determine two stationary policies ¢ and 1 (see Fig. 1). Under ¢ we have a mandatory
transition 1 — 2, under 9 transitions 1 — 1 and 1 — 2 are equally likely. The numbers
under arrows indicate the rewards r(x,a). Mention that the rewards 2, —6,6, —2 are the
binomial coefficients of (A — B)™~2 = (A — B)3 multiplied by 2.

Pll(ip):% p12(¢):%

The expected rewards vg and vlﬁp differ only at the initial state 1. For ¢ we have
vi(1) =2 -68+64% —26° = 2(1 - §)° = 20°,
For 1, by the formula vg’ =r¥ + ,BPwvg (cf. (4)) we have the equation

vi =1+ 3o (1) + 305 (2)].

Thus
(2= B)up(1) =2+ puy (2),
where
Bug (2) = B(—6+ 68 — 28%) = v¥ (1) — 2.
Hence o
vg)(l) = ;Jﬂ_(lﬁ) = 12130[ =2a® —2a* +22° —---.

This means that Vg(1) = 203, that ¢ is Blackwell optimal, and that 1 is 3-discount
optimal, but not 4-discount optimal. Thus &3 # &4 = P ..

1.3. Lexicographical policy improvement and Blackwell optimality equation.
Policy improvement is both a practical method to approach an optimal policy in CMPs
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and an important tool in their theory. Its essense is that if ¢ and 9 are two stationary
policies, if m = 1> is a Markov policy coinciding with 1) at the first step of the control
and coinciding with ¢ afterwards, and if 7 is better than ¢, then % is also better than
. This method, almost trivial for the discounted reward criterion with a fixed g < 1,
was developed by Howard [26] for the average reward criterion. Howard used, besides the
avarage reward w?(= h¥,), a bias function, in fact connected with the term h¥ in the
expansions (10) and (16). Blackwell [3] provided a rigorous proof that a slightly different
version of Howard’s policy improvement method does converge. Miller and Veinott [30]
have extended policy improvement to the case of Blackwell optimality, and Veinott [39]
refined it using the classes ®,,. We expose this topic in a modernized form, using an
operator approach developed in Dekker and Hordijk [8] in the framework of CMPs with a
countable state space X. To avoid additional formulas, we do all calculations in terms of
p; in terms of a formulas are slightly different.

From the structure of 7 and (14) we have

1
vg =7 —I—ﬂPwvgzr’p—l-—Pwvg:r + PY Z hep",

1 + n=-1
while
vh =hZip7t + Z(hﬁ + hy1)p™.
Subtracting, we get
(32) vg —v§ = (PYh_y —h_1)p™ "+ (r¥ + P¥ho — ho — Z (P¥hy, — hyy — hyp—1) p"

where it is understood that h, = h¢. By (18), the supremum norm |h£|| is growing no
more than geometrically fast with n.

It is convenient to introduce the space $ of all sequences H = {h,,n > —1} of m-
vectors satisfying this growth condition, and to treat the sequences of Laurent coefficients
of the series (16), (32) etc. as elements of §. In particular H¥ € §) (see (25)), and in § we
consider the same lexicographical ordering as we have introduced in connection with H?.
Also, it is convenient to define the spaces £, of finite collections H,, = {h;,—1 < t < n}
of m-vectors.

The right side of (32) defines an operator LY in the spaces §) and §),,. Since the matrix
PY has entries pgy(a) with a = 9(z), we express L¥ through the corresponding operators
L* transforming functions (vectors) on X into functions of pairs (x,a) on the state-action
space K defined in (1). We have

(33) (LYH)(z) = LY®H(z), =zeX,
(34) L°H(z) = {£h%(x),Lhj(x), Lhi(x),. ..}, (z,a) € K,
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where according to (32)

Lh? (z) = P*h_1(x) — h_1(z),
(35) thi(z) = r(z,a) + Pho(z) — ho(z) — h—1(z),
¢hl(z) = P%hp(x) — hyp(x) — hp—1(x) (n>1).

The same formulas define L® and LY, as operators on §,,.

Lemma 7 Let ¢, € TI°. If (LY H¥),, 41 = 0 for somen > —1, then HY = HY. Moreover,
if in addition (LY H¥),41(70) = 0 at some zy € X, then HY (zo) = H¥(xo). The same is
true with the reverse inequality signs.

In particular, if LY H¥ = 0, then HY = H¥.

Proof. The condition (LY H?),, = 0 means that
(36) v = vj + Qn(p) + O(p"*)

where Q,(p) is a vector consisting of polynomials of degree < n with lexicographically
nonnegative coefficients, and where O(p™*!) is uniform in z € X since X and A are finite
sets (compare (32) with (33) (35)). Consider policies m; = 1*p>, and let v(t) = vg(m¢), so
that, in particular, v(0) = Uﬂ, v(l) = vg. We have

(37) v(t+1) =¥ + BPYu(t), t=0,1,2,...
and by (36)
(38) v(1) =v(0) + Qn + R,

where the remainder R is of order p"*!. From (37) and (38) by induction we get
v(t) =v(0) + (T +BPY + (B°PY)* + -+ (BPY)")(Qu+ R),  t>1
(we use that ¥ + BP%v(0) = v(0) + Q. + R according to (37) and (38)). Since 8 < 1, in
the limit v(¢) becomes v(oc0) = vg, so that
2+ 3" (BPY) (Qu(p) + R) = v§ + R%(Qn + R).
t=0

Here Q,, > 0 for small p > 0, R is of order O(p™*!), and the resolvent Rg is of order

O(1+ B+ p%+---) = O(p~1). This proves that Hw . = H? | if LYH? = 0. Other
assertions are proved in a similar way. m|
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To proceed further, we need the lexicographical Bellman operator L in the spaces $
and $,,:

(39) LH(z) = max L*H(x), He9p, zeX
aChy

where the maximum is understood in the lexicographical sense >; the same formula holds
for H, € 9,,. This maximum always exists because the sets A, are finite. Since one may
use all combinations of actions in stationary policies, formula

(40) LH = max LYH
pell®

defines the same operator L.

If in (32) ¥ = ¢ then m = 9> coincides with ¢, and the left side of (32) is zero.
Hence all the coefficients at the right side vanish, and this means that LY H¥ = 0 for every
@ € II%. Therefore LH? > 0 for every ¢ € I1°. If LH¥ = 0, we say that ¢ is unimprovable;
if LHY = 0, then ¢ is unimprovable of order n. The equation

(41) LH=0 He$H

is called the Blackwell optimality equation in the honor of Blackwell; the similar equation
LH, = 0 for H, € $, is the n-order optimality equation. Let H = {h,} be the element
of $) corresponding to the value function Vs (see (19)), and let H,, be the initial segments
of H. We say that a stationary policy ¢ is conserving (or n-order conserving) if LYH = 0
(respectively, LY H,, = 0).

Theorem 8 A. The Blackwell optimality equation has a unique solution H* = max H*.
pell®

A policy ¢ € 11° is Blackwell optimal iff HY = H*, and iff ¢ is a conserving policy.
B. For every n > —1, H} is uniquely determined by the equation LH, 1 = 0. A policy
@ € II? is n-discount optimal iff HY = H

¥, and is n-discount optimal if ¢ is (n+ 1)-order

conserving.

Proof. By Theorem 2 there exists a Blackwell optimal policy ¢ € I1°. Evidently, HY > HY,

1 € II°* and ¢ is unimprovable, so that H¥Y = H* := 5}11%}( HY, and LH* = LH¥ = 0.
e s

Since LYH¥ = 0, also LYH* = 0, and ¢ is conserving. In the part A it remains to prove
that the solution of (41) is unique, and that a conserving stationary policy is Blackwell
optimal. If 9 is conserving, then LY H* = 0, hence LY H¥ = 0 for a Blackwell optimal
¢, therefore by Lemma 7 (applied to every n) HY = HY = H*, so that 1 is Blackwell
optimal too. Finally, suppose that H is a solution to (41). By taking for each z € X a
lexicographical maximizer a € A, of L*H (x), we obtain a stationary policy v for which
LYH = H. One may check (we omit the proof) that Lemma 7 is true for any H € § in
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place of H? in particular, for H. It follows that HY = H , and since LHY = LH = 0, the
policy 4 is unimprovable. Hence 1) is Blackwell optimal, so that H = HY = H*.
The proof of part B is similar, with a reference to Lemma 7. m|

Policy improvement provides an algorithm to compute a Blackwell optimal policy in a
finite CMP. Start with some ¢ € II* and compute H? using formulas of Theorem 3 (here
m is the number of states in X). Check the values of £*,h(z), (z,a) € K. For a = ¢(z)
those values are zeros, and if £¢" h_y(z*) > 0 for some pair (z*,a*), then the policy

a if © = x*,
o(x) otherwise

improves ¢. If there are no such pairs (z*,a*), repeat the same procedure with £*hy and
the shrinked sets Ag(z) = {a € A_1(x), £2h_1(z) = 0}, Ky = {(z,a) : a € Ay(z),z € X}
(where A_1(z) = A(z)). A policy ¥ as above with £ ho(z*) > 0, (z*,a*) € K improves
@. If there are no such pairs (z*,a*), repeat the procedure with all subscripts increased
by 1, etc., until either you get a better policy 1, or reach the set K,,. In the latter
case @ is (m — 1)-order discount optimal, and therefore Blackwell optimal by Theorem 5.
Otherwise, proceed in the same way with the obtained policy . Since the set II° is finite,
this algorithm leads to a Blackwell optimal policy in a finite number of steps. In practice,
one may improve ¢ simultaneously at several states x*.

On the other hand, the lexicographical policy improvement approach opens a new way
to prove the existence of Blackwell optimal policies via a maximization of H¥ over all
stationary policies ¢ and the related Blackwell optimality equation(41). The latter idea
can be used in CMPs with an infinite state space X, in which the proof of Theorem 2,
based on the fact that the set II® is finite, is inapplicable.

1.4. Extensions and generalizations. Veinott [39] introduced also the notion of n-
average optimality in addition to the n-discount optimality. Let

v (2, ) = BT

2_: r(z4, at)]

and define recursively for n > 1

T
n+1 n
véw )(a:,7r) = qut( )(x,7r).
t=1
Then 7* is n-average optimal if for every policy =
]‘ n n
lim — [of™D(x%) = of D (m)] > 0.
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Veinott[39],[40] and Sladky [34] showed that in a finite CMP a policy is n-discount optimal
iff it is n-average optimal.

Chitashvili [6],[7],[51] extended results of Theorem 8 to more general models with a
finite state space. In [6] he treated CMPs with arbitrary (indeed, compactified) action sets.
He considered also what can be called (n, €)-discount optimal policies; in their definition
one should replace 0 by —e in formula (23). In [7] he studied n-discount optimality in
finite models with discount factors depending on the state z and action a: f(z,a) =
c1B + caff2 + -+ + ¢ B* where k and ¢; are functions of (z,a). In this case the reward
functions were of some specific average form. In [51] Theorem 8 is generalized to a finite
model with two reward functions r(x,a) and c(x,a). More precisely,

o0

vg(a:) =E? Z,Bt(r(a:t, at) + (1 — B)c(w, ag))

t=0

(in [51] Chitashvili considered only stationary policies). This expected discounted reward
corresponds to an undiscounted reward

N
—

1
r(xe,a¢) + Tlim c(xe, ag).

—)ooTt

K

t

I
<
I
=

In that case all formulas related to Theorem 8 remain valid, with one exception: in equa-
tions (35) defining L%, the term £h; should be changed to

thi(z) = c(z,a) + P*hi(z) — hi(x) — ho(z)

(similar to the term Zhg).

As explained in the proof of Theorem 2, in finite CMPs the expected discounted
reward vf(z) is a rational function of 3. Hordijk e.a. [18] introduced a non-Archimedian
ordered field of rational functions, used a simplex method in this field, and developed a
linear programming method for the computation of S-optimal policies over the entire range
(0,1) of the discount factor. In particular, their method allows to compute a Blackwell
optimal policy. More precisely, for some m one may find numbers By :=0< ;1 < -+ <
Bm—-1 < Bm = 1 and stationary policies 1, @a,...,¢m, such that ¢; is S-optimal for all
B € [Bj—1,65], 1 < j < m—1, and ¢, is f-optimal in the interval [Bp,_1,Bm) (which
means that ¢, is Blackwell optimal).

In CMPs with constraints the controller wants to maximize expected (discounted)
rewards while keeping other expected (discounted) costs in some given bounds. For such
CMPs Altman e.a. [1] gave a constructive proof for the following (weaker) version of
the result obtained in [18]. There exist numbers m and §; as above such that for every
Jj =1,...,m either the constrained problem is not feasible in the open interval (3;_15;)
or the value function is a rational function of 8 in the closed interval [8;_1,8;], 7 <m —1
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and [B,—1,1). Consequently, if the constrained problem is feasible in the neighborhood of
B =1, then vg has a Laurent series expansion at 8 = 1.

As shown in the proof of Theorem 2, the limits of S-optimal policies, for 8 tending
to 1, are Blackwell optimal. A counterexample in Hordijk and Spieksma [21] shows that
in general this is not true in unichain CMPs with a finite state space and compact action
sets. This disproves a conjecture in Cavazos-Cadena and Lasserre [4].

2. Denumerable state models

In this section we consider CMPs for which the state space X is denumerable. There are
many applications of controlled Markov chains for which it is natural to take an infinite
number of states. An important class of models is that of open stochastic networks, used
for the modelling of controlled communication systems.

Even in the case when the action space A = {0,1} consists of only two elements, but
the state space X is denumerable, the situation with Blackwell optimal policies is much
more complicated than in finite models. It turns out that a Blackwell optimal policy
may be not average optimal. A corresponding counterexample, based on the fact that the
Cesaro lower limit of a sequence of numbers can be different from the Abel lower limit
of the same sequence, was constructed by Flynn [52]. Also, there can be no Blackwell
optimal policy not only in the sense of Definition 1, but also in the sense of a weaker
Definition 12 given below, in which the interval (8p,1) may depend on the state z and
the nonoptimal policy 7. Maitra [53] presented such a counterexample, and in connection
with it formulated this weaker definition.

The analysis of sensitive and Blackwell optimality for denumerable state models is
mostly done under the following assumption.

Assumption 9 (a) Action sets A(x), x € X, are compact metric sets.

(b) Transition probabilities pgy(a) and rewards r(x, a) are continuous functions of a € A(x)
for all x,y € X.

2.1. n-discount optimality The following Liapunov function condition introduced in
Hordijk [17] implies, together with Assumption 9, the existence of a stationary n-discount
optimal policy.

Assumption 10 There exist a state, say state 0, and nonnegative functions go, g1, .- -,
gn+1 on X such that

(a) mix Ir(z,a)| < go(x), r € X,
aChy
(b) ;gggo(x) > 0,
gm(m) + Z pwy(a)gm—Fl(y) < gm+1($) fO’I" alla € Aa T e X’ m=0,1,...,n,
y#0

(€) Pgny1(x) = > pay(a)gn+1(y) is a continuous function of a € Ay, x € X.
yeX
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It is easily seen that gn,(z) < gmy1(z), m = 0,1,...,n, x € X Hence, by the
dominated convergence theorem, it follows from (c) that P%g,,(z) is a continuous function
ofaeA,, z € Xalso form=0,...,n.

In the case of a finite model, this assumption requires the accessibility of the state
0 under each stationary policy from each state. In the denumerable models it requires a
strong version of recurrence to the state 0. More precisely, it assumes the finiteness under
any policy of the n-th absolute moment of the total cost until the state 0 is reached, with
immediate “cost” ¢(z,a) equal to |r(x,a)|V1, (z,a) € K. For simplicity, in [17] Assumption
10 is supposed to hold for all n. However, the proofs there remain true and provide sharper
results if this assumption holds for a fixed n.

As shown in [17], Assumptions 9 and 10 imply for every ¢ € II® a partial Laurent
expansion of the form

n
(42) v =(1+p) Y h{p*+0(")
k=—1
where O(p™) is uniform in ¢. Moreover, the coefficients h}, are continuous in ¢ € II® in the
following topology. The space II° in the case of a denumerable X is the Cartesian (direct)

product [] A(z), and we take in each A(z) the Borel topology of a metric space, and in
zeX

IT® the product topology.

Using this continuity and the compactness of A(z), we can find for each z € X a
lexicographically maximal element H}(z) = {h}(z), —1 < k < n} of H?(z) over all
¢ € II°, and the corresponding maximizer ¢, (see Subsection 1.2 for the lexicographical
ordering and notations). Clearly, then

li_mp_(”_l)[vg(x, vz) —vg(z,9)] >0, reX

Bt1
for any other ¢ € II*, so that ¢, can be called (n — 1)-discount optimal in the class II*® for
the initial state 2. However, in the proper n-dscount optimality the same policy should fit
for all states x.

The following theorem derived in Hordijk [17] leads to this goal (in Hordijk and Sladky
[20] it can be found with a different proof).

Theorem 11 Suppose Assumptions 9 and 10. Then there exist functions u_1, ug, - - ., Uy
from X to R (u_; is a constant) statisfying bounds

um (2)| < emgm (), m=0,1,...,n
for some constants c,,, and nonempty compact (in the product topology) sets
Pa=1I°D>PyD---DP,

of stationary policies of the form P,, = [] Am(z) (A_1(z) = A(x)) with the following
zeX

property. Let U, = {u_1,...,un}. We have L¥U,, < 0 for every ¢ € II®* and m =
—1,...,n, and ¢ € P, if and only if L¥U,, = 0.
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It is shown in [20] that ¢ € P41 (m = —1,...,n — 1) if and only if ¢ is m-discount
optimal in the class I1° (this means that (23) holds for n = m for 7* = ¢ and any 7 € II®).
If ¢ € Ppuy1, then the coefficients hy, —1 < k < m in (42) coincide with ug, so that in
Theorem 11 we have an analogue of the conserving property.

Also, we can conclude from the above results that the value function Vz has a partial
Laurent expansion with the coefficients equal to the functions u,,. Hence

m—1
(43) Va(@) = (1+p) [u_1p™t +uo(x) + Z ug (z)p* | + O (p™) zeX
k=1
where up, = hi, k =1,...,m —1 and ¢ € Pp,41. For m = 1 this result is established in

Cavazos-Cadena and Lasserre [4] under more restrictive recurrence conditions.

Hordijk and Sladky [20] also proved that m-discount optimality is equivalent to m-
average optimality for m = 0,1,...,n — 1 in denumerable CMPs satisfying Assumptions 9
and 10.

Let us now assume that Assumption 10 holds for all » € N. Then we have nonempty
compact sets P, for every n, and their intersection

Poo = ﬁ P
n=1

is also a nonempty compact set in II°. A policy ¢ € Py is n-discount optimal (in the
class II®) for every n € N, and it is tempting to conjecture that ¢ is Blackwell optimal.
However, in general this is not true. We return to this question in Section 2.2.

2.2. On Blackwell optimality in infinite state models. The original Blackwell
definition (Definition 1) is too strong for the denumerable state CMPs, as we will see in
the counterexample below. In the following definition it is weakened, and a policy satisfying
Blackwell’s version is renamed into a strong Blackwell optimal policy. 1t is easy to see that
in finite models both definitions coincide. Note that Veinott’s Definition 4 of n-discount
optimality is stated in weak terms, applicable to general models.

Definition 12. For any set II' C I a policy ©* € I is said to be Blackwell optimal within
the class 11, if for every x € X and w € 11 there exists a number Bo(z, ) < 1 such that

vg(x,m*) > vg(x,m) for all B € (Bo(z,nm),1).

In the case II" =11, ©* is called Blackwell optimal.

Counterexample 13. The state space is

XZX{)UX]_UXQU"'
with
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(n,0),(n,1,1),...,(n,n,1),(n,1,2),...,(n,n,2)}.

The action sets are

A((0,0)) = (0,1,%,3,...},
A(n,0)) =1{1,2}, A((n,i,5))={1} 1<i<n, n>1 j=1,2.

The transition probabilities are
p((1,0)[(0,0),7) =1 -p((n,0)[(0,0), ;) =1-27", n=1,2...
p((l, O)‘(Ov 0)7 0) =1,

and forn =1,2,...

Pl 1, D](,0), 1) = p((n, 1,2) (1, 0),2) = 1,
p((n,i+1,1)|(n,4,1),1) = p((n,i + 1,2)|(n,4,2),1) =1, 1<i<n-1,
p((n,0)[(n,n,1),1) = p((n,0)|(n,n,2),1) = 1.

The immediate rewards are

r((0,0),a) =1 Va € A(0,0),
and forn =1,2,...

r((n,0),2)=n, r((n,0),1)=1,

r((n,i,1),1) =1, r((n,4,2),1)=0, 1<i<n.

Note that this CMP satisfies assumption 9.
Define ¢, k=1,2,... as follows:

1

v1(n,0) = and ¢r(n,0)=2 for k=2,3,..., n=1,2,3,...

It is easy to calculate that

U((na 0)’§015ﬁ) = (1 - IB)_la

and
v((n,0), 0, B) =n(1—p"*H)~t  for n,k>2.

Hence
’U((TL, 0)7 1, ﬁ) > ’U((’n, 0)7 Pk, /8)

if and only if 8 > f,, with ,, being the unique solution of the equation 1+8+---+8" =n
in the interval 0 < 8 < 1. Since f,, is monotone increasing to 1 as n — oo, there is no
Bo < 1 such that for k > 2,

v(z, p1,B) > v(z, 0k, B) forall pe[By,1) andall zeX
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Hence ¢; is not a strongly Blackwell optimal policy. Clearly, for fixed initial state (n,0),
n > 1 there is an f,, such that ¢; is discounted optimal for 8 € [B,, 1).
This is not true for the state (0,0). Indeed, for k£ > 2

v((0,0), 1, 8) —v ((0 0), oK, B) =
Bll=-p) T =(1-2"")A =B~ -2l =g =
A2 (1 -B)"" ( =AM,

which is nonnegative if and only if 8 > Bg. Thus ¢, is (weakly) Blackwell optimal in the
class II°.

We next show that ¢; is Blackwell optimal in the class of randomized stationary poli-
cies, it is also optimal in the class of all policies. Since the set of states {(n,0), (n,1,1),...,
(n,n,1),(n,1,2),...,(n,n,2)} is a closed set under any policy, it follows from the results
for finite models that ¢; is Blackwell optimal on this set in the class of all policies. This
holds for all n > 1. Hence it is sufficient to consider a policy ¢ which only randomizes in
state (0,0), say with probability py it takes action % If ¢ takes action 1 in (n,0) then
v((n,0),0,8) = (1 = B)~! = v((n,0),¢1,3), and for computing the difference between
v((0,0), ¢1,B) — v((0,0), ¢, B) we may as well set p,, = 0 in this case. So without loss of

generality suppose ¢(n,0) = 2 if p,, > 0. Then

= _ k |
v((o,O),so,ﬂ)=1+Bk§;pk (2 CrTpm -2 ’“)ﬂ)

=1ty ﬁkzz (2 757 Ta"20)
On the other hand
U((Oa 0)7Q017ﬁ) =1 + .

Hence,

f(B) = (v((0,0), ¢1,8) = v((0,0), ¢, B)) =

> (2—k(1_ 1+ﬂ+k---+ﬂ’“)>'

By dominated convergence

— 1
| p L —
B/ = 2 ™

Consequently,

0 ifpr=0,k2>2
oo otherwise,

gﬁ(v((o,o), ¢1,5) = 0((0,0), ¢, 8)) = {
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and ¢; dominates ¢ for 8 sufficiently close to 1. Hence ¢; is Blackwell optimal in the
class of randomized stationary policies. With similar arguments it can be shown that it is
Blackwell optimal in the class of all policies. However, (1 is not a strong Blackwell optimal
policy, since there does not exist a Sy < 1 such that v((n,0), ¢1,3) = v((n,0),8) for all
n>1and By < B < 1.

We now return to the question whether a policy ¢ C P is Blackwell optimal (if
Assumption 10 holds for all n). Take any policy ¢ € II* and initial state x € X and
consider the infinite sequences H?(z) = {h{(z)} = {ur(z)} and HY(z) = {hf(:ﬁ)} (see
(41) and Theorem 11). By this theorem, H, (x) = HY (z) for every m € N, hence the same
is true for the infinite sequences: H¥(x) = HY(x). Therefore either H®(z) = HY(x), or
there is an integer m such that

hy; ()

=h;(z) for —1<k<m-—-1,
ht (x) > h

Je T e

In the second case it follows from expansions (42) for ¢ and % with n = m + 1, that
vg(ac) > vg’ (z) for all B in some interval (By(z,%),1). The difficulty arises in the first

case: there is no guarantee that vg and vg have complete Laurent expansions of the form
oo

vg = (14 p) 3 hyp”*. Indeed, they may not, as one may see from the following example.
-1

Consider the one-server queue with a controllable Poisson arrival process as studied in
Hordijk [17, Section 2.2]. It is shown there that Assumptions 9 and 10 are satisfied for a
given n, if ES"t! < oo, where S is the service time of one customer. Hence if E S* < oo
for all ¥ € N and the rewards r(z,a) are bounded by a polynomial in z, the set Py is
nonempty. However, if the Laplace-Stieltjes transform of the service time

oo

() = / =2 dFg(z)

0

is not analytic at z = 0, then the complete Laurent expansion of discounted rewards does
not exist for r(z,a) = 1{z = 0} and the Poisson arrival process with a positive parameter
A. Indeed, in this case we have a homogeneous random walk as described in Hordijk et al.
[19, Section 2].

2.3. Operator theoretical approach to Blackwell optimality. A satisfactory the-
ory of denumerable state model should contain as a special case the finite model. Assump-
tion 10 is not suitable for this purpose. It presupposes a unichain CMP, while the theory
of finite CMPs covers the multichain case too. So it is too restrictive. On the other hand,
it does not guarantee the existence of complete Laurent expansions of discounted rewards
under stationary policies, and henceforth is too weak to obtain the Blackwell optimality.
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In Dekker and Hordijk [8] a theory of denumerable CMPs has been developed free
of these inadequacies. The operator theoretical approach to Blackwell optimality is in-
troduced there. In this approach a bounding function p is used satisfying the condition
p(z) > 1, x € X. We relate with p the Banach space V), of all real-valued functions f on
X with the finite g-norm

_ ey (@)
Wl =228ty

The associated operator norm is

1Tl = sup [T
Fllfllu<t

Flle

for any operator T': V,, — V,,. In the following “bounding assumption” the notations (1),
(2), and also the notation

(44) f@)= suwp |f(z,a)), zeX
a€A(x)

for any function f on K, are used.

Assumption 14  For some constant C' > 0
(@) [I7ll. < C,
(b) P*u(z) < Cp(z),  (z,a) €K

In [8] the part (b) of the compactness-continuity Assumption 9 concerning the transition
probabilities is strengthened to the following form.

Assumption 15 P°f(x) is continuous in a € A(x) for every f €V, and x € X.

Besides the bounding and compactness-continuity assumptions, we need also a con-
dition to guarantee the Laurent series expansion for Ug, ¢ € II* (it should be pointed
out that Assumption 10 implies Assumptions 14 and 15 with g = const - g,,, but not the
complete Laurent expansions). Dekker and Hordijk [8] introduced an ergodicity condition,
renamed in Hordijk and Spieksma [22] into u-geometric ergodicity in the case of a Markov
chain, and into uniform p-geometric ergodicity in the case of a CMP. Note that a CMP can
be seen as a compact product set of Markov chains (see Hordijk [16]), and that therefore
any ergodicity property of a CMP becomes a corresponding property of a Markov chain
if CMP cousists of a single chain. Since its introduction in [8], the p-geometric ergodicity
became also a new notion in the Markov processes literature, and has been intensively
studied (see Meyn and Tweedie [29]). The uniform p-geometric condition is

Assumption 16  For every ¢ € II°, the t-th convolution P*(p) of the operator P(yp)
converges to a limiting stochastic operator Q(y) geometrically fast in the pu-norm, i.e. for
some constants C' < oo and v < 1

(45) 1P (p) — Qelly <Cv',  pell’,teN
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Note that (45) requires the aperiodicity of all Markov chains with kernels P¥. As
shown in Hordijk and Yushkevich [24], the following weaker version of (45) suffices for the
study of Blackwell optimality, which covers the case of periodic chains.

Assumption 16° For some constants T, C' < oo and v < 1

% D PR ) — Q(p)

k=1

(46) <Cy', pell®, teN.

m

Note that condition (46) (even with T independent of ¢) is fulfilled in any finite CMP
(because it is true for a finite Markov chain, and the number of Markov chains correspond-
ing to stationary policies is finite). In a denumerable Markov chain, this condition implies
the existence of the deviation operator analoguous to the deviation matrix considered in
Section 1.1. The following lemma is indeed a general fact on operators in Banach spaces
with a convergent resolvent. We state it in the context of the y-norm and operators P(¢p).

Lemma 17 Assumption 16’ implies the existence of the stationary operator Q(p) = Q¥
and the deviation operator D(p) = D¥ as defined in (6) and (7°) (the limits are understood
in the pu-norm). Moreover, the equations in (6) for Q¥ and in (8)-(9) for D¥ are satisfied.

We have seen in Section 1.2 that in the case of a finite state space the resolvent

(47) Rs(P) = R(p,P) =Y ( P ) =N (8P) = (1 - pP)!

o \Ltp t=0

of the transition operator P has a Laurent series expansion in the neighborhood of
p = 0, reflected in formulas (13) and (16)-(18) together with vg = Rg(P¥)r?, implied
by equations (6) and (8)-(9). The same expansion remains true in the case of a Markov
chain on a general state space X, if there is a geometric convergence (46).

Lemma 18 If Assumption 16’ holds, then there exists a number py > 0 such that for all
complex values of p in the ring 0 < |p| < po

(48) R(p, P¥) = (1+ p) % + Z(_p)n(Dcp)n+1 7

n=0

where Q¥ and D¥ are the same bounded (in the p-norm) operators as in Lemma 17.

Proof. Essentially, it is the same algebra based on equations (8)-(9) as in the proof of
Theorem 3. However, there we knew beforehand that the resolvent has a simple pole at
p = 0. To avoid this, one may check by direct algebra that the series (48) (which converges
in some ring 0 < |p| < po, because the operator D¥ is bounded) defines an operator inverse
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to I — BP (see (47)). Indeed, we have according to (8)-(9) and (6) (and omitting the index

¢)
(L+p) (—p")(D)”“] (I - %) _

0 0

=Q+Y (—p)"D"(I-Q) =) (-p)"D" =

=Q+1-) (-p)"D"Q=Q+I1-Q=1,
0

and the same holds if we multiply in the reverse order. O

To proceed further, we need to extend the space §) and operators in it, introduced in
Section 1.3, to the case of a countable state space X and the Banach space V), of functions
on X. Clearly, instead of sequences of Laurent coefficents we may consider the Laurent
series themselves.

Definition 19 (a) The linear space $),, consists of all Laurent series of the form

h:= h(z) = h(z,p) = Z hp(x)p™, hn€V,, zeX

n=—1

in the complex variable p with coefficients satisfying the geometric growth condition

— 1
3 n
nlgr;o||hn||u < 00.

(b) For every v € TI*, operators LY and UY in the space $, are given by the formulas

Lh=rY+PYh—(1+ph heH,,

P
U¥ = ——R(p, P¥).
T+, (p, P¥)

(49)

We use in §),, the lexicographical ordering defined in Section 1.2 for the sequences of
their coefficients H = {h_1,ho _.}. Clearly, if H' < H", or equivalently A’ < h”, then
b (z,p) < h'(x, p) for all positive sufficiently small p, etc. Note that the definition (49) of
LY is consistent with formulas (33)-(35).
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Lemma 20 Suppose Assumption 16’. Then for every ¢ € II° the formulas (16)-(18) of
Theorem 3 are valid, with coefficients h¥ (or kf) € V,,. If Assumption 16 holds (or if T in
Assumption 16’ is the same for all @), then

lim [sup ||hﬁ||] < o0.
n—00 (pens

This lemma is a direct consequence of the formula v§ = R(p, P¥)r¥ and Lemma 18. The

o0
corresponding element of §),, we denote h¥ =) h¥p™, so that
-1

v = (1+ p)h*.

The following comparison lemma is an extension to denumerable models of a result derived
by Veinott [39] for finite models.

Lemma 21 (Comparison lemma) Suppose Assumptions 9,14,15 and 16’'. Then for every
h € 9, and y € 1I° there exists pg > 0 such that

1
Y —h=-UYL%h,  0<|p| < po.
P

Central in the analysis of [8] is the following lemma which is the key lemma in the
operator theoretical approach.

Lemma 22 (Key lemma) Under assumptions of Lemma 21, for every i € I1° the operator
UY is a positive operator: if h € $,, h = 0 then U¥h = 0 (if h < 0 then U¥h < 0).
Moreover, if h = 0 and h(zo) > 0 for some xy € X, then Uh(zy) > 0.

The key lemma together with the comparison lemma yield the lexicographical policy
improvement approach for the denumerable models (cf. Lemma 7 for finite models). For
the average criterion in finite models policy improvement was developed by Howard [26]
and Blackwell [3] and for the sensitive criteria in those models by Veinott [39]. In their
honor we call it Howard-Blackwell-Veinott policy improvement.

In finite models policy improvement is a constructive way to find a Blackwell optimal
policy, as sketched in Section 1.3. In infinite state space models this algorithm is not
sufficient, since the improvements may not terminate in a finite number of steps. Lemmas
21-22 provide also for finite models an approach to Blackwell optimality different from that
of Blackwell and Veinott.

The following theorem gives several equivalent formulations of Blackwell optimality in
the class II® of stationary policies. Its proof is rather a direct consequence of the comparison
and key lemmas. We refer to formulas (39)-(41) and Theorem 8 for notations, terminology
and a comparison with the case of a finite model.
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Theorem 23 Suppose Assumptions 9,14,15 and 16’. Then the following statements con-
cerning a policy ¢ € II° are equivalent:

(a) ¢ is Blackwell optimal within the class I1°;

(b) k¥ = h¥ for every ¢ € I1%;

(c) h¥ is a solution of the Blackwell optimality equation Lh = 0;

(d) LYh =0 for a solution h of the equation Lh =0 (i.e. ¢ is a conserving policy).
Moreover, the solution of the equation Lh = 0 (if any) is unique.

It is shown in [8] that under continuity and uniform u-geometric ergodicity assump-
tions, P¥u, Q¥ and D?p are continuous functions of ¢ on the compact I1° (in the product
topology). This, together with the bounding assumption, implies the continuity in ¢ of the
Laurent coefficients h¥ (x) given by formulas (17) and (18). This, together with a diagonal
process on the countable set X, allows to get a maximizer h¥ = ml/z)a,x hY, 4 € TI* as in

part (b) of Theorem 23. By this theorem, ¢ is Blackwell optimal in the class II°, and the
Blackwell optimality equation has a solution. A technical proof given in [8] shows that ¢ is
Blackwell optimal also in the class IT of all policies (versions of this proof for Borel models
can be found in [44], [50] and [25]). Thus, the following result holds.

Theorem 24 In a denumerable state space model satisfying Assumptions 9 and 14-16
there exists a Blackwell optimal policy.

A related question is whether a limit ¢ of S-optimal policies ¢g (if the limit exists as
B 1 1) is Blackwell optimal. Under weaker assumptions than above, it is shown in Hordijk
[17], that such ¢ is O-discount optimal. Under another set of assumptions, which can be
shown to be more restrictive than Hordijk’s conditions, the same result is obtained by
Cavazos-Cadena and Lasserre [4]. On the other hand, Hordijk and Spieksma [21] have
constructed an example in which the limiting policy ¢ is not 1-discount optimal, so a
fortiori not Blackwell optimal.

Lasserre [28], starting from the ideas developed in [8], obtained the existence of a policy
Blackwell optimal within II* (and hence, according to [8], in the class II too) without the
policy improvement, making use of more results in the spectral theory of bounded linear
operators.

Yushkevich [47] has shown how one may get the existence of Blackwell optimal policies
in denumerable models with periodic chains by perturbing them into aperiodic models. In
this work, besides Assumption 9, the boundedness of the reward function r was assumed,
as well as the following condition taken from Tijms [37]: there are a number € > 0 and an
integer T' such that for every ¢ € II® there exists a state yr = y(¢) such that

T
Z]Pi{xt:y}zea z € X.
t=1

In fact, we get the most general results if we use Assumptions 16 (and 16’) in a
nonuniform way; this is true for the above results except the continuity of Q)(¢) and D(yp).
So, for Theorem 23 the following weak versions of Assumptions 16 and 16’ are sufficient.
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Assumption 16(w) For every ¢ € II°, there exist constants C(p) < oo and y(p) < 1
such that

IP*(0) = Qo) < C@)7()-

Assumption 16’(w) For every ¢ € I1°, there exist T(p), C(p) and v(¢) < 1 such that

T(p
ﬁ D PR o) = Qo) < Cle)r(v)-
k=1

m

For continuity of Q(¢) and D(p) in ¢ and therefore for Theorem 24 we need the
uniform Assumption 16 (or 167).

2.4. Recurrence conditions for Blackwell optimality. In [10] recurrence conditions
are introduced which imply the existence of complete Laurent series and of Blackwell
optimal policies. Starting in Ross [31], recurrence conditions have been extensively used
and studied in undiscounted nonfinite CMPs.

The first analysis based on the notion of ‘simultaneous Doeblin condition’, can be
found in Hordijk [16]. Many equivalent formulations of this condition have been derived.
We refer to [16], Federgruen, Hordijk and Tijms [13], [14], Thomas [36], Hernandez-Lerma.,
Montes-de-Oca, Cavazos-Cadena [15], Hordijk and Spieksma [22], Dekker, Hordijk and
Spieksma [11]. We present here some of the results which appeared in the last of these
papers.

The taboo transition matrix p; P with taboo set M C X is defined by

Doy YEM
Mpwy:{()y yeM

with the convention that ;P! is the t-fold matrix-product of 3P, and »P° = I, with I
the identity-matrix. The uniform p-geometric recurrence condition (in the weak form) is

Assumption 25 There is a finite set M and constants ¢ < co and v < 1 such that
I mP o)l <ers,  t=0,1,..., pell’.

For the special case y = e, where e the function with e(z) = 1 for all z € X, uniform
p-geometric recurrence is equivalent to the simultaneous Doeblin condition (see Hordijk
[17], Theorem 11.3 and especially relation (11.3.2)). The generalization from e to a general
(mostly unbounded) bounding function g is important. It gives not only results for un-
bounded reward functions (see the bounding Assumption 14), but also covers the class of
CMP satisfying the uniform p-geometric recurrence condition for a suitable chosen g which
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is essentially larger than that of satisfying the simultaneous Doeblin condition. Indeed, let
T be the recurrence time to the set M, then

(r>ty={ze ¢ M, 1<k<t}.

Hence,
PZ{r >t} = (MP'(p)e) (x)

and under Assumption 25,

c

EZ7 =D Po{r >t} =) (uP'(p)e) (¢) < 7=

5 - ().

Consequently, if p is bounded then the expected recurrence time is bounded in the starting
state. Clearly, this does not hold for most queueing models. See Spieksma [35] for CMPs,
especially controlled queues, which do satisfy the uniform p-geometric recurrence condition.
Let v(p) denote the number of closed classes in the Markov chain with transition
probabilities P(p). A set B(¢) C X is called a set of ‘reference states’ if it contains
precisely one state from each closed class and no other states.
An apparently stronger version of Assumption 25 is

Assumption 25° There is a finite set M and constants ¢ < oo and v < 1 such that for
every ¢ € II® there exists a reference set B(yp) C M, and moreover

I By Pi@)lu < vty t=0,1,....

In [11] it is shown that Assumption 25, together with the continuity of v(¢) as function
of ¢, is equivalent to Assumption 25’. Dekker and Hordijk [10] analyzed and proved the
existence of Laurent expansions and Blackwell optimality under Assumption 25’.

It was Hordijk’s conjecture that (uniform) p-geometric ergodicity is equivalent to (uni-
form) p-geometric recurrence. This was proved in Hordijk and Spieksma [22] for one
Markov chain and has been generalized for the unichain case to general Borel state space
by Meyn and Tweedie [29]. For CMPs the equivalence is more complicated , it can be
found in Dekker, Hordijk and Spieksma [11].

Note that for the finite model v(¢) is automatically continuous since IT° is a finite set.
Moreover, in Assumption 25 we may take M = X; then », P is the zero matrix. Therefore
Assumption 25, and hence also Assumption 25’, are always fulfilled in finite models, also
in the multichain case.

One might ask whether Assumption 25’ can be weakened. Using the existence and
continuity of the Laurent expansion of the discounted rewards, one may show that for the
operator theoretical approach of Dekker and Hordijk the Assumption 25’ is also necessary
(see Lasserre [28], Spieksma [35]).
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Let us conclude this section with pointing out the relation between the Assumptions
10 and 25.

First, Assumption 10 is more restrictive, since it assumes the existence of one state
which is accessible from all other states under each policy, i.e. the unichain case, whereas
Assumption 25 allows a finite number of closed sets. Let us assume the unichain case (note
that in the unichain case v(¢) = 1 and so it is continuous), then Assumption 25 implies
Assumption 25’ and with B(¢) = {0} we have

| 0Pt (P)llp <ty  t=0,1,...

with ¢ < oo and v < 1.

Define
o
fi=sup )y _ oP'(o)p
? t=0
Then,
pto Pl <p  Veell®
and
- o~ 1—v] -
0Pl <pi—p< {1— —}u
and
(50) fito Plp)ii < fi.

Cc
1—n
for p. By using (50) recursively, it is easily seen that Assumption 10 is satisfied for

c n+1~
gn = 11—~ K-

Hence for the unichain case Assumption 25 implies Assumption 10.
With a slightly more involved argument one may show that Assumption 25 is equivalent

with 1 = ﬁﬁ Since p < p < 1, Assumption 14 for y implies the same assumption

to
(51) s(p) = mPe)u<cp,

for some constant ¢; and all ¢ € T1°. Indeed (cf. [10]), (51) implies that

mP(p)s(p) =s(p) —n < (1 - i) s(¢)-

C1
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C1

t
Choose 1 < 1 and let ¢y be such that (1 — i) ’ c1 < 7y1; then

1

mPP(p)p < mP®(p)s(p) < (1 - E) 0 s(p) < mp.

Let ¢; = sup pmP(@)p, ¢ = (c1 vV 1)Pq7! and v = 'yll/to. Then v < 1, and for ktp <t <

©
(k + 1)to, k > 0 we have

I 3P (@)l < | e P (@)llull P~ ()l

k t—kt t
<y TP <eyn

Hence Assumption 25 is satisfied with ¢ < co and v < 1.

Remark. The Laurent series expansion of the discounted rewards and the existence of
strong Blackwell optimal policies for semi-Markov decision chains with a finite number
of states and actions has been established in Denardo [12]. Similar results under related
recurrence conditions have been obtained for the denumerable state model in Dekker and
Hordijk [9].

3. Borel state models

In this section we consider Blackwell optimality in CMPs with a Borel state space. We for-
mulate the existence results, describe distinctive features of the approach to Borel models,
state recurrence conditions which imply less verifiable uniform ergodicity and integrability
assumptions.

3.1. Existence of Blackwell optimal policies. The study of Blackwell optimality in
Borelian models was started by Yushkevich [44,48] and continued by Hordijk and Yushke-
vich [24], [25]. An extended summary of results obtained in [48] can be found in [50]. A
related paper is Yushkevich [49], where the compactness of the policy space is treated.

An advance in the direction of Borel models appeared possible in the case when the
transition probabilities are given by transition densities. This is a common case in models
with a continous state space. We also need the corresponding versions of the compactness-
continuity Assumption 9 and either of the uniform geometric ergodicity Assumption 16 or
of recurrence conditions implying Assumption 16. Models with a bounded reward function
and a strong minorant or simultaneous Doeblin-Doob condition were treated in [48]; the
particular case of finite action sets A(x) was studied before that in [44]. In models with
unbounded rewards considered in [24][25], one needs a stronger version of the bounding
Assumption 14, and the ergodicity or recurrence conditions should be stated in the terms
of p-norms; also a technical uniform integrability condition is needed in the absence of
recurrence conditions.
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To avoid repetitions, we first state the more general results obtained in [24][25]. Before
stating the whole set of conditions, we introduce notations related to transition densities
and randomized stationary policies; the formulas will become meaningful under subsequent
assumptions. There is a reference measure m(dz) on the space X, and we often write dz
instead of m(dz). The transition probabilities p(Y | z,a) are determined by transition
densities p(z,a,y) so that (for measurable Y C X)

p(Y | z,a)= /p(a:,a,y)m(dy), (xz,a) € K.

Similar to (44), we denote (because the maximum exists)

p(r,y) = max p(z,a,y), z,y € X
a€A(z)

Formula (2) takes on the form
P*f(s) = [ plo,a,) fo)mldy).
X

For uniformity with other notations of this section, we denote by o(z, da) the probability
measure o(- | ) on A(z) C A defined by a randomized stationary policy o € I1%5. The
transition density corresponding to o € II1%% ig

P @)= [peapod),  syex
A
the corresponding transition operator is P7:
Pof(@) = [ 1 (o,0)f m(dy).
X

Finally, we need multistep transition densities corresponding to a randomized Markov policy
7 = {01,09,...} € [IBM where o, € II®S. They are defined recursively by the formulas

pl(z,y) =p7 (2, y), pi(z,y) = /pi'(w,Z)p”t“(z,y)m(dZ)-
X

We also have a bounding function y on X and the corresponding p-norms (see Section 2.3).
In the definition of the space V), it is understood that f € V), is measurable (throughout
this section measurability means Borel measurability).
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Assumption 26(a) X is a standard Borel space with a o-finite measure m in it, A is a
Borel set in a Polish (= complete separable metric) space, the set K (see (1)) is measureable
in X X A, transition densities p(x,a,y) > 0 and rewards r(x,a) are measurable functions
on K x X and K respectively, u(z) > 1 is a measurable function on X.

(b) A(z), x € X are nonempty compact sets, functions p(x,a,y) and r(z,a) are con-
tinuous in a € A(z) for every z,y € X.

(¢) ||If]|p < oo (cf. (44)), and for some constant C > 0

/ﬁ(xa Yu(y) < Cu(z), reX

(d) Operators (P°)t,o0 € I®S converge in the p-norm to limiting operators Q° geo-
metrically fast and uniformly in o as t — oo: there erist positive constants C' < oo and
v < 1 such that

I(P°) - Q7. <Cvyt, el t=01,2,...

The following result is proved in [24].

Theorem 27 If Assumption 26 holds, then there exists a stationary policy ¢ € 11° Black-
well optimal in the class TITS of randomized stationary policies. Also, all assertions of
Theorem 23 hold (for policies @, € TI° or TIES).

Some partial results are true under milder assumptions. For example, Laurent series ex-
pansion of vg () for o € T and the analogue of Theorem 23 are valid under Assumption
16’(w) or 16(w), and also the Laurent series expansion of vg(c) is valid under an analogue
of Assumption 16’ in place of Assumption 26(d). For Blackwell optimality in the class II
of all policies in general we need the following uniform integrability assumption.

Assumption 28 For every = € X, randomized Markov policy © € II®M  and € > 0, there
exist a set Y C X with m(Y) < oo and a constant L > 0 such that

/pﬂ%wmwmww<a t=1,2,3,...,
X\Y

pi(e,yuly) <L, yeyY, t=1,23,. ...
The following result is proved in [25].

Theorem 29 Under Assumptions 26 and 28, every policy ¢ € 11° Blackwell optimal in
the class TI®S | is Blackwell optimal in the class I1 as well.

In the earlier work [48], results of Theorems 27 and 29 were obtained in the case
of bounded transition densities p(z,a,y), bounded rewards r(x,a) (so that one may take
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p=1), a finite measure m, and the following minorant condition: there exist a set Y with
m(Y) > 0 and a number § > 0 such that

p(z,a,y) >0,  (v,0) €K, yevY.

In that case Assumptions 26(c) and 28 hold trivially, while the geometric convergence as
in 26(d) is shown to be true even for the densities pf(z,y). Of course, one has to suppose
Assumptions 26(a,b) (with p = 1).

In related papers [45], [46] Yushkevich proved a partial expansion

h_
Vg(:ﬂ) =(1+4p) (71 + ho) + o(1)
(cf.(43)) for Borel models satisfying assumptions of the preceding paragraph.

3.2. Specific features of Borel models. In the study of Blackwell optimality in Borel
state models there are several features which make it different from that of finite and
denumerable CMPs. They are: (i) utilization of the class 1% instead of IT® in the Laurent
series expansions and related topics; (ii) introduction of the weak-strong topology in the
space I1#5 based on Carathéodory functions, (iii) lexicographical maximization of expected
discounted rewards not pointwise at every state but for some absolutely continuous initial
distribution; (iv) utilization of the policy improvement to get Blackwell optimal policy
¢ € II* from a maximizing policy o € ITS,

We have to work with the class IT®%° instead of II® because the latter is not a compact
space in a reasonable sense. It should be clear from the following simple example. Let
X = [0,1) and A = A(z) = {1,2}. For every m = 1,2,... let the stationary policy
©m be defined by the rule: if x € [(k — 1)27™,k2™™) then ¢,,(z) = 1 for odd values
of k and ¢, (z) = 2 for even values of k. Every ¢,, € II*, but the only reasonable
limit of the sequence @1, @y, ... is the randomized policy ¢ € II®S with the distribution
o(l|z)=0(2|xz)=1/2.

Under assumptions of Section 3.1, Laurent series expansions for vg(o) with A% € $,,
as in Lemma 20 are valid for o € II®°. Along the same way as in denumerable models,
with only technical differences, one justifies the lexicographical policy improvement, and
this leads to an analogue of Theorem 23, (a) to (d), but for policies o in the whole space
175 > 115,

In denumerable models we used the product topology in the space II° defined in

HRS

Section 2.1. The appropriate topology in is the so-called weak-strong or ws-topology.

In this topology o,, — o iff

m—0o0

lim f(:c,a)am(:c,da)m(d:v):/f(:c,a)a(:c,da)m(d:v)
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for all Carathéodory functions f (i.e. functions continuous in @, measurable in x) satis-
fying some bounding condition in terms of f(z) and measure m. In this topology, IT®S
is a compact space with all needed properties. In the deterministic control theory essen-
tally the same fact was used by Warga [42] in connection with relaxed controls. In the
nonstationary stochastic dynamic programming the related compactness of the set of all
measures corresponding to a given initial distribution in the ws-topology was proved by
Schil [32],[33] and Balder [2]. Another proof, especially for the space IS is given in
Yushkevich [49]. Compactness proved in the above references covers the case of a finite
reference measure m. For the o-finite measure m it is proved in [24].

Assumptions of Section 3.1 imply the continuity in o € II®S of the operators P° and
7, and after that, through formulas for A? as in Theorem 3 and the power series in P?
for (D?)™ obtained from (7), the continuity of the coefficients hZ(z). This implies the

continuity of h3(¢) = [ hZ(z)¢(z)m(dz) for any initial density £. Taking a strictly positive
X

density £ on X, we lexicographically maximize h°(£) = {hZ(£),n > —1} over II%°, and get
a “best” policy o* for the initial distribution /4.

Lexicographical policy improvement applied to ¢* at all states X where it is possible
to improve, provides a policy ¢ € II°. With the help of the already proven part of Theorem
23, it is now not difficult to show that ¢ is Blackwell optimal in the class II®S and that
the Blackwell optimality equation has a unique solution in §),,.

The proof that a policy Blackwell optimal in IT%%
space II is even more technical than in the denumerable case. It utilizes the main idea of
the proof in [8], Assumption 28, and an additional property of the ws-topology; see [25],

or for the special case of bounded rewards, [44] or [48].

is Blackwell optimal in the whole

3.3. Recurence conditions for Blackwell optimality. The uniform geometric u-
ergodicity conditon and the uniform integrability condition (Assumptions 26(d) and 28)
are difficult for a verification in CMPs with a noncompact state space and an unbounded
reward function. In Hordijk and Yushkevich [25] simpler recurrence and drift conditions
are given, which imply those assumptions. This approach is based on ideas developed in
Hordijk and Spieksma [22] and Hordijk et al. [23], with an additional use of the weak-strong
topology. Consider the following set of conditions.

Assumption 30 (a) (Uniform minorant condition) There exist sets D,Y C X with m(D) >
0, m(Y) > 0 and a number 6 > 0 such that

p(z,a,y) >0, z€D, ach(z), yeY.

(b) (Uniform drift condition) There exist a set D C X with m(D) > 0 and numbers b > 0,
0 < v <1 such that

sup p(z) < oo
zeD
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and

/p(ﬂ:, a,y)u(y)m(dy) < yu(z) + blp(z), (z,a) € K.

(¢) (Uniform accessibility condition) There exists a set D C X, and for every sublevel set
M. = {z : p(z) < c}

there exist a number n > 0 and an integer N such that

/Pf{,(a:, y)m(dy) > n, ze M, oeclf5,
D

(d) (Dominance integrability condition) There ezist a set D C X with m(D) > 0 and a
measurable function £ > 0 and X such that

/E(m),u(m)m(dm) <oo and p(z,y)<{Ly), ze€D, yeX

and also m(M.) < oo for every sublevel set M, with ¢ > 1.

Omitting some details, we summarize those relations between conditions which provide
the existence of Blackwell optimal policies. It follows from [23], that Assumptions 30
(a,b,c) with the same set D, together with 26(a) and the condition P®u(z) < Cu(x) imply
the uniform integrability Assumption 26(d). Also, if the density p(z,a,y) is bounded,
Assumptions 30(b,d) together with 26(a,b,c) imply Assumption 28 (with a possible change
of the function p, which does not affect the made assumptions). The proof of the last
result essentially follows the proof of a similar result for denumerable models in Dekker et
al. [11], with the use of ws-topology. As a consequence, we have the following theorem.

Theorem 31 In CMP satisfying Assumptions 26(a,b,c) and 30(a,b,c), there exists a
stationary policy ¢ € 11* Blackwell optimal in the class IS | and all assertions of Theorem
23 hold.

If in addition the transition density p(z,a,y) is bounded and Assumption 30(d) holds,
then ¢ is Blackwell optimal in the class 11 as well.
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