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Chapter 1

Mixed criteria



Abstract

Mixed criteria are linear combinations of standard criteria which cannot be
represented as standard criteria. Linear combinations of total discounted
and average rewards as well as linear combinations of total discounted re-
wards are examples of mixed criteria. We discuss the structure of optimal
policies and algorithms for their computation for problems with and without
constraints.



1.1 Introduction

The discounted cost criterion is widely and successfully used in various ap-
plication areas. When modeling economic phenomena, the discount factor
is determined by return rate (or interest rate) or, in a more general con-
text, by the “opportunity costs” which presume that a dollar now is worth
more that a dollar in a year. Being invested, current funds will bring an
additional return in a year. In other areas, such as the control of commu-
nications networks, the discounted criterion may reflect the imprecise but
fundamental principle that future occurrences are less important than im-
mediate ones. In reliability, discounting models systems with geometric life
time distributions.

Obviously, if some part of the cost decreases (in time) at an exponen-
tial rate, then a discounted cost arises. This is the case, for example, in
production processes. When a new item is manufactured, we expect some
production costs to decrease as production methods are improved. Obvi-
ously there is a learning curve for all involved, along which various costs
decrease. If the effect of this learning diminishes geometrically (or exponen-
tially), then the total cost (over the infinite time-horizon) is of the discounted
type. This would also be the case if the cost of obtaining a component de-
creases at an exponential rate. Such an exponential decrease is evident in
the computers industry (and one aspect goes by “Moore’s law”): prices of
various components decrease at an exponential rate, and since the processing
speed increases at an exponential rate, the “unit cost” of processing power
decreases exponentially fast.

However, the rates (or discount factors) for these different mechanisms
are clearly unrelated. When combining several such costs (such as process-
ing speed with economic considerations), we are naturally led to deal with
several different discount factors, each applicable to a component of our op-
timization problem. Multiple discount factors also arise in control problems
for systems with multiple parallel unrelpggglf, (%%Iérg?)orpgétgsg For details on
applications see Feinberg and Shwartz [I4, 15, 17]. Similarly, in stochas-
tic games it is natural to consider situations where each player has its own
discount factor.

In contrast to the discounted criterion, the average cost measures long-
term behavior, and de-emphasizes present conditions. Naturally, this crite-
rion is appropriate for other applications, such as the long-term performance
of systems. As before, if our criteria include system performance (measured
through the average cost) as well as rewards (measured through a discounted
cost), we are led to problems with mixed criteria.




In this paper we review results concerning such criteria, and point out
some open questions. We shall mention specific, as well as general areas of
potential applications. The main theoretical questions are:

¢ Existence of good (optimal, e-optimal) policies for optimization, multi-
objective optimization and in particular constrained optimization prob-
lems,

e Structure of “good policies,” and

e Computational schemes for the calculation of the value and good poli-
cies.

We emphasize the mixed-discounted problem, where the criteria are all of
the discounted type, but with several discount factors, since it poss 5365 Ay
rich structure and, in addition, much is already known. In Section 1.7 we
shall review some other related results. We conclude this section with a brief
survey of different mixed criterion problems.

There are several treatments of discounted mo%;ls where the discounting
is more general than the standard one. Hinderer [24] investigates a general
model where the discounting is a function o Cthe complete history of the
model. In a number of papers, see e.g. Schél [38] or Chitashvilij%%, the dis-
count rate depends on the current state and action. This type of discounting
arises when a discoun%d semi-Markov I% cision process is converted into an
MDP; see Puterman [[34] or Feinberg .

Mixed criteria and, in particular, mixed discounted criteria are linear
combinations of standard criteria. The first two papers dealing yh mixed
criteria were published in 1982. Golabi, Kulkarni, and Way [21] consid-
ered a mixture of average reward and fotal discounted criteria to manage a
statewide pavement system, see also R%‘%] Feinberg [10] proved for various
standard criteria, by using a convex-analysis approach, that for any policy
there exists a nonrandomized Marko ePOhCy with the same or better perfor-
mance. In the same paper, Feinberg [10], proved that property for mixtures
of various criteria.

The 1990’s saw systematic interest in criteria that mix several standard
costs. Krass, Filar and Sinhanﬂgﬁ]§ studied a sum of a standard average
cost and a standard discounted cost for models with finite state and action
sets. They proved that for any & > 0 there exists an e-optimal randomized
Markov policy which is stationary from some epoch N-onwards (so-called
ultimately deterministic or (IV, oo)-stationary policies). They also prayided
an algorithm to compute such policies. As explained in Feinberg , the



e rF.
use of results from Hiﬂ)] simplifies the proofs in HSZG]é‘and leads to the direct
proof that for any & > 0 there exists an -optimal (nonrandomized) Markqy.
ultimately deterministic policy. The latter result can be derived from
but it was not formulated there. .

Fernandez-Gaucherand, Ghosh and Marcus Hifgj co I11 ered several weighted
as well as overtaking cost criteria. Ghosh and Marcusj?zg] considered a sim-
ilar pr%_b%?m in the context of a continuous time diffusion model. Filar and
Vrieze [19] considered a stochastic zero-sum game, and obtain the existence
of e-optimal policies.

Most of the papers on mixed criteria deal either with linear combinations
of total discounted rewards with different discount factors or with a linear
combination of total discounted rewards and average rewards per unit time.
It appears that linear combinations of discounted rewards are more natu-
ral and easier to deal with than the weighted combinations of discounted
and average rewards. The latter ones model the situation when there are
two goals: a short-term goal modeled by total discounted rewards and a
long-term goal modeled by average rewards per unit time. In the case of
two different discount factors, the weighted discounted criterion models the
same situation when one of the discount factors is close to 1. When the state
and action sets are finite, optimal policies exist for mixed discounted crite-
ria, they satisfy the Optimality Equation, and can be computed. Optimal
policies may not exist for mixtures of total discounted rewards and average
rewards per unit timew Another advantage of dealing with mixed dis-
counting is that for this criterio etg}ﬁrefjesséas well-developed theory for any
finite number of discount factors [14, I5], while the papers that study linear
combinations of discounted and average reward criteria usually deal with
linear combinations of only two criteria: discounted rewards with a fixed
discount factor and average rewards per unit time.

In this paper we concentrate on a mixed-discounted problem for Markov
decision processes. The exposition is based n sgll?pgfd?}l%ggétudy of this
problem, perfogrz%sg_;tgéfdgeinberg and Shwartz [14, 15, I7].

In Se t:i%b_h_.mribe the model more precisely, and show through
example IZI that, although the weighted criterion seems like a small varia-
tion on a standard discounted problem, it induces sq%%e_ Gd:ifferen‘c behavior
on the resulting optimal policies. Then, in Section h_.BWshow that mixed-
discounted problems can be reduced to standard discounted problems if we
expand the state space X to X x N, and that Markox; 138!:1—0(31@3 are sufficient for
one-criterion mixed-discounted problems. Section hﬂ_oﬁtﬁins the character-
ization as well as an algorithm for the computation of optimal policies for
the finite (state and action set) Weighted Discounts Optimization (WDO)




s:WDC-model

d:WDC-Vec

d:WDC-WDO s : WDC-MC s : WDC-CWF
problem T.T. In Section T.b we treat multlple—crlterlo%glﬁ in Section .6

we discuss finite constrained problems. In Section [I.7 we survey existing
results for other relevant problems, related models of stochastic games, and
discuss extensions and open problems.

1.2 The mixed discounted problem

Throughout this chapter we deal with a discrete state model, as described in
the Introduction, and follow notation introduced there. We fix L discount
factors which, for convenience (and without loss of generality) we order
as 1>p061>...> 0L >0, and (K + 1) x L one-step reward functions
T(Z’ k=0,...,K, £=1,...,L. We assume that all reward functions are
bounded above. The index k will be used only for multi-objective problems,
and is omitted otherwise. Let vf (x,m,B¢) denote the standard total expect
discounted cost corresponding to discount factor (B; and to the immediate
reward rf. We formulate the optimization problems:

Definition 1.1 The Weighted-Discount Optimization Problem WDO is to
mazimize the weighted-discount cost upq over all policies m € IR, where

L
U@(l‘,ﬂ', ﬂl) .

UA4(xaﬂj %gf

(1.1)

o~
Il

Definition 1.2 The Constrained Weighted-Discount Optimization Problem
WDC is the constrained optimizatz'on over all policies w € TIR

mazimize (x 7r) = ZW x,m, Be) (1.2)
L
. k def k _
subject to v, m) = vy (z,m, Be) > Ch, kE=1,...,K. (13)
=1
. i . . i le: WDC-defWDCc
A policy 7 is feasible if the constraints (I.S% are satisfied.
. . _d
Given any numbers a1, as,... ,a, we use the notation a =) (a1,a2,... ,aq).

In particular we define

Definition 1.3 The performance vectors associated with problems WDO
and WDC respectively are

o(z,7)
6A4($aﬂj %gj

(v1(z,m,B1),---

(119\,[(3:,77),...

avL(-’Ea ﬂ-aﬁL)) )

,U/I\{,t(ﬂi,?'(')) .

e:WDC-defWDO

| e:WDC-defWDCn |

| e:WDC-defWDCc|




As was discussed in the Introduction to this book, for unconstrained
problems in general and for problem WDO in particular, we consider opti-
mality with respect to all initial states. For a constrained problem, including
problem WDC, an initial state is fixed.

1.2.1 An Example: job versus education dilemma

The use of different discount criteria induces a time-dependence on the model
since the relative impact of different immediate costs changes over time.
This implies, for example, that we cannot expect stationary policies to be
optimal. This can be demonstrated with a very simple model. This negative
result suggests that we search for different structural properties of optimal
policies. It turns out that the structure suggested here is use[%g%r other
criteria as Wex!l a"}']%:_1}1(1dirlg single-discount constrained problems :
Example [[.4 illustrates the following dilemma. A person, say a high
school or college graduate, has a choice: to accept a job offer or to continue
his/her education and get a better job later. In a standard discounted model,
stationary policies are optimal. Therefore, for standard models an optimal
decision is either to accept a job or to continue education. For weighted
discounted models, an optimal decision can suggest to accept a job for a
limited period of time and then to continue education. This phenomenon
cannot be modeled by standard discounted or average-reward criteria.

FeS94
Example 1.4 ([14, Example 1.1]) Consider the optimization problem WDO.
Let X = {z,y} with deterministic transitions: under a we always go to state
x, while under b we always go to state y. Set rf =17, where

r(z,a) =1, r(y,a) =r(z,b) =0, and r(y,b)=2. (1.6)

It is then easy to calculate that for the standard discounted cost, if 8 < %,
then it is optimal to stay where you are, while for 3 > % it is optimal to use
only action b.

For the weighted problem with 5, = % and By = %, an ezxplicit calculation
shows that the only optimal policy is to stay where you are at time 0, and
use b at any later time.

Another illuminating conclusion from the same example is obtained by
searching for the best s ggiﬁnary policy. This turns out to be a randomized
one! Related examples [14, Examples 1.2-1.3] show that the best stationary
(non-randomized) policy may depend on the initial state. In addition, this
behavior can be observed in ergodic models.



t :WDC-Markov

Thus, it seems that much of the basic structure of MDPs is lost when
mixed discounting is used. However, it turns out th it ‘?D((';l_i}:ferent structure
arises. In fact, that the optimal policy in Example T.47is Markov and be-
comes stationary after some initial period is a structure we shall discover in
the following sections.

1.3 General properties

The first task in our search for optimal policies usually entails restricting
attention to Markov policies. This can be justified under general circum-
stances by the following general result.

S,Ho
Theorem 1.5 (i8, 23]) Let n',72,... be an arbitrary sequence of policies

and A1, A2,... a sequence of positive numbers summing to 1. F'év_ 1 thﬁ%
state © and define the randomized Markov policy © through (I‘(:% (z; the

denominator is 0 then choose m; arbitrarily):
it 21 NP (21 = y,a0 € C)
YA (2 =)

for all measurable subsets C of A(y). Then, for all t > 0, y € X and
measurable subsets C of A(y),

™ (C|y) , t20, yeX, (1.7)

o0
PT (x =y,at € C) = Z)\i PT (z; = y,as € O) . (1.8)
i=1

In particular, setting Ay =1 and \; = 0, ¢ > 1, we find that for any given
policy and initial state, we can find a Markov policy that produces the same
one-dimensional distributions for the pair (z;,a;). Consequently, for any
criterion depending only on such distributions (and in particular, for any
linear combination of total and average costs), Markov policies suffice. Note
that, in this generality, the Markov policy depends on the initial state.

The main difficulty with the mixed-discounted problem is that the im-
mediate cost changes over time. Another technique of general applicability
is the embedding of the problem into a larger one. Consider an auxiliary
standard discounted model with the discount factor 8; and with the state
space X X N. The one-step rewards in this model are equal to

L n
difr z,a @ r(z, a
r(z,n,a) = r(x, )+ez:;<ﬁl> o(x,a). (1.9)

e:WDC-Markov

| e:WDC-MarkovP

e:WDC-AuxRew



t:WDC-embed

If we then keep the same transition probabilities (but require a transition of
one unit in the time component at each step), then we have a one-to-one cor-
respondence between the original problem and the auxiliary problem started
at (z,0). There is only one immediate reward and one discount factor in the
larger model. The state space for the auxiliary proble e]é%lzlains countable.
We therefore obtain immediately the following resultsr@m,_Section I1].

FeS94
Theorem 1.6 (mTheorems 2.1-2.2]) (i) For any € > 0, the WDO
problem possesses e-optimal Markov policies. (ii) If the A(x) are compact
subsets of a metric space, ry are upper semi-continuous and the p(y|z,-) are
continuous in a then there are optimal Markov policies.

Proof outline. This follows from the properties of the auxiliary problem.
Note that a stationary policy for the auxiliary problem defines a Markov
(but not necessarily stationary!) policy for the original problem. .

The above construction transforms a mixed-discounted problem with a
finite or countable state spaces into a standard discounted problem with
a countable state space. If the original problem has an uncountable Borel
state space, so does the expanded problem.

We end this section with some insight into why problems with mixed
criteria are inherently more difficult. For simplicity, let the state and action
sets be finite. Define the expected occupation vectors

00
f(ﬂa 33,77;3/’@) d;f Z,Bt IP’Z (ZEt =y,a; = a|$o = :L') . (1.10)
t=0

Then we can write the standard discounted cost as

vi(z,m) =Y > f(Biz,my,a)rf(y,a). (1.11)

yeX acA(y)

That is, any discounted cost is a linear function of the occupation vec-
tors {f(B;z,m;y,a) : y € X, a € A(y)}. Moreover, these occupation vectors
obey a system of linear equalities, in terms of transition probabilities. It
is therefor possible to transform the optimization problem, as well as the
constrained optimization problem, into a linear program. This linear pro-
gram is finite if the state and action spaces are finite. T%i; approac%(%s
described i many paper nd in the books by Kallenberg [25], Eﬁrkar
Piunovskiy [33], Altman %, and Hernadez-Lerma and Lasserre [22]. How-
ever, the relation between {f(61;x,m;y,a) 1y € X, a € A(y)}, the occupa-

I

e:WDC-Freq

tion vectors associated with discount 31, and {f(f2; z, m;y,a) : y € X, a € A(y)},



the occupation vectors associated with discount [z, is non-linear (in fact, it
is even non convex!). This make ;5517e tools of mathematical programming
much more difficult to apply; see [T2].

1.4 Single Criterion Models

- . HM .
Motivated by the structure we found in Example .4, we introduce some
notions which will be fundamental beyond this section. The lost time-
homogeneity of the model is partly recovered by the notion of a funnel.

Definition 1.7 Given measurable subsets Aj(z) C A(z), = € X, the sub-

model A is the Markov decision process, where the actions at x are restricted
to Al (.’I}) .

Definition 1.8 Fiz a positive integer N and subsets Ap(z) C A(z), n >
0, x € X, with the property that A,(x) = Ax(z), n > N, x € X. The funnel
associated with these data is the set of all randomized Markov policies m such
that p,(Ap(z)|z) =1 for alln >0 and x € X.

A funnel is thus defined by the number N € N and sets A,(z), n =
0,1,... N, z€X.

Definition 1.9 Given a positive integer N, a Markov policy w s called

(N, c0)-stationary if there exists a stationary policy ¢ so that
mn(z) = ¢(x) forall = and n>N . (1.12)

This generalizes the notion of stationarity, since obviously a (0, 0)-
stationary policy is stationary. Let each set A(z) be finite and all func-
tions r¢(z,a) be bounded on X x A, ¢ = 1,..., L. Define recursively, for
(=1,...,L,

To(z) = A(z), No(x) = No =0, (1.13)

def MAXgcX acly_y(x) T@($a a) — MNgeX acly_ () T'g(l‘, a)

dy = , 1.14) |e:WDC-CostSpan
, - (1.14) | pan|
Vi(z) = max {ve(z, 7, B¢) | 7 in submodel T'y_1} , (1.15)

Ty(z) ={a €Ty 1(x): Vo(z) = re(z,a) + B P Vy(x)} . (1.16) [e:WDC-Dconserve]




If Ty(x) = Tp—1(x) set Ny(z) = Ny_1(z). Otherwise define
ee(x) = Vy(x) — max{r¢(z,a) + BeP*Vy(x) : a € Ty_q1(z) \ Tye(z)} , (1.17)
L t
M) =mind 12 Nea@) 3 () g <, t<i,
¢

j=t+1

Ne = maas Nif), (1.19)

and set Nr(x) el Ni_1(z), N = Np = Np_;. If the state space is finite,
N < 0.

The set ['p(x) is the set of conserving actions for the discounted criterion
ve(z,m, B¢) in submodel I'y_1. The basic structure of optimal policies de-
rives from the following statement which follows from equalizing and thrifty
properties; see Chapter ... “Total reward criteria.”

Lemma 1.10 A policy 7 is optimal for the criterion vg(x, m, B) in submodel
Ty, namely ve(z,m, Be) = Vy(x) for all x € X, if and only if a; € Ty(zy) P7-
a.s. for allt =0,1,... and for all x € X.

In other words, all policies in submodel I'y have the same wvs-cost, and the
value Vi (z) is the optimal value in the I'y_1 model.

Theorem 1.11 Suppose that all action sets A(x) are finite and all reward
functions ry are bounded. Consider problem WDO. If 7 is an optimal policy,

then
mi(x) € To(ze) PL—a.s. for any t > Ny(xt), for all £, and for all z € X.
(1.20)
Proof outline. Write
L
opm(z,m) = v (z,m, B1) + ng(l‘,ﬂ',ﬁg) ) (1.21)
=2

. 1:WDC-DiscOE .
Suppose at time ¢ we are at state y. By Lemma [T.10, if we choose an action

outside I';(y), then our vy er@?@gﬁlm\&iel% be smaller by at(ga:ac% dB{sl (y)- On

the other hand, in view of (I.9), the second summand in can be made
larger by at most

L
> pld;. (1.22)
=2



t:WDC-FinWeight|

le : WDC-OBgapK-N
The result for £ = 1 follows from the definitions (I.17)—=(II-I3) smce Bi < B

for j > 1. Therefore w lm%%itslé i after time N;, we must restrict to
submodel I';. By Lemma .10, the vy cost is the same for all policies in this
model, so that this component of the cost may be ignored. Repeating the
same argument establishes the result for £/ =2,... , L. .

t:WDC-funl
Theorem (.11 18 formulated for non-finite state spaces. However, in the
finite case NV is finite and it leads directly to existence as well as to an
algorithm. Define the time-dependent immediate reward

r(t,z,a) Zﬂﬂ/@ x,a) (1.23)
and the “tail reward”
vy (z, Ny, Zﬁﬂ@ Ty, a)| xny = y] . (1.24)
t=N

If 7 is a Markov policy, then v; (z, N, y,7) does not depend on z.

Theorem 1.12 Consider problem WDO where the state and action spaces
are finite. Let © be the funnel defined by Ay(x) = Ty(z) for Ny_1(z) <
t < Ny(x), and Ay(x) = T'(z) for t > N. Let ¢ be any stationary policy
in submodel T'r,. Then (i) any optimal policy must satisfy v; (z, N,y,n) =
vy (@, N,y,¢) for all x and all y such that PL(xx =y) > 0; (ii) an optimal
policy to WDO can be constructed as follows. Let 7™ = {mo,m1,... ,mn_1}
solve the finite-horizon total cost problem with horizon N, immediate rewards
r(t,z,a), and terminal reward

L
) Z (z,N,y, ). (1.25)
Then 7 = (70, M1y -+ yTN—1,P, @, ...) is optimal.

t:WDC-funl
Proof outline. Part (i) follows from Theorem [[.TT. This determines the
“tail reward,” and it remains to optimize over the finite horizon. "

The “tail” policy ¢ can be chosen stationary, and from the algorithm it
follows that it does not depend on the initial state. Since these properties are
also shared by solutions to finite-horizon problems, we obtain the following.

Corollary 1.13 For the finite WDO problem there is an optimal (N, 00)-
stationary policy (which does not depend on the initial state).

10
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First |e:WDC-N1K

Formulas (E.Ls)—(u.w) provide an algorithm that computes an integer N
%I:%cs_?tisnﬁ {Jgg;t), z € X, described in Theorem [I.12. In view of Theorem

.12, the “tail” stationary pot!i :c%éb_ P(:ﬁlle]e’tzeh%elected as any stationary policy
from submodel I';,. Theorem [I.12 also implies that, at steps 0,1,--- ,N —1,
an optimal. policy can be constru%‘gleg tbylea:&%i_‘gﬁ—glorizon dy ta:%ig_plr%ria%—
ming algorithm. Thus, formulas (I.I3)~(I.19) and Theorem [[.12 provide an
algorithm that computes an optimal (N, co)-stationary policy.

This algorithm requires the computation of at most L standard dis-
counted problems, and then the solution of a finite horizon problem. The
computational complexity is obviously influenced by the size of N. This in
turn in determined by the data of our problem (an d % é)_%tsi%ﬂgg the ratios
Be/Be—1), as well as by the choice of bound (e.g. . A more complex
algorithm leading to a smaller value of N is in .

For any criterion v(z, ) and set of policies A we denote

v(z,A) =A{v(z,7):me A}, (1.26)
V(z,A) =sup{v(z,7) :m € A}, (1.27)
Aj(z)={reA:v(z,7) =V (z,A)}. (1.28)

s:WDC-G
Let © be a funnel. The embedding technique of Section h73_allbws us to
construct a finite model, where the time becomes part of the new state
space, but only until time N. A funnel in this new m@g%&&rgﬁsponds to a
funnel in the original MDP. Therefore Theorem hTIZWpE@EfHe following
result.

[FeS95 . ) .
Corollary 1.14 ([15, Lemma 5.5]) Consider an MDP with finite state
and action sets. Fiz x and let © C II® be a non-empty funnel. Then there
exists a funnel ©' so that vap(z,7) = Vaq(z, ©) for all m € ©', and moreover

o(, ©) = v(z, A, (2))-

1.5 Multiple Criterion Optimization

To describe some notions of optimality in the multiple cr'gg%(&l}mse%tting we
need some definitions and notation. Recall the definition 1.3 of the perfor-

mance vectors associated with problems WDO and WDC respectively.

Definition 1.15 The performance spaces are, respectively,

Uy(z) Y {v(z,7) : 7w e IR}, (1.29)

Us(x) def om(z,m) e IR} . (1.30)

11
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d:WDC—MuletPol‘

c:WDC-Pareto

c:WDC-1lex

t:WDC-PerSp

For a vector a in R? we write a > 0 if and only if a; > 0 for all 4.

Definition 1.16 A point © dominates a point v if u — v > 0. A point U is
Pareto optimal in a set U if there is no other v € U which dominates u. We
write (u1,u2,... ,uq) =@ >¢ 0 ifu; =0 fori=1,...,5—1 and u; >0 for
some 1 < j <gq (j =1 implies uy > 0). Say u is lexicographically larger
than v if u — v >¢ 0.

Note that w — v > 0 and @ # v implies & — v >¢ 0, but the converse need
not hold. We extend these notions from vectors to policies in the obvious
way:

Definition 1.17 For a fized initial state x, a policy 7 is called Pareto op-
timal if the corresponding performance vector is Pareto optimal. A policy w
is called lexicographically optimal if the corresponding performance vector
is lexicographically optimal.

With these definitions, we have the following obvious statement.

Lemma 1.18 Any optimal policy for WDO is Pareto optimal for v(x,).
t:WDC-FinWeight
Theorem [[.12 immediately implies

Corollary 1.19 Any policy in submodel ', and in particular ¢, is lexico-
graphically optimal for v(x, ).

The performance space has the following convenient structure.

Theorem 1.20 (i) The set Uc(x) are convez, x € X. (i) If the A(x) are
compact, all reward and transition functions are continuous in a and the
rewards are bounded, then U.(z) are compact. (iii) If © is a funnel then
om (2,0) are conver and if, in addition, the conditions of (ii) hold then
um (z,©) are compact.

Proof outline. Convexity of U.(x) follows from theorem E_gD_Céqgfniklgvcgg
ness follows from compactness {IP’W mE HR} and continuity; see
Lemma 3.5], which is based on %8 tfensmn to Ipm (x, ©) follows by
the argument preceding Corollary .

12
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1.5.1 Classes of policies

Multiple criterion problems often require randomization in order to achieve
optimality. In order to quantify the amount of randomization, and to tie this
with the notion of (NN, co)-stationarity, we introduce the following classes of
policies.

We say that a randomized Markov policy 7 is discrete if all probabilities
m¢(-|z) are discrete, t € N, z € X. We recall that any randomized stationary
policy is randomized Markov.

Definition 1.21 A randomized stationary policy ¢ is called M-randomized
stationary if it is discrete and

S 1glale) >0 -1 =M. (1.31)

z€X | acA(x)

A randomized Markov policy 7 is called randomized Markov of order M if it
is discrete and

D1 D imale) >0 -1| =M. (1.32)

t=0 z€X | acA(x)

Note that the terms in square brackets are always non-negative. An M-

randomized stationary policy randomizes every time when the process reaches
a state where the support of ¢(z) contains more than one point. By contrast,

a randomized Markov policy of order M makes at most M randomizations

over the entire time-horizon.

Definition 1.22 A Markov policy m is called an (m, N)-policy if it is ran-
domized Markov of order m and, in addition, it is (N, o0)-stationary, that
is, it agrees with some stationary policy ¢ after time N. An (m, N)-policy
7 is called a strong (m, N)-policy if, in addition, there is an m-randomized
stationary policy 1 such that

mi(alz) >0 implies (a|z) > 0. (1.33)

Thus (m, N)-policies have the simple structure of only m randomizations
over the entire time horizon, as well as stationarity beyond time N. For a
strong (m, N)-policy, the total number of actions is further restricted in that
the total number of actions beyond those of a stationary (non-randomized!)
policy does not exceed m.
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1.6 Finite Models: Constrained Optimization

1.6.1 Finite horizon models

As we saw, construction of optimal policy in the weighted-discount problem

goes through thz: ﬁgg_]peljl:‘%ation of finite-horizon problems. We note in passing

that Theorem [1.20 applies to finite-horizon problems with arbitrary time-
dependence of the reward functions.

To deﬁgzewg}élﬂm@nite horizon constrained optimization problem, we use

Definition 1.2, However, we let the immediate rewards depend on time by
setting
ri(z,a) ift <N,
ri(t,x,a) = fF@=x) ift=N, (1.34)
0 ift > N,

where fF(z) is a terminal reward for the reward function r§ and discount
factor By. We usually set ff (x) = vé? (z, ¢, Be), where ¢ is a stationary policy.
For the finite horizon problem, it is possible to use a Linear Programming
approach. Here, the mixed criteria is not a hindrance: if fact, this approach
applies for 2 Jgagg—dependent cost structure, by an embedding technique as
in Section II.3.

FeS95
Theorem 1.23 (}WTheorem 4.1]) The finite horizon, finite state and
action ¢ I_té%tggmed optimization problem is feasible if an only if the associ-
ated LPT]TET(4.1)7(4.5)] is feasible. If it is feasible then it has an optimal
randomized Markov policy of order K.

1.6.2 Infinite horizon models

The proof of the existence of optimal (K, N)-policies requires some convex
analysis. We shall relate special subsets of performance spaces to funnels.
We need the following definition.

Definition 1.24 Let W be a convex subset of a convexr set E. Call W
extreme if the relation uz = Aug + (1 — Nug, where 0 < XA < 1, uq,us € E,
and us € W implies that necessarily ui,uo € W. Call W exposed if there
is a supporting hyperplane H of E so that W = HNE.

An exposed set is extreme, but the converse may not hold: take

E={(z,y):-1<z<0,|y| <1} U{(z,y) 12 >0,2° +y*> < 1}

14
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and W = {(0,1)}. Then W is obviously extreme, but the only supporting
hyperplane containing W satisfies H N E = {(z,y) : -1 <z <0,y =1} #
W, so that W is not exposed. Note that (0,1) is a Pareto-optimal point,
and is a solution of the constrained optimization problem of maximizing y
subject to x > 0. However, is not isolated by any exposed subset of FE.

Our plan is to show that Pareto optimal points of U.(z) are achieved by
(K, N)-policies. We first show that boundary points of U.(z) are achieved
by points of the set vaq(z, ©) for some funnel ©. We then show that any
boundary point is achieved by a convex combinations of performances of
(N, co)-stationary policies that utilize the same stationary policy from e OB £ s nHorLP
N onwards. The properties of the finite-horizon problems of Theorem [I.23
are used to conclude optimality of (K, N)-policies.

Theorem 1.25 Let © be a funnel and W an exposed subset of v (z,O).
Then there exists a funnel ©' such that W = op(z,0"). If E # tpq(z, ©)
is an extreme subset, then then there exists a funnel ©' such that E =
Im(x,©'). In particular, these statements hold for © = T and U.(x) =

@A4($,())

Proof outline. A supporting hyperplane H and exposed subset W are
defined by some b, by, ... ,bx so that

k=0
K
W = {ae om(z,©) : Zb,-u,:b},
k=0
and
K
D bui <b forall @€ vm(z,0).
k=0

c:WDC-fun2fun
Apply Corollary hTmude the first result. For the extreme subset
we use the fact that for a proper extreme subset F of a compact convex
set W in an Euclidean space there is a finite sequence of sets Wy, ... , W
such that Wy = W, W, = gg gnd W41 is an exposed subset of W;; see
the proof of Lemma 6.3 in . The first result, applied repeatedly to the
sets W = opm(z,0), W1, ... ,Wj_1, leads to the second statement of the
theorem. .

15
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When W = U,(z) or, in L TRore general situation, W = o (z, ©), where
© is a funnel, then Theorem .25 implies that for any proper extreme subset
E of W there is a funnel © such that E = t(x,©’). If % is an extreme
point of some funnel vpq(x,0) (that is, the singleton {u} is an extreme
subset), then its performance is achieved by a funnel, and in particular we
can choose any policy = from this funnel and have vp(z,7) = @. For N
large enough, we select 7 being (N, co)-stationary.

If u is a Pareto optimal pomt of U.(x then it belongs to the boundary
of the closed convex set Ug(x Therefor Relongs to an exposed subset
E of Uy(z) and, accordlng to Theorem l 25 E can be represented as a
performance set of a funnel; E = V(z,0’). If u is an extreme point of FE,
@ = Up(x,m) for some (N, co)-stationary policy 7. If @ is a relatively inner
point of E, Caratheodory theorem implies that it can be represented as a
convex combination of at most K extreme points of E.

Such representation holds if each extreme point is approximated by an
element of F close to it. By selecting IV large enough, we can approximate
(N, co)-stationary policies, whose performance vectors are extreme points
of E, with (N, co)-stationary policies coinciding with the same stationary
policy ¢ from epoch N onwards. Thus, if 4 is a Pareto optimal element of
Uc(), it can be represented as a convex combination of performance vectors
of (N, o0)-stationary policies with the same “tail,” i.e. these policies act as
the same stationary policy from some epoch N onwards; see Figure I[.T,
where a, b, and ¢ are extreme points of £ = V(z,0') and d/,¥, and ¢ are
their approximations which are performance vectors of (N, occ)-stationary
policies with the same “tail.”

FeS95
Theorem 1.26 (}[WTheorems 6.6-6.8]) (i) If u is a Pareto optimal
point of U.(x) then for some N < oo there exists a (K, N)-policy m such
that op(z, ) = 4. (i) If the WDC is feasible then for some N < oo there
exists an optimal (K, N)-policy.

Proof outline. (i) Fix N and the “tail” stationary policy ¢ described in
the paragraph preceding the theorem. Set m(y) = ¢(y) for all y € X and for
all ¢ > N. In order to determine the policy 7 at steps t =0,... , N, one has
to solve a constrained finite-horizon Pro r=ub k=1,... K,
where @i = (u, ... ,u%). By Theorem Eﬁ?{%llgﬁa g, N)-policy.

(ii) Any solutlon of the WDC defines either a Pareto optimal point of

Uc(x) or it is dominated by a solution with this property. Therefore, (i)
implies (ii). .

16



Figure 1.1: Representation of a Pareto optimal point u as a convex com-
binations of performance vectors a’, ¥/, and ¢ of (N, oco)-stationary policies
with the same “tail.”

Theorem 1.27 Fiz x and consider performance vectors taq(x, ) and per-
formance space U.(z). If 4 belongs to the boundary of U.(x) then there is a
(K, N)-policy m with op(z,7) = @. If v is any point in U.(x) then there is
a (K +1,N)-policy o with tp(z,0) = 7.

Proof outline. Since U is convex and compact, any point on the boundary
of U.(z) can be represented as the unique soluti n to a constrained optimiza-
tion problem, with K constraints, so Theorem [[.26 implies the result. Any
point in the interior of U.(z) can be represented by a similar constrained
problem, but with K + 1 constraints, and similar arguments apply. "

In general, it is not possible to achieve a given performance with (K, N)-
policies, so that the result above is sharp.
1.6.3 Calculation of optimal policies

The computation of optimal policies for the constrained problem is, in gen-
eral, an open problem. It is easy to compute approximate policies, provided
that by “approximate” we mean that we allow the constraints to be “slightly

17



violated.” To do this, given € we fix a large IV so that

KBY maes Irf(@,a)
1-05

and solve the finite horizon problem, ignoring all costs after %g#his would
put costs and constraints within & of the desired values; see or details.
A relaxation technique can be used to decrease the error, either in the
constraints, or the value, or both. However, such algorithms are iterative,
and it is difficult to obtain information about their accuracy.
Consider the case K = 1, and where

(1.35)

Wz, ) = vi(z,m,B), (1.36)
v (2, ™) = va(z, 7, Ba). (1.37)

That is, each criterion is a simple discounted one, but the discounts are
different, 81 # (2. For the next result we do not assume that 5, > (3. Let
the problem be feasible, that is

max v, (z, ) > C'. (1.38)

We say a policy 7 is (a, b)-lexicographic optimal if it is lexicographic optimal
for the vector (v%,(z, ), v} (z, 7))

FeS99

Theorem 1.28 (hﬂ) (i) If max, vy, (z,7) = C then the (1,0)-lezicographic
optimal policy solves the constrained optimization problem. (ii) Let o be the
(0, 1)-lezicographic optimal policy, and suppose vy (z,0) > C. Then o is an
optimal solution. (iii) If neither conditions hold and 31 > (32, then there is
a finite algorithm for the computation of the optimal policy. The complexity
of the algorithm is similar to the solution of the WDO problem. (iv) If on
the other hand (31 < B2 than there is an iterative algorithm, that terminates
in a finite number of steps, for the computation of optimal policies.

We note that even for this simple problem, in case (iv) we have no prior
estimate of the complexity of this calculation.
1.6.4 Single-discount constrained optimization

The problem of constrained optimization with the standard di aounted cri%
rion has bee iextensively studi%(%; see the books by Kallenberg [25], Borkar [6],
Piunovskiy [33], and Altman [I]. However, the non-stationary policies in-
troduced in this chapter give this problem a different perspective. Indeed,
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if X and A are finite then Theorem ﬁ‘fg"g%]t)%l%s the existence of optimal
(K, N)-policies. This is a new result for problems with a single discount fac-
tor! However, for problems with a single discount factor, this result can be
strengthened. If X and A are finite and a goblem is feasible, then there exist
an optimal gndomized stationary policy [25]. Standard linear programming
arguments [36] imply that, if the problem is feasible, then there e %S&%_%D&N
randomized stationary optimal policy. Combined with Theorem .26, this
result implies the existence of strong (K, N)-policies for some N < oo for
models with finite state and action sets.

If the state space is infinite, optimal (N, oo)—s‘catiigé3 policies may not
exist for unconstrained mixed discounted problems 1%‘% Therefore, opti-
mal (K, N)-policies may not exist for constrained mixe%%'bzcounted models
with infinite state spaces. However, as was proved in , optimal strong
(K, N)-policies exist for constrained discounted problems with countable
state spaces if these models satisfy stan%?é%continuity assumptions. We
give here a brief survey of the results of .

We treat the countable state —%%&1; g)f this chapter, and make the continu-
ity assumptions of Theorem hTG%%fW@ consider a ¢o; j oblem with
K constraints. We consider constrained problem (I.2)I.3) when, instead of
a vector Uaq(z,7), the performance of a policy 7 is evaluated by a vector
o(z,7) = (V(z,7),... ,vE(x,m)), where v¥(z,7) are expected discounted
total rewards for reward functions r¥(x,a) and the common discount fac-
tor 8 € [0,1[,k =0,... , K. Note that our definitions of (N, co)-stationary,
K-randomized, randomized Markov of order K, and (K, N)-policies are all
well-posed. We note that, in this generality, the set v (:c,HR) may not be
compact because it may not bounded. However, out assumptions suffice for
the following.

Lemma 1.29 If u belongs to the closure of v (:L‘,HR) then there exists u' €
v (m,HR) that dominates u. Consequently, there exists a policy whose per-
formance dominates u.

Theorem 1.30 If 7 is Pareto optimal then (i) there exists an K-randomized
stationary policy with the same performance, and (ii) there ezists a strong
(K, N)-policy with the same performance.

Theorem 1.31 If problem WDC is feasible, then (i) there exists an opti-
mal K-randomized stationary policy, and (ii) there exists an optimal strong
(K, N)-policy.

The strengthening of the conclusions frot_w%nle\fd)—policies is worth a com-
ment. Using conclusion (i) of Theorem i.3l, we obtain an K-randomized
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optimal policy o. Consider now the submodel A’ where
Al(xz) = {a € A(z) : o(a|]z) > 0}. (1.39)

In this submodel, all but at most K of the A’(z) are singletons. We now
obtain an optimal (K, N)-policy in the new model. By definition, this policy
is a strong (K, N)-policy.

1.7 Related problems and criteria

In this section we survey some related MDP problems and some extensions to
stochastic games. Other related models are mentioned in the introduction.

1.7.1 MDP models

Average cost criteria are usually of the expected type. However, it is well
known that for ergodic models that the value can be achieved with Oroba—
bility one. This is also the case for constrained K{%Dps; see Borkar % and
Altman and Shwartz [4]. Ross and Varadarjan [37] consider a finite MDP
and maximize the expected average cost subject to a constraint that an-
other average cost does not exceed a given bound with probability one. For
a general multichain MDP they establish that if the problem is feasible, then
there is an e-optimal stationary policy. An algorithm for its computation is
provided. S

Reiman and Shwartz FFBS] consider a mixed-criteria problem that arises
in telecommunications. Arriving users may be rejected. If accepted, they
generate communication packets according to an independent random pro-
cess until they leave. There are two average per unit time optimization
criteria determining the Quality of Service. The percentage of lost packets
by a user that is accepted at a given state (given number of users) should
be below or equal to a given bound. The probability of blocking (rejecting
an arriving user) should be minimized. Due to the nature of the model,
only stationary policies are relevant, and the fact that users leave after a
geometric session time implies that the first criterion is actually of the dis-
counted type. Since the bound must hold for every initial state, we have
a mixed criterion problem with average cost optimization and a countable
number of discounted constraints. The authors provide an algorithm for
the computation of optimal policies and derive a relation to a mathematical
program.
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1.7.2 Stochastic games with mixed criteria

iV F
Filar and Vrieze Hi[g], Altm einberg, and Shwartz H and Altman, Fein-
berg, Filar, and Gaitsgory J|2] investigated stochastic games with weighted
criteria. Filar and Vrieze [19] considered zero-sum games with finite state
and action sets. They considered two criteria: a mixture of two discounted
criteria and a mixture of a discounted and average reward criteria. In both
cases, they proved the existence of the value and the existence of random-
ized (N, cq)-stationary e-optimal policies for € > 0. Altman, Feinberg, and
Shwartz [3] provided an example when optimal (NN, co)-stationary policies
do not exist in a mixed-discounted problem and proved the existence of such
policies in models with perfect infor gtion.

Altman, Feinberg, and Shwartz ﬁralso introduced lexicographic games
when the players play the game with the payoff function r; and discount
factor B, first. We denote this game by I'y. Then the players play the
game with the discount factor B and reward functions ro on the set of
optimal policies of the game I'y. We denote this game by I'1 2. This con-
struction can be repeated L times and, as the result, the players play the
game I'; 7. In games with perfect information, when players play opti-
mal (N, co)-stationary policies for mixed-discounted games, from epoch N
onwards they play any optimal policy for the game I'y | 1.

We recall that a mixed-discounted game with finite or countable state
space can be reduced to a standa?r;l&%icounted countable state game with es-
sentially t}%e: SRR action spaces ( . This construction is briefly described
in Section II.3. erefore, if the action sets are finite, the set of optimal ac-
tions at each step for each player exists at each state. This set is a polytope
which is a subset of the set of all probability distributions on the sets of all
actions A(z) for player one and B(z) for player two. We denote theses sets
of optimal actions by An(z) and By (z) respectively. Altman, Feinberg, Fi-
lar, and Gaitsgory [2] proved for repeated mixed-discounted games that the
sequence of sets A,, (there is only one state in repeated games and therefore
A, (z) do not depend on x) converges to a subset of the set of optimal poli-
cies of the game I'1 5. Whether this result holds for stochastic games with
finite state jé#action sets is an open question. We also remark that the
examples in show that the limit may not be equal to the set of optimal
policies in game I'; 5 and that this limit may not be a subset of the sets of
optimal policies for the game I'y o 3.

In general, the existence of values for zero-sum games and equilibrium
values for non-zero sum games are nontrivial questions. For mixed criteria,
we are aware of two general methods to prove the existence of such values.
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The first method is to represent a mixed ﬁgigzﬁiogaggsa .&gggp criterion and
use the results by Maitra and Sudderth [28, 29, 30[. The second method,

which can be applied directly to mixed- Si_s%)él_léted criteria, is to consider
an expanded model described ilﬂ g,ec‘g&p e 3 an then to apply the results
)

for standard discounted criteria [27, . The existence of Nash equilibri
is often established using fixed-point methods. Altman and Shwartz EQS%
consider the following stochastic game. We have L players. Player £ has a
discount factor Gy (where = 1 means that the average cost is used) and
immediate costs rf, 0 <k < By. A policy 7 is called feasible if

v (z,m,B) < VF for 1 <¢<L,1<k< B, (1.40)

where V}{k are given numbers. It is established in %5% that, if this problem
is feasible then (under some regularity conditions) there exists a Nash equi-
librium. An ergodicity condition is required if the average cost is used by
some player. The proof uses fixed point methods.

1.7.3 Extensions and open problems

The authors are currently considering the extension of the mixed-discounted
problem to the semi-Markov setting.

Except for the unconstrained problems, the algorithmic aspects of mixed-
discounted criteria are still open: we do not have an algorithm for the com-
putation of optimal, or even feasible e-optimal policies.

Convergence of solutions for zero-sum. games to the subsets of solutions
of lexicographic games, established in %]éfor repeated games, is an open
question for stochastic games with finite state and action sets.
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