Computing Approximate Nash Equilibria and Robust Best-Responses Using Sampling

Marc Ponsen Steven de Jong Marc Lanctot

Paper Review by Oron Anschel

July 15, 2015

・吊り ・ラト ・ラ

Outline

1 Introduction

- Games
- Best Response &Nash-Equilibrium
- 2 Computing Approximate Nash-Equilibrium
 - Non-Sampling methods
 - Sampling methods
- 3 Monte-Carlo Restricted Nash Response
 - Restricted Nash Response
 - Monte Carlo Restricted Nash Response
- 4 Results
 - Experiments
 - Contributions
- 5 Simulation
 - Game Setup
 - Results

Computing Approximate Nash-Equilibrium MCRNR Results Simulation

Games Best Response &Nash-Equilibrium

Outline

Introduction

- Games
- Best Response & Nash-Equilibrium
- 2 Computing Approximate Nash-Equilibrium
 - Non-Sampling methods
 - Sampling methods
- 3 Monte-Carlo Restricted Nash Response
 - Restricted Nash Response
 - Monte Carlo Restricted Nash Response
- 4 Results
 - Experiments
 - Contributions
- 5 Simulation
 - Game Setup
 - Results

Computing Approximate Nash-Equilibrium MCRNR Results Simulation

Games Best Response &Nash-Equilibrium

Games Examples:

- Puzzles
- Rock-paper-scissors
- Backgammon
- Chess
- Poker
- Video games

< /₽ > < E >

э

Computing Approximate Nash-Equilibrium MCRNR Results Simulation

Games Best Response &Nash-Equilibrium

- Players act simultaneously
- Represented in a Game-Table
- Example: Rock-paper-scissors

Rock-paper-scissors - Table representation

P1\P2	Rock	Paper	Scissor
Rock	[0,0]	[0,1]	[1,0]
Paper	[1,0]	[0,0]	[0,1]
Scissor	[0,1]	[1,0]	[0,0]

→ < Ξ → <</p>

Computing Approximate Nash-Equilibrium MCRNR Results Simulation

Games Best Response &Nash-Equilibrium

Extensive-Form Game

- Represented as a Game-Tree
- Examples : Chess, Backgammon, Poker, Tic Tac Toe
- Characteristics:
 - Sequential decision-making
 - Imperfect information
 - Stochastic

Computing Approximate Nash-Equilibrium MCRNR Results Simulation

Games Best Response &Nash-Equilibrium

Outline

1 Introduction

- Games
- Best Response &Nash-Equilibrium
- 2 Computing Approximate Nash-Equilibrium
 - Non-Sampling methods
 - Sampling methods
- 3 Monte-Carlo Restricted Nash Response
 - Restricted Nash Response
 - Monte Carlo Restricted Nash Response
- 4 Results
 - Experiments
 - Contributions
- 5 Simulation
 - Game Setup
 - Results

Games Best Response &Nash-Equilibrium

Best Response Strategy

Assume 2 players game

- σ_i- Player i strategy
- u_i Player *i* game utility

Best Response Value

$$b_1(\sigma_2) = \max_{\sigma_1' \in \Sigma_1} u_1(\sigma_1', \sigma_2)$$

Best Response Strategy

$$\sigma_1 = rgmax_{\sigma_1' \in \Sigma_1} u_1(\sigma_1', \sigma_2)$$

(日) (同) (三) (三)

Games Best Response &Nash-Equilibrium

Nash-Equilibrium Strategy

- σ_i- Player *i* Nash-Equilibrium strategy
- *u_i* Player *i* game utility

Nash-Equilibrium

$$\left\{egin{array}{l} u_1(\sigma_1,\sigma_2)\geq \max\limits_{\sigma_1'\in\Sigma_1}u_1(\sigma_1',\sigma_2)\ u_2(\sigma_{2,},\sigma_1)\geq \max\limits_{\sigma_2'\in\Sigma_2}u_2(\sigma_2',\sigma_1) \end{array}
ight.$$

Approximate Nash-Equilibrium

$$egin{aligned} & u_1(\sigma_1,\sigma_2) + arepsilon \geq \max_{\sigma_1'\in \Sigma_1} u_1(\sigma_1',\sigma_2) \ & u_2(\sigma_{2,},\sigma_1) + arepsilon \geq \max_{\sigma_2'\in \Sigma_2} u_2(\sigma_2',\sigma_1) \end{aligned}$$

*How to compute a Nash-Equilibrium strategy?

Paper Review by Oron Anschel

NE and RNR Using Monte Carlo Sampling

◆□ > ◆□ > ◆豆 > ◆豆 >

Non-Sampling methods Sampling methods

Outline

Introduction

- Games
- Best Response &Nash-Equilibrium

2 Computing Approximate Nash-Equilibrium

Non-Sampling methods

- Sampling methods
- 3 Monte-Carlo Restricted Nash Response
 - Restricted Nash Response
 - Monte Carlo Restricted Nash Response
- 4 Results
 - Experiments
 - Contributions
- 5 Simulation
 - Game Setup
 - Results

- ∃ →

Non-Sampling methods Sampling methods

Non-Sampling methods

- Linear programming applied to Poker (Billings et al. 2003)
- Excessive Gap Technique applied to Poker (Hoda et al. 2010, Sandholm 2010)

イロト イポト イヨト イヨト

Non-Sampling methods Sampling methods

Outline

Introduction

- Games
- Best Response &Nash-Equilibrium

2 Computing Approximate Nash-Equilibrium

- Non-Sampling methods
- Sampling methods
- 3 Monte-Carlo Restricted Nash Response
 - Restricted Nash Response
 - Monte Carlo Restricted Nash Response

4 Results

- Experiments
- Contributions
- 5 Simulation
 - Game Setup
 - Results

- ∃ →

Non-Sampling methods Sampling methods

Sampling methods

- Monte Carlo Tree Search (MCTS) Based on the UCB algorithm (B. Brügmann 1992, R. Coulom 2006, L. Kocsis and Cs. Szepesvári, S. Gelly 2008).
- Monte Carlo Counterfactual Regret Minimization (MCCFR) - Based on the Regret Matching algorithm (Martin Zinkevich 2007, Marc Lanctot 2009)

イロト イポト イヨト イヨト

Non-Sampling methods Sampling methods

Monte Carlo Tree Search (MCTS)

MCTS

(日) (同) (三) (三)

Non-Sampling methods Sampling methods

Monte Carlo Tree Search (MCTS)

• Convergence guarantees for **perfect information** games.

Repeat:

Selection:

$$a^* \in \operatorname{argmax}_{a \in A}\left(v_a + C \cdot \sqrt{\frac{\ln n_p}{n_a}}\right)$$

 v_a – average simulated reward n_a – visit count of action a n_p – visit counts of current node (UCB1 algorithm)

2 Expansion

Simulation

Backpropogation

イロト イポト イヨト イヨト

Non-Sampling methods Sampling methods

Monte Carlo Tree Search Cont'd

(日) (同) (三) (三)

Non-Sampling methods Sampling methods

Monte Carlo Counterfactual Regret Minimization (MCCFR)

MCCFR

< A

▶ < ∃ ▶</p>

Non-Sampling methods Sampling methods

Monte Carlo Counterfactual Regret Minimization (MCCFR)

Some general results...

Average overall regret:

$$R_i^T = \frac{1}{T} \max_{\sigma_i' \in \Sigma_i} \sum_{t=1}^T \left(u_i(\sigma_i', \sigma_{-i}^t) - u_i(\sigma^t) \right)$$

Average strategy:

$$\bar{\sigma}_{i}^{T}(\boldsymbol{a}|l) = \frac{\sum_{t=1}^{T} \pi_{i}^{\sigma^{t}}(l) \sigma^{t}(\boldsymbol{a}|l)}{\sum_{t=1}^{T} \pi_{i}^{\sigma^{t}}(l)}$$

Theorem

In a zero sum game, if $R_i^T \leq \varepsilon$ then $\bar{\sigma_i}^T$ is a 2ε Nash-Equilibrium strategy.

Non-Sampling methods Sampling methods

Monte Carlo Counterfactual Regret Minimization (MCCFR)

More results... Counterfactual value:

$$v_i(\sigma, I) = \sum_{z \in z_I} \pi^{\sigma}_{-i}(z[I]) \pi^{\sigma}(z[I], z) u_i(z)$$

*Z_I - terminal nodes reachable from I, z[I] - prefix of z in I Intimidate Counterfactual regret :

$$R_{i,imm}^{T}(a, l) = \frac{1}{T} \sum_{t=1}^{T} \left(v_i \left(\sigma_{(l \to a)}^t, l \right) - v_i \left(\sigma^t, l \right) \right)$$
$$R_{i,imm}^{T}(l) = \max_{a \in \mathcal{A}(l)} R_{i,imm}^{T}(a, l)$$

Let $x^+ = \max(x, 0)$

Theorem

$$R_i^T \leq \sum_{I} R_{i,imm}^{T,+}(I)$$

* Using Regret Matching $R_{i,imm}^{T,+}(I)$ can be driven to zero!

Paper Review by Oron Anschel NE and RNR Using Monte Carlo Sampling

3 × 3

Non-Sampling methods Sampling methods

Monte Carlo Counterfactual Regret Minimization (MCCFR)

Regret Matching:

$$\sigma_i^t(a|I) = \frac{R_{i,imm}^{T,+}(I,a)}{\sum_a R_{i,imm}^{T,+}(I,a)}$$

- *R*^{T,+}_{i,imm}(*I*, *a*) can be calculated recursively during the tree traversal.
- Can we avoid making full tree traversal?

イロト イポト イヨト イヨト

Non-Sampling methods Sampling methods

Monte Carlo Counterfactual Regret Minimization (MCCFR)

Yes!

- MCCFR Outcome-Sampling.
- Let $\pi^{\sigma'}(z)$ be the probability of sampling z.

Sampled Counterfactual value:

$$\tilde{v}_i(\sigma,I) = \frac{1}{\pi^{\sigma'}(z)} \pi^{\sigma}_{-i}(z[I]) \pi^{\sigma}(z[I],z) u_i(z)$$

- We have that $E[\tilde{v}_i(\sigma, I)] = v_i(\sigma, I)$.
- Sampling based algorithm that convergence to NE.

イロト イポト イヨト イヨト

Introduction Computing Approximate Nash-Equilibrium MCRNR

Results Simulation Restricted Nash Response Monte Carlo Restricted Nash Response

Outline

Introduction

- Games
- Best Response &Nash-Equilibrium
- 2 Computing Approximate Nash-Equilibrium
 - Non-Sampling methods
 - Sampling methods
- 3 Monte-Carlo Restricted Nash Response

Restricted Nash Response

- Monte Carlo Restricted Nash Response
- 4 Results
 - Experiments
 - Contributions
- 5 Simulation
 - Game Setup
 - Results

Restricted Nash Response Monte Carlo Restricted Nash Response

Restricted Nash Response

- What if the opponent doesn't play NES?
- What is the problem in playing best response?
- Can we exploit while being robust?
- RNR (Johanson et al. 2008)

Introduction Computing Approximate Nash-Equilibrium MCRNR

Results Monte Simulation

Restricted Nash Response Monte Carlo Restricted Nash Response

Restricted Nash Response Cont'd

What is RNR?

- Robust best response strategy.
- Assume the opponent plays σ_{fix} with probability p .
- Solve a NE for a modified game where the opponent plays $p\sigma_{fix} + (1-p)\sigma_2$.

Paper Review by Oron Anschel NE and RNR Using Monte Carlo Sampling

Introduction Computing Approximate Nash-Equilibrium MCRNR

Results

Restricted Nash Response Monte Carlo Restricted Nash Response

Outline

1 Introduction

- Games
- Best Response &Nash-Equilibrium
- 2 Computing Approximate Nash-Equilibrium
 - Non-Sampling methods
 - Sampling methods
- 3 Monte-Carlo Restricted Nash Response
 - Restricted Nash Response

• Monte Carlo Restricted Nash Response

- 4 Results
 - Experiments
 - Contributions
- 5 Simulation
 - Game Setup
 - Results

Restricted Nash Response Monte Carlo Restricted Nash Response

・ 同 ト ・ ヨ ト ・ ヨ ト

Monte Carlo Restricted Nash Response

MCRNR Algorithm:

- Evaluate $\sigma_{\textit{fix}}$ for the players offline.
- Confidence parameter p can be evaluated for each node/ globally.
- Run MCCFR, use a modified tree as input (do not update fixed strategies nodes).

Experiments Contributions

Outline

1 Introduction

- Games
- Best Response &Nash-Equilibrium
- Computing Approximate Nash-Equilibrium
 - Non-Sampling methods
 - Sampling methods
- 3 Monte-Carlo Restricted Nash Response
 - Restricted Nash Response
 - Monte Carlo Restricted Nash Response

4 Results

Experiments

- Contributions
- 5 Simulation
 - Game Setup
 - Results

Experiments Contributions

Experiments Results

MCCFR vs MCTS in Kuhn Poker

Experiments Contributions

Experiments Results Cont'd

MCCFR vs MCTS in Poker

Poker

Paper Review by Oron Anschel NE and RNR Using Monte Carlo Sampling

Experiments Contributions

Experiments Results Cont'd

- Playing against SparBot and POKI (benchmark machine players).
- Each 1000 online games, 5 million MCCFR/MCRNR offline iterations.
- Results obtained after 10,000 online games.

Opponent	MCCFR10	MCRNR10	MCCFR100	MCRNR100
POKI	0.059	0.369	0.191	0.482
SparBot	-0.091	-0.039	0.046	0.061

イロト イポト イヨト イヨト

Experiments Contributions

Outline

1 Introduction

- Games
- Best Response &Nash-Equilibrium
- Computing Approximate Nash-Equilibrium
 - Non-Sampling methods
 - Sampling methods
- 3 Monte-Carlo Restricted Nash Response
 - Restricted Nash Response
 - Monte Carlo Restricted Nash Response

4 Results

Experiments

Contributions

- Simulation
 - Game Setup
 - Results

Experiments Contributions

- Comparison between MCTS and MCCFR on two-player Limit Texas Hold'Em Poker.
- Introduced MCRNR algorithm for robust best response strategies.

(日) (同) (三) (三)

Game Setup Results

Outline

1 Introduction

- Games
- Best Response &Nash-Equilibrium
- Computing Approximate Nash-Equilibrium
 - Non-Sampling methods
 - Sampling methods
- 3 Monte-Carlo Restricted Nash Response
 - Restricted Nash Response
 - Monte Carlo Restricted Nash Response
- 4 Results
 - Experiments
 - Contributions
- 5 Simulation
 - Game Setup
 - Results

Game Setup Results

Penalty Kick Game:

• 2 players and a ball

(日) (同) (三) (三)

Game Setup Cont'd

Penalty Kick Game:

- Player 1 : Choose start position
- Player 2 : Choose shot direction
- Player 1 : Move left/right/don't move
- Result : Goal/ no goal

Game Setup

Game Setup Results

Outline

1 Introduction

- Games
- Best Response &Nash-Equilibrium
- Computing Approximate Nash-Equilibrium
 - Non-Sampling methods
 - Sampling methods
- 3 Monte-Carlo Restricted Nash Response
 - Restricted Nash Response
 - Monte Carlo Restricted Nash Response
- 4 Results
 - Experiments
 - Contributions
- 5 Simulation
 - Game Setup
 - Results

Game Setup Results

Results

Nash-Equilibrium Strategy :

- Player 1 : Start at the center
- Player 2 : Choose shot direction (doesn't matter)
- Player 1 : Move to shooting direction
- Result : Player 1 always stops the ball

