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Start With The End

Model is given by,

y =
n

∑
i=1

xibi + ε

n ≤m where m is the number of possible inputs, xi 's are the

inputs, y is the output (what we measure), ε is the

measurment noise.

We wish to estimate {n,b1, ..,bn} using Bayesian modeling,

given k independent measurments.

Next, we de�ne relevant distributions for the model.
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Starting With The End (Cont'd)

The likelihood is given by,

L(y |n,b) =

 1√
2πσ2

0

k

· exp

{
−
∥∥y −XTb

∥∥2
2σ2

0

}

The prior over b is given by,

p (b|n) =

 1√
2πσ2

p

n

· exp

{
−‖b−µ‖2

2σ2
p

}

The prior over n is given by,

p (n) =
1

m
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Understanding the Problem

Bayesian modeling context for observed data.

Countable collection Models M = {M1,M2, ..} indexed by

k ∈K .

Each model Mk has an nk -dimensional vector of unknown

parameters, θk ∈ Rnk . nk can be di�erent for di�erent k ∈K .
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Understanding the Problem (Cont'd)

The joint posterior of (k ,θk |x) is given by,

π (k ,θk |x) =
L(x |k,θk)p (θk |k)p (k)

∑k ′∈K
∫
Rnk ′ L

(
x |k ′,θ ′k ′

)
p
(
θ
′
k ′ |k ′

)
p (k ′)

L(x |k,θk) is the likelihood distribution, p (θk |k) is the prior of

θk under model Mk and p (k) is the prior for model Mk .

Reversible Jump sets the posterior distribution as the target of

MCMC sampler over the state space Θ = ∪k∈K ({k}×Rnk ).

Y. Fan, S. A. Sisson RJMCMC
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Reminder

Propose some transition distribution q (θ ,θ ′)≡ q (θ ′|θ) and

target distribution π.

Starting with some initial state θ0, the algorithm proceeds as

follows:

1 Given the current state θ , generate θ ′ ∼ q (θ , ·).

2 Set

θ :=

{
θ ′ w.p. α (θ ,θ ′)

θ otherwise

where

α = min

{
1,

π (θ ′)q (θ ′,θ)

π (θ)q (θ ,θ ′)

}

Y. Fan, S. A. Sisson RJMCMC
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Note that..

The motivation behind M.H algorithm is satisfying the detailed

balance condition, so that π is the stationary distribution.

Following the same concept we can suggest MCMC for

multi-models as well, let's call it Reversible Jump MCMC.

Y. Fan, S. A. Sisson RJMCMC
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Basically the Same

Initialize the state for some (k ,θk).

Proceed as follows:

Generate a new state
(
k ′,θ

′
k ′

)
by,

1 Within-model move: �xed k, update θ̃k .

2 Between-models move: generate
(
k ′,θ

′

k ′

)
using

(
k, θ̃k

)
and a

mapping function.

Use acceptance/rejection scheme to determine next state.

Y. Fan, S. A. Sisson RJMCMC
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Examples Time

Finite Mixture Models

Model is in the form

f (x |θk) =
k

∑
j=1

ωj fj (x |φj)

where θk = (φ1, ..,φk), ∑
k
j=1

ωj = 1, and the number of mixture

models, k , is also unknown.

Y. Fan, S. A. Sisson RJMCMC
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Examples Time (Cont'd)

Variable Selection

Model is in the form

Y = Xγβγ + ε

where γ is a binary vector indexing the subset of X to be included,

β are the regression coe�cients and ε is noise.

Y. Fan, S. A. Sisson RJMCMC
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Examples Time (Cont'd)

Autoregressive Process

Model is in the form

Xt =
k

∑
τ=1

aτXt−τ + εt

where aτ are the coe�cients, εt is white noise and the order, k , is
also unknown.

Y. Fan, S. A. Sisson RJMCMC
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In Practice - �Dimension Matching�

Say we wish to perform transition to a model with higher

dimension, Mk : (k ,θk)→Mk ′ :
(
k ′,θ

′

k ′

)
.

1 Generate a RV u of length dk→k ′ = nk ′ −nk from a known
distribution qdk→k ′

(u).

2 Use a deterministic one-to-one mapping θ
′
k ′ = gk→k ′ (θk ,u).

3 Accept new state w.p.

α

[
(k ,θk) ,

(
k ′,θ

′
k ′

)]
= min{1,A}

A =
π

(
k ′,θ

′
k ′

)
q (k ′→ k)

π (k ,θk)q (k → k ′)qdk→k ′
(u)

∣∣∣∣∂gk→k ′ (θk ,u)

∂ (θk ,u)

∣∣∣∣
Y. Fan, S. A. Sisson RJMCMC
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Some Notes

The term q (k → k ′) denotes probability distribution over

transition Mk →Mk ′ .

In this setup the transition from higher to lower dimension is

deterministic.

More generally, we can simply impose

nk +dk→k ′ = nk ′ +dk ′→k

Y. Fan, S. A. Sisson RJMCMC
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Example Time

Two models,

M1 : (k = 1,θ1 ∈ R) , M2 :
(
k = 2,θ2 ∈ R2

)
Transition M1→M2 (stochastic)

θ
(1)
2

= θ1 +u, θ
(2)
2

= θ1−u

Transition M2→M1 (deterministic)

θ1 =
1

2

(
θ
(1)
2

+ θ
(2)
2

)

Y. Fan, S. A. Sisson RJMCMC
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Making Life Easier

In some Bayesian models, integrating over all (or parts of) θk

is possible.

Usually arises when assuming some structures such as

conjugate priors.

Results in smaller state space, thus often easier to implement.

Y. Fan, S. A. Sisson RJMCMC
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Helpful Heuristics - Centering Methods

A class of methods to achieve scaling based on �local�

between-models moves. Assumes gk→k ′ is given.

Based on equal likelihood values under current and proposed

models.

Say we wish to move Mk →Mk ′ . The RV �centering point�

ck→k ′ (θk) = gk→k ′ (θk ,u), is u such that,

L(x |k ,θk) = L
(
x |k ′,ck→k ′ (θk)

)
We can buillt more e�cient transitions, based on likelihood.

Y. Fan, S. A. Sisson RJMCMC
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Xt =
k

∑
τ=1

aτXt−τ + εt

Say Mk is a model of order k , and Mk ′ is a model order k +1.

We wish to move Mk →Mk ′ .

In this case, we have ck→k ′ (θk) = gk→k ′ (θk ,0), since

L(x |k ,θk) = L
(
x |k ′,(θk ,0)
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Helpful Heuristics - Order Methods

Assume we have the �centering� constraint on u. We wish to

determine a suitable qk→k ′ (u).

If u is a scalar, choose qk→k ′ such that

α [(k,θk) ,(k ′,ck→k ′ (θk))] is exactly one.

Intuition: Proposals close to the �centering point� will also

have large acceptance probability.

If u is n-length vector, choose qk→k ′ such that

∇nα [(k ,θk) ,(k ′,ck→k ′ (θk))] = 0.

Intuition: Accepatance probability becomes �atter around

ck→k ′ (θk).

Y. Fan, S. A. Sisson RJMCMC



Introduction
Implementation

Simulation

General Approach
Marginalization
Centering & Order Methods
Generic Samplers

Helpful Heuristics - Order Methods

Assume we have the �centering� constraint on u. We wish to

determine a suitable qk→k ′ (u).

If u is a scalar, choose qk→k ′ such that

α [(k,θk) ,(k ′,ck→k ′ (θk))] is exactly one.

Intuition: Proposals close to the �centering point� will also

have large acceptance probability.

If u is n-length vector, choose qk→k ′ such that

∇nα [(k ,θk) ,(k ′,ck→k ′ (θk))] = 0.

Intuition: Accepatance probability becomes �atter around

ck→k ′ (θk).

Y. Fan, S. A. Sisson RJMCMC



Introduction
Implementation

Simulation

General Approach
Marginalization
Centering & Order Methods
Generic Samplers

Helpful Heuristics - Order Methods

Assume we have the �centering� constraint on u. We wish to

determine a suitable qk→k ′ (u).

If u is a scalar, choose qk→k ′ such that

α [(k,θk) ,(k ′,ck→k ′ (θk))] is exactly one.

Intuition: Proposals close to the �centering point� will also

have large acceptance probability.

If u is n-length vector, choose qk→k ′ such that

∇nα [(k ,θk) ,(k ′,ck→k ′ (θk))] = 0.

Intuition: Accepatance probability becomes �atter around

ck→k ′ (θk).

Y. Fan, S. A. Sisson RJMCMC



Introduction
Implementation

Simulation

General Approach
Marginalization
Centering & Order Methods
Generic Samplers

Outline

1 Introduction

Motivation

Model

The M.H Algorithm

M.H to Reversible Jump

Some Use Cases

2 Implementation

General Approach

Marginalization

Centering & Order Methods

Generic Samplers
3 Simulation

Model Formulation

Results

Y. Fan, S. A. Sisson RJMCMC



Introduction
Implementation

Simulation

General Approach
Marginalization
Centering & Order Methods
Generic Samplers

Let's Make Everything Generic

In centering & order methods, we assume we know gk→k ′ . But

how one should choose it?

Moreover, it's not necessarily easy to compute qk→k ′ from

gk→k ′ using the above heuristics.

New stradegy - move towards a more generic proposal

machanism.

Currently remains in the research horizon.

Y. Fan, S. A. Sisson RJMCMC
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Example Time

Green's Proposal

Analogy of Random-Walk Metropolis Sampler.

Suppose that for each k ∈K , �rst and second moments of θk

are available (denote by µk and BkB
T
k respectively).

Suppose we wish to move from (k ,θk) to model Mk ′ .

A new parameter is proposed by...

Y. Fan, S. A. Sisson RJMCMC
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Example Time (Cont'd)

Green's Proposal

θ
′

k ′ =


µk ′ +Bk ′

[
RB−1k (θk −µk)

]nk ′
1

if nk ′ < nk

µk ′ +Bk ′RB
−1
k (θk −µk) if nk ′ = nk

µk ′ +Bk ′R

(
B−1k (θk −µk)

u

)
if nk ′ > nk

where [·]m
1
denotes the �rst m componenets, R �xed orthogonal

matrix of order max{nk ,nk ′}, and u ∼ qnk ′−nk (u).

Y. Fan, S. A. Sisson RJMCMC
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Setting Up The Model

Model is given by,

y =
n

∑
i=1

xibi + ε

n≤m where m is the number of predictors, xi 's are the inputs,
y is the output (what we measure), ε is the measurment noise.

We wish to estimate {n,b1, ..,bn} using Bayesian modeling,

given k independent measurments.

Next, we de�ne relevant distributions.

Y. Fan, S. A. Sisson RJMCMC
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Setting Up The Model (Cont'd)

The likelihood is given by,

L(y |n,b) =

 1√
2πσ2

0

k

· exp

{
−
∥∥y −XTb

∥∥2
2σ2

0

}

The prior over b is given by,

p (b|n) =

 1√
2πσ2

p

n

· exp

{
−‖b−µ‖2

2σ2
p

}

The prior over n is given by,

p (n) =
1

m
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What Model Is It From?

A simulution for n = 3:
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A simulution for n = 7:
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Examining a Model - PDF

A simulution for n = 2. Real coe�cients are {4.99,5.12}.
�Clutter� - State Space Samples.
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A simulution for n = 2. Real coe�cients are {4.99,5.12}.
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