Monte Carlo Methods for Computation and Simulation (048715) Problem Set 3: MCMC

Submission: June 24

Markov Chains:

- 1. Consider an irreducible Markov chain with *N* states.
 - a. Show that for *N*=2 the chain is always reversible.
 - b. Give an example of a Markov chain that is not reversible, with the minimal possible N.
- 2. **Random walk with reflecting boundaries**: Consider a Markov chain over the state space $\{-m, -m+1, ..., m\}$, and transition probabilities (p_{ij}) given by

$$p_{i,\min\{i+1,m\}} = 1 - p_{i,\max\{i-1,-m\}} = \alpha \in (0,1)$$

- a. Is this chain irreducible? Periodic?
- b. Show that the chain is reversible, and compute the stationary distribution.
- c. *Simulation*: For m = 1, choose some α and initial conditions, and compute numerically $\pi^{(t)}$. Plot all three components and verify convergence to the stationary distribution.
- 3. **AR(1):** Consider an order-1 auto-regressive model with parameter *a* :

$$X_{t+1} = aX_t + w_t$$
, $t = 0, 1, 2, \dots$

Here (w_t) is an *iid* sequence with $w_t \sim N(0, \sigma^2)$, $\sigma > 0$, |a| < 1, and $X_t \in \mathbb{R}$.

- a. Write down the transition function f(y|x), namely the pdf of X_{t+1} conditioned on $X_t = x$.
- b. Show that (X_t) is a reversible Markov chain with stationary distribution $\pi = N(0, \sigma_1^2)$, and compute σ_1^2 .
- c. How will your answers change if |a| > 1? Explain briefly.

Metropolis-Hastings:

4. The Metropolis-Hasting-Green (MHG) Algorithm: The MHG algorithm is a generalization of MH that allows state-dependent mixing of several transition matrices. Let $\{Q_i = (q_i(x, y)), i \in I\}$ be a finite collection of transition functions over the same (finite) state space X.

For each state x, let $\beta(x) = (\beta_i(x))_{i \in I}$ be a probability vector.

- Each step of the MHG algorithm proceeds as follows:
 - 1. Starting from $X_t = x$, choose an index *i* with probability $\beta_i(x)$.
 - 2. Sample *Y* from $q_i(x, \cdot)$.
 - 3. Set $X_{t+1} = Y$ with probability $\alpha_i(x)$, and $X_{t+1} = x$ otherwise, where

$$\alpha_i(x, y) = \min\{1, \rho_i(x, y)\}, \quad \rho_i(x, y) = \frac{f(y)\beta_i(y)q_i(y, x)}{f(x)\beta_i(x)q_i(x, y)}$$

- a. Write down an expression for the transition probabilities $p(X_{t+1} = y | X_t = x)$.
- b. Show that f is a stationary distribution of the Markov chain (X_t) .
- 5. Sampling Spanning Trees: Let G=(V,E) be an undirected and fully connected graph. A simple MCMC algorithm to sample uniformly from the set of spanning trees of G is the following: Start with some spanning tree; add uniformly-at-random some edge from G (so that one cycle forms); remove uniformly-at-random some link from this cycle; repeat.

Suppose now that the graph is positively weighted, i.e., each edge $e \in E$ has some cost $c_e > 0$. The weight of any sub-graph of G is the sum of costs of its edges.

- a. Suggest an MCMC algorithm that samples from the set of spanning trees of G, with a probability that is proportional to their weights.
- b. Suppose we wish to estimate the average weight of a spanning tree. Suggest two variants of the above MCMC algorithms that provide this estimate.
- 6. *Simulation* (spanning trees): Implement the algorithms of Problem 5 on some small (but non-trivial) weighted graph of your choosing:
 - a. Implement the algorithm in 5a. Show graphs of the empirical frequencies and verify convergence to the correct values.
 - b. Implement the two algorithms from 5b. Examine and compare their convergence visually.
 - c. Use the batch method (with 20 batches) to estimate the standard deviation of these two algorithms. Estimate the number of samples required to obtain a 1% accuracy (with 95% confidence).

The Gibbs Sampler:

- 8. Show that the Random Sweep Gibbs Sampler induces a reversible Markov chain.
- 9. **Bivariate Normal Sampling**. Apply the Gibbs sampler to sampling from the bivariate normal distribution, $X = (x_1, x_2)^T \sim N(\mu, \Sigma)$.
 - a. Compute the conditional distributions $f_i(x_i | x_j)$, and write down the systematic Gibbs sampling algorithm for this problem.

Simulation: Apply the Gibbs sampler with parameters $\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma = \begin{pmatrix} 0.8 & b \\ b & 1 \end{pmatrix},$

and two values of b: b = 0.2 and b = 0.85. Adjust the number of samples (and other parameters) according to the simulation results to obtain meaningful conclusions.

- b. Plot the empirical covariance between the components of X as a function of time, verify convergence to ρ and compare convergence rates.
- c. A common measure for the mixing properties of a sampled Markov chain is the autocorrelation function, namely R(k) = cov(X(t), X(t+k)) as a function of $k \ge 0$. Estimate and plot the autocorrelation function for the first component x_1 of X. Compare and discuss briefly.