
3 Variance Reduction Methods, I

We return to the problem of Monte-Carlo integration, namely, estimating the expected

value

ℓ = E(Z) , Z = H(X)

where H is a known function, and X a random vector with pdf f = fX .

The basic Monte-Carlo estimator is

ℓ̂N =
1

N

N∑
i=1

H(Xi)

where (X1, . . . , XN) is a random sample from fX , namely an iid sequence with each

Xi ∼ fX .

Clearly, ℓ̂N is an unbiased estimator:

E(ℓ̂N) =
1

N

N∑
i=1

EH(Xi) = ℓ .

The mean square error (MSE) of the estimator is given by

MSE(ℓ̂N)
△
= E(ℓ̂N − ℓ)2 = Var(ℓ̂N) = · · · = 1

N
Var(H(X)) .

(Note that the MSE and variance are the same here since the estimator is unbiased.)

The variance of is the central quantity by which we measure the quality of the estimator.

As Var(H(X)) may be large, a whole field of Monte-Carlo methods is dedicated to

reducing the variance of the sampled RV. The basic idea is to use a modified estimator

ℓ̂N =
1

N

N∑
i=1

Yi

where (Yi) is a sequence of RVs with E(Yi) = E(H(X)), and Var(Yi) ≤ Var(H(X)).

The most important method in this class is Importance Sampling, which is discussed in

the next lecture. Here we discuss several other elementary approaches.
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3.1 Monitoring the Estimation Error

Before going into variance reduction, let us discuss briefly the topic of regulating the

estimation error.

Consider again the basic MC estimator

ℓ̂ =
1

N

N∑
i=1

Zi

were (Zi) are iid and V = Var(Z) < ∞. As we have seen, Var(ℓ̂) = 1
N
Var(Z).

Empirical variance estimation: In general Var(Z) is not known, and we can estimate it

empirically using

V̂ ≡ S2 =
1

N − 1

N∑
i=1

(Zi − ℓ̂)2

We know that V̂ is an unbiased estimator of Var(Z) , and converges to it w.p. 1 as

N → ∞.

Confidence Intervals: Using the variance V = Var(Z) (or its estimate V̂ ), we can form

approximate bounds on the estimation error. Note that, by the CLT,

√
N(ℓ̂− ℓ) ⇒ N(0, V )

(convergence in distribution to a normal RV). Therefore, an approximate 1−α confidence

interval for ℓ is given by

I1−α = (ℓ̂− β

√
V√
N
, ℓ̂+ β

√
V√
N
) ,

where β is the (1− α
2
)-quantile of the normal distribution ϕ(x), namely∫ β

−β

ϕ(x)dx = 1− α, or β = Φ−1(1− α

2
)

For example, for α = 0.05 (95% confidence) we get β = 1.96.

Coefficient of Variation: It is often the case that the relative estimation error ℓ̂−ℓ
ℓ

is

important, rather than the absolute one. for that purpose the following measure is used:

κN =

√
Var(ℓ̂)

ℓ
=

1√
N

√
Var(Z)

ℓ
=

1√
N
κ1 .
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κN is appropriately called the relative error of ℓ̂, and its square κ2
N is the squared coef-

ficient of variation of ℓ̂.

As before, we can estimate κN from the obtained sampled using

κ̂ =
1√
N

√
V̂

ℓ̂
.

In terms of κ, the (1− α) confidence interval for ℓ is

I1−α = ℓ̂(1∓ βκN)

Example: Rare-event Probability Estimation [RK, example 1.14]. Let

ℓ = P(X ≥ γ)

where γ is a large number, so that ℓ << 1.

Consider the crude MC estimator,

ℓ̂ =
1

N

N∑
i=1

Zi , Zi = 1{Xi≥γ} .

The relative error here is

κN =
1√
N

√
Var(Z)

ℓ
=

1√
N

√
ℓ(1− ℓ)

ℓ
≈ 1√

Nℓ
.

Suppose ℓ = 10−6, then for relative error κ = 0.01 we need

N ≈ 1

κ2ℓ
= 1010 .

This demonstrates that crude MC is practically useless for estimating rare event prob-

abilities.

3.2 Control Variates

We wish to estimate ℓ = E(Z), Z = H(X).

Let W be an RV correlated with Z, and with known mean mW = E(W ). Then

Zα = Z − α(W −mW )
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has the same mean as Z (for any α), and variance

Var(Zα) = Var(Z)− 2αCov(Z,W ) + α2Var(W ) .

This variance is minimized by

α∗ =
Cov(Z,W )

Var(W )
,

which gives

Var(Zα∗) = (1− ρ2ZW )Var(Z) ,

where ρ = Cov(Z,W )
σZσW

is the correlation coefficient.

Usually, α∗ is estimated during the simulation run by estimating the required covariances

from empirical data.

Example 1. For illustration, consider the following estimator of π/4:

Z = 1{U2
1+U2

2≤1}

The indicator W1 = 1{U1+U2≤1} of the lower triangle is positively correlated with Z, and

its mean is 0.5. We have (e.g., by simulation) that 1− ρ2 ≈ 0.727.

Similarly, the indicator W2 = 1{U1+U2≥
√
2} is negatively correlated with Z, has mean

(2−
√
2)2/2, and 1− ρ2 ≈ 0.25.

Note that no new RVs need to be sampled at each step, only U1 and U2.

Example 2: Stochastic shortest path. Suppose we wish to estimate the expected

length of the shortest path in a network with stochastic link weights X = (Xe, e ∈ E).

That is,

H(X) = min
π∈Π

Lπ(X) , Lπ(X) =
∑
e∈π

Xe .

Here π is the set of paths available in the network.

The length of any path is positively correlated with H(X) and can be used as a control

variate.

3.3 Common Random Numbers

Suppose we wish to estimate the difference

ℓ = E(X − Y ) ,
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using

ℓ̂ =
1

N

N∑
1

(Xi − Yi) .

One way would be to sample independently from fX and fY , using Xi = F−1
X (Ui),

Yi = F−1
Y (Ũi).

A better option is to use the same random numbers for Xi and Yi:

Xi = F−1
X (Ui) , Yi = F−1

Y (Ui) .

Since FX and FY are increasing functions, we obtain positive correlation between Xi and

Yi. Therefore,

Var(X − Y ) = Var(X) + Var(Y )− 2Cov(X, Y ) < Var(X) + Var(Y ) .

(In fact, it is know that this construction maximizes the correlation between RVs X and

Y with given marginals.)

Note:

• When estimating the sum E(X + Y ) , we can similarly use Xi = F−1
X (Ui), Yi =

F−1
Y (1− Ui).

• The same trick can be used to estimate ℓ = E(X), by using the partition

ℓ =
1

2
E(Xa +Xb) , Xa, Xb ∼ fX .

Example: Symmetric Distributions. Suppose that the distribution fX of X is

symmetric about its mean µ. Then

1

2
(F−1(U) + F−1(1− U)) = µ ,

That is, we get µ precisely with one sample.

This not that very surprising, since we could deterministically compute µ = F−1(0.5).

However, if f is nearly symmetric this can be useful.

Further comments:

• The efficiency improvements accomplished by these methods are seldom dramatic.

• Common RVs are often used in comparative simulations, which compare system

performance under different parameters or controls.
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3.4 Stratified Sampling

Here the sample space Ω is decomposed into disjoint region, Ω1, . . . ,ΩK (called strata)

of known probabilities, and the mean is estimated on each separately. The choice of the

strata should be so that Z = H(X) is as homogeneous as possible (low variance) on

each stratum.

Let I(ω) = k if ω ∈ Ωk. By conditioning we get

E(Z) =
∑
k

p(I = k)E(Z|I = k)
△
=

∑
k

pkZ
(k)

Here (pk) are assumed known, and each Z(k) can be estimated by

Ẑ(k) =
1

Nk

Nk∑
i=1

Z
(k)
i

where Z
(k)
i is sampled from p(Z|I = k). We then use

ℓ̂ =
∑
k

pkẐ
(k) .

Example 1: Suppose Z = H(X), X = g(U, Y ) where U ∈ [0, 1] is a uniform RV

independent of Y . We can divide the interval [0, 1] into disjoint interval of lengths

(probabilities) (pk). To sample Z(k) we simply sample U (k) from the k-th interval. Note

that the choice of interval to sample from (i.e,, of Nk) is deterministic and not stochastic.

Example 2: Suppose X is generated by a mixture distribution,

fX(x) =
∑

wkfk(x) , wk > 0,
∑

wk = 1

(which corresponds to choosing Xk ∼ fk w.p. wk). Here we can naturally identify

pk = wk, Z
(k) = H(Xk) with Xk ∼ fk.

The resulting variance of the stratified estimator is

σ2
str

△
= Var(ℓ̂) =

∑
k

p2k
σ2
k

Nk

, σ2
k

△
= Var(Z|I = k)

It remains to choose the sample sizes (Nk). The simple choice of Nk = Npk already

guarantees

σ2
str =

1

N

∑
k

pkσ
2
k ≤ 1

N
Var(Z)

An optimal choice of (Nk) depends of course also on the σk’s (how?), which can be

estimated online.
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3.5 Conditional Monte Carlo

Here we also use a conditional decomposition of the problem, which can be viewed as

complementary to the strata decomposition. Suppose there exists an RV Y (on the same

sample space as X) so that

h(y)
△
= E(H(X)|Y = y)

can be computed analytically. A typical case is when H(X) = H(X1, Y ).

Then

ℓ = E(H(X)) = E(E(H(X)|Y )) = E(h(Y )) .

Hence h(Y ) is an unbiased estimator of ℓ, and

Var(h(Y )) ≤ Var(H(X))

(show that).

The estimation procedure is as follows:

1. Generate samples Y1, . . . , YN from fY

2. Compute hi = E(H(X)|Y = Yi)

3. Compute ℓ̂N = 1
N

∑N
i=1 hi

We note that for this procedure to be effective, Y should be easy to generate, and

E(H(X)|Y = y) easy to compute.

The general approach of mixing analytical and numeric (simulation) computation in

statistics is known as Rao-Blackwellization.

Example 1: Random Gaussian Sums. Let

ℓ = P(
Y∑

k=1

Vk ≤ x) ,

where (Vk) is an iid sequence of N(0, 1) RV’s, and Y ≥ 0 is an independent, integer-

valued RV.
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Clearly,

P(
Y∑

k=1

Vk ≤ x|Y = K) = P(WK ≤ x) = Φ(
x√
K

)

where WK ∼ N(0, K), and Φ(x) = 0.5 + 0.5erf(x/
√
2) is the cdf of the standard normal

RV. We obtain the estimator

ℓ̂N =
1

N

N∑
i=1

Φ(
x√
Yi

)

where (Y1, . . . , YN) are sampled from fY .

Example 2: Permutation Monte-Carlo for Reliability Models. [RK, 5.4.1]

We are given a system of n components, where component (or link) j can fail with

probability qj (independently of the others), or remain functional with probability pj =

1− qj. Let X = (Y1, . . . , Yn) ∈ {0, 1}n be the system state vector, with P(Yj = 1) = pj.

The system failure is captured by a binary function H(X), where H(X) = 0 denotes

failure. We are interested in the system failure probability P(H(X) = 0). As this

probability is typically small, crude MC is not effective.

Reliability models such as this one are an important application area for MC methods.

Here we describe a particular Conditional MC method, the Permutation method, which

applies to our model.

Consider the system as a dynamic network, which starts at t = 0 with all links failed, and

each link is repaired at time tj, distributed as an exponential RV with rate µj = ln(q−1
j ).

Then, at t = 1 the probability of Yj = 1 is pj. Thus, the distribution of the system state

X coincides with that of state X(1) of the dynamic network at time t = 1.

Let Π denote the order in which links are repaired, corresponding to ordering (tj) in

increasing order. Then Π is a random permutation. Conditioned on Π = π, let b(π)

denote the number of repairs required (in the order defined by π) to bring the system

up. Then

g(π)
△
= P(H(X(1)) = 0|Π = π) = P(tb(π) > 1|π) ,

and

P(H(X) = 0) = P(H(X(1)) = 0) = E(g(Π)) .

We observe that sampling a permutation π can be an be done by ordering {tj ∼ Exp(µj)}
in increasing order, as above, or by sampling links without replacement with probabilities

proportional to µi. Sampling can stop once b(π) is reached.
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It remains to compute g(π). It can be shown that, conditioned on Π = π, tb(π) is

distributed as the sum of independent RVs

τ1 + · · ·+ τb(π)

where τi ∼ Exp(λj), λj =
∑n

i=j µπ(i). Therefore g(π) can be computed using convolutx

ion, or other methods (Laplace transform, Markov chain evolution).

We obtain the following Conditional MC algorithm. For i = 1, . . . , N ,

1. Sample a permutation πi .

2. Determine b(πi).

3. Compute g(πi).

The estimator is ℓ̂ = 1
N

∑N
i=1 g(πi).
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