
2 Random Variable Generation

Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random

variables with given marginal distribution. We describe here some of the basic methods

that are available for sampling such a sequence.

Notation reminder: For a random variable (RV) X, the cdf (cumulative distribution

function) is given by:

F (x) = P(X ≤ x), x ∈ R

F (x) is a non-decreasing function, continuous from the right, with limx→−∞ = 0 and

limx→∞ = 1. The pdf (probability density function) f is defined by f(x) = F ′(x), when

the derivative exists. For discrete RVs we use the probability mass function p(x) =

P(X = x). To simplify notation we sometime use f(x) for p(x) as well.

Some common probability distributions are listed at the end of this chapter.

2.1 Random Number Generators

Uniformly distributed samples form the basis for most other sampling distributions. In

general, the sampled sequences are pseudo-random, namely are generated by a deter-

ministic algorithm but ”appear” random. Most software packages have effective random

number generators, so the programmer does not have to worry about that. Here we only

describe briefly some common schemes.

Linear congruential generators (LCG):

Xt = (aXt−1 + c) mod m; Ut =
Xt

m

Here a, c, m are positive integers, and X0 is the seed.

Note that (Ui) is periodic, with period m at most.

A baseline choice of parameters is a = 75, c = 0, m = 231 − 1. It gives good statistical

properties, but its period is too short for most modern purposes.
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Multiple Recursive Generators (MRG):

Xt = (a1Xt−1 + · · ·+ akXt−k) mod m, t ≥ k

Ut =
Xt

m

Here the state is St = (Xt, . . . , Xt−k+1), and the maximum period is mk.

Combined Generators: Superior performance is obtained by combining several different

MRGs. For example, the MRG32k3a algorithm which is implemented in several software

packages including Matlab employs two MRGs of order 3:

Xt = (1403580Xt−2 − 810728Xt−3) mod m1, m1 = 232 − 209

Yt = (527612Yt−1 − 1370589Yt−3) mod m2, m2 = 232 − 22853

and combines their output using

Ut =
Xt − Yt +m1

m1 + 1
1{Xt≤Yt} +

Xt − Yt

m1 + 1
1{Xt>Yt}

The period length here is approximately 3× 1057, and the resulting sequences passes a

comprehensive set of statistical tests.

2.2 Inverse-Transform Method

Let

F−1(y) = inf{x : F (x) ≥ y}, y ∈ [0, 1]

denote the inverse of the cdf F . It is easily verified that, if U ∼ U [0, 1], then

X = F−1(U)

is an RV with cdf F . Indeed, by definition of F−1,

F−1(y) ≤ x ⇔ F (x) ≥ y

so that

P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x) .

Therefore, to generate an i.i.d. sequence (Xi) with marginal cdf F , we first generate a

sequence (Ui) of (pseudo) random numbers, and apply the inverse transform to each Ui.
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Example 1: Exponential Distribution

Here F (x) = 1 − e−λx, x ≥ 0, and F−1(u) = −λ−1 ln(1 − u), u ∈ [0, 1). Therefore

X = −λ−1 ln(1 − U) will have an exponential distribution. (Note that 1 − U can be

replaced by U since they have the same distribution.)

Example 2: Discrete Distributions

Let X be a discrete RV with P(X = xi) = pi, i = 1, . . . , n, and xi < xi+1. The transform

method then yields the following scheme:

– generate U ∼ U(0, 1)

– Find the smallest integer k such that U ≤ F (xk)

– return xk

Example 3: Order statistics

Let X1, . . . , Xn be iid random variables with cdf F . Let

X(1) = min(X1, . . . , Xn), X(n) = max(X1, . . . , Xn)

denote the minimal and maximal elements. We wish to generate RV s distributed as

X(1) and X(n).

One option is to generate X1, . . . , Xn, and take the extremal elements. When n is large,

a more efficient scheme is the following. Observe that the cdf of X(n) is F(n)(x) = F (x)n.

Therefore, for a uniformly distributed RV U ∼ U(0, 1),

X(n) = F−1
(n)(U) = F−1(U1/n)

will have the required distribution. Similarly, the cdf of X(1) is F(1)(x) = 1−(1−(F (x))n,

so that

X(1) = F−1(1− (1− U)1/n)

will have the required distribution. Again, we may replace 1−U by U in the last formula.

2.3 Acceptance-Rejection Methods

Suppose that we wish to sample from a pdf f(x), the target pdf. Let g(x) be another

pdf, the proposal pdf, such that f(x) ≤ Cg(x) for some C > 1.

Consider the following Acceptance-Rejection Algorithm:
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1. Sample Z from g(x).

2. Sample U ∼ U(0, 1).

3. If Cg(Z)U ≤ f(Z), return X = Z. Otherwise, return to step 1.

It is easily verified that the RV X generated according to this algorithm has the required

pdf f(x).

Assuming that sampling from g(x) is easy, we obtain a procedure for sampling from

f(x). The efficiency of the algorithm is defined as

P{(Z,U) is accepted} =
1

C

Since the trials are independent, the number of trials till acceptance has a geometric

distribution with parameter C−1, and mean C.

Example 4: Gaussian distribution

To generate a N(0, 1) RV, we may first generate positive RV X with distribution

f(x) =
√

2/πe−x2/2, x ≥ 0

and then assign a random sign to X. To sample from the target pdf f(x), we can use

as proposal pdf the exponential distribution : g(x) = e−x, x ≥ 0. It may be seen that

f(x) ≤ Cg(x) for C =
√

2e/π.

We therefore sample independent RVs Z ∼ Exp(1), U ∼ U(0, 1), and accept Z if

U ≤ f(Z)

Cg(Z)
= exp(−(Z − 1)2/2)

2.4 Some Specific Formulae

There are numerous specific formulae and methods that apply to specific distributions.

Below are some examples.

Gaussian: Box-Müller approach. If U1, U2 are independent U(0, 1) RVs, then

X =
√
−2 lnU1 cos(2πU2)

Y =
√
−2 lnU1 sin(2πU2)
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are two independent N(0, 1) RVs.

Binomial: A binomial RV X ∼ Bin(p, n) can be written at the sum X1 + · · · +Xn of

independent Bern(p) RVs. We can therefore write

X =
n∑

i=1

1{Ui≤p}

When n is large, 1
n
X − p converges to a Normal N(0, p(1− p) RV (by the CLT). Hence

X is close to a N(np, np(1 − p)) RV. We can therefore approximate a binomial RV

by generating such a Normal RV, and rounding the result to the nearest non-negative

integer. This normal approximation is reasonably accurate starting from nmax{p, 1 −
p} > 10.

Geometric: The geometric distribution f(x) = p(1 − p)x−1, x = 1, 2 . . . may be in-

terpreted as the number of Bernoulli(p) trials till the first success. It may be seen that

if Y ∼ Exp(λ) with λ = − ln(1 − p), then X = 1 + ⌊Y ⌋ has the required geometric

distribution.

2.5 Random Vectors

Suppose we wish to generate a random vector X = (X1, . . . , Xn) from a given n-

dimensional distribution with pdf F (x) or cdf f(x).

In the sequential approach, we observe that the joint distribution can be represented as

f(x1, . . . , xn) = f1(x1)f2(x2|x1) . . . fn(xn|x1, . . . , xn−1)

We can therefore sample sequentially X1 ∼ f1, X2 ∼ f2(·|X1), etc.

Feasibility of this approach depends on the ability to calculate the conditional distribu-

tions. For Markov models, for example, this is naturally available.

The Acceptance-Rejection approach is directly applicable in the vector case as well. An

important special case is the following:

Example: Uniform Samples. Suppose we wish to sample uniformly from a set S in

Rn, of positive volume. If S is contained in a box B, we can sample X from B and accept

it if X ∈ S. The efficiency of this scheme evidently depends on the ratio vol(S)/vol(B).

For Gaussian random vectors, we can sample from N(µ,Σ) by noting that the required
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distribution can be obtained by X = BZ + µ, where B satisfies the Cholesky decompo-

sition Σ = BBT , and Z is a vector of independent N(0, 1) RVs.

Some specific methods for generating uniform samples from useful sets are listed below.

1. Unit Sphere: Let X1, . . . Xn be iid Gaussian RVs from N(0, 1). Then the vector

Y =
1

||X||
(X1, . . . , Xn)

where ||X|| = (
∑

i X
2
i )

1/2, is uniformly distributed over the unit sphere {y ∈ RN :

||y|| = 1}.

2. Unit Ball: To obtain a uniform sample from the unit ball {||z|| ≤ 1}, we can

multiply the above uniform sample Y from the unit sphere by U1/n, where U ∼
U(0, 1).

3. Unit Simplex: The unit corner simplex

∆n
c = {y ∈ Rn : yi ≥ 0,

∑
i

yi ≤ 1}

is the convex hull of the points 0, e1, . . . , en. It can of course be sampled uniformly

by the rejection method relative to the unit box, but the efficiency decreases quickly

in the dimension n. A more efficient method is therefore required for large n.

Let S be another n-dimensional simplex,

S = {x ∈ Rn : xi ≥ 0, x1 ≤ x2, . . . , xn ≤ 1}

which is the convex hull of the points 0, en, en+en−1, . . . ,1, where 1 = e1+ · · ·+en.

The simplex ∆n
c can be obtained from the simplex S by the linear transformation

y1 = x1, y2 = x2 − x1, . . . , yn = xn − xn−1 .

Drawing uniform samples from S is easily done by sampling n independent U(0, 1)

RVs, U1, . . . , Un, and reordering them in increasing size, U(1), . . . , U(n).

To obtain a uniform sample from ∆n
c we now apply the above transformation to

x = (U(1), . . . , U(n)) (note that a linear transformation preserves uniformity).

To obtain uniform samples from the unit n-simplex

∆n = {y ∈ Rn+1 : yi ≥ 0,
∑
i

yi = 1},

we can sample uniformly Y ∈ Rn from the corner simplex ∆n
c , and add the n+ 1

coordinate yn+1 = 1−
∑n

i=1 Yi.
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4. General n-Simplex: Consider a n-dimensional simplex defined by arbitrary n+1

vertices, namely S is the convex hull of points z0, z1, . . . , zn. Sampling uniformly

from S can be done by sampling Y uniformly from ∆n
c , and applying the linear

transformation

Z = MY + z0,

where M is the matrix with columns z1 − z0, . . . , zn − z0.

5. Random Permutations: Recall that {1, 2, . . . , n} has n! different permutations.

To sample a random permutation uniformly we may proceed in two ways:

a. Sample U(0, 1) independent RVs, U1, . . . , UN , and sort them in increasing

order. The resulting index sequence forms a random permutation.

b. Sample n times sequentially, uniformly and without replacement from

{1, 2, . . . , n}.
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2.6 Appendix: Some Common Probability Distributions

Continuous:

• Uniform: X ∼ U [a, b], b > a. f(x) = 1
b−a

, a ≤ x ≤ b

• Normal: X ∼ N(m,σ2), σ > 0. f(x) = 1√
2πσ2

exp(− (x−m)2

2σ2 ), x ∈ R

• Exponential: X ∼ Exp(λ), λ > 0. f(x) = λe−λx, x ≥ 0

• Gamma: X ∼ Gamma(a, λ), a, λ > 0. f(x) = λa

Γ(a)
xa−1e−λx, x ≥ 0

Γ(a)
△
=

∫∞
0

e−xxa−1dx, E(X) = a/λ, Var(X) = a/λ2

• Beta: X ∼ Beta(a, b), a, b > 0. f(x) = Γ(a+b)
Γ(a)Γ(b)

xa−1(1− x)b−1, x ∈ [0, 1]

• Weibull: X ∼ Weib(a, λ), a, λ > 0. f(x) = aλ(λx)a−1 exp(−(λx)a), x ≥ 0

• Pareto: X ∼ Pareto(a, λ), a, λ > 0. f(x) = aλ(1 + λx)−(a+1), x ≥ 0

Discrete:

• Bernoulli: X ∼ Ber(p), 0 ≤ p ≤ 1. p(x) = px(1− p)1−x, x ∈ {0, 1}

• Binomial: X ∼ Bin(n, p), 0 ≤ p ≤ 1. p(x) =
(
n
x

)
px(1− p)n−x, x ∈ {0, 1, . . . , n}

E(X) = np, Var(X) = np(1− p)

• Geometric: X ∼ G(p),0 ≤ p ≤ 1. p(x) = p(1− p)x−1, x = 1, 2, . . .

E(X) = p−1, Var(X) = 1−p
p2

• Poisson: X ∼ Pois(λ), λ > 0. p(x) = e−λ λx

x!
, x = 0, 1, . . .

E(X) = λ, Var(X) = λ
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