2 Random Variable Generation

Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods that are available for sampling such a sequence.

Notation reminder: For a random variable (RV) X, the cdf (cumulative distribution function) is given by:

$$
F(x)=\mathbb{P}(X \leq x), \quad x \in \mathbb{R}
$$

$F(x)$ is a non-decreasing function, continuous from the right, with $\lim _{x \rightarrow-\infty}=0$ and $\lim _{x \rightarrow \infty}=1$. The pdf (probability density function) f is defined by $f(x)=F^{\prime}(x)$, when the derivative exists. For discrete RVs we use the probability mass function $p(x)=$ $\mathbb{P}(X=x)$. To simplify notation we sometime use $f(x)$ for $p(x)$ as well.

Some common probability distributions are listed at the end of this chapter.

2.1 Random Number Generators

Uniformly distributed samples form the basis for most other sampling distributions. In general, the sampled sequences are pseudo-random, namely are generated by a deterministic algorithm but "appear" random. Most software packages have effective random number generators, so the programmer does not have to worry about that. Here we only describe briefly some common schemes.

Linear congruential generators ($L C G$):

$$
X_{t}=\left(a X_{t-1}+c\right) \bmod m ; \quad U_{t}=\frac{X_{t}}{m}
$$

Here a, c, m are positive integers, and X_{0} is the seed.
Note that $\left(U_{i}\right)$ is periodic, with period m at most.
A baseline choice of parameters is $a=7^{5}, c=0, m=2^{31}-1$. It gives good statistical properties, but its period is too short for most modern purposes.

[^0]Multiple Recursive Generators (MRG):

$$
\begin{aligned}
X_{t} & =\left(a_{1} X_{t-1}+\cdots+a_{k} X_{t-k}\right) \bmod m, \quad t \geq k \\
U_{t} & =\frac{X_{t}}{m}
\end{aligned}
$$

Here the state is $S_{t}=\left(X_{t}, \ldots, X_{t-k+1}\right)$, and the maximum period is m^{k}.
Combined Generators: Superior performance is obtained by combining several different MRGs. For example, the MRG32k3a algorithm which is implemented in several software packages including Matlab employs two MRGs of order 3:

$$
\begin{aligned}
X_{t} & =\left(1403580 X_{t-2}-810728 X_{t-3}\right) \bmod m_{1}, \quad m_{1}=2^{32}-209 \\
Y_{t} & =\left(527612 Y_{t-1}-1370589 Y_{t-3}\right) \bmod m_{2}, \quad m_{2}=2^{32}-22853
\end{aligned}
$$

and combines their output using

$$
U_{t}=\frac{X_{t}-Y_{t}+m_{1}}{m_{1}+1} 1_{\left\{X_{t} \leq Y_{t}\right\}}+\frac{X_{t}-Y_{t}}{m_{1}+1} 1_{\left\{X_{t}>Y_{t}\right\}}
$$

The period length here is approximately 3×10^{57}, and the resulting sequences passes a comprehensive set of statistical tests.

2.2 Inverse-Transform Method

Let

$$
F^{-1}(y)=\inf \{x: F(x) \geq y\}, \quad y \in[0,1]
$$

denote the inverse of the cdf F. It is easily verified that, if $U \sim U[0,1]$, then

$$
X=F^{-1}(U)
$$

is an RV with cdf F. Indeed, by definition of F^{-1},

$$
F^{-1}(y) \leq x \quad \Leftrightarrow \quad F(x) \geq y
$$

so that

$$
\mathbb{P}(X \leq x)=\mathbb{P}\left(F^{-1}(U) \leq x\right)=\mathbb{P}(U \leq F(x))=F(x) .
$$

Therefore, to generate an i.i.d. sequence $\left(X_{i}\right)$ with marginal $\mathrm{cdf} F$, we first generate a sequence $\left(U_{i}\right)$ of (pseudo) random numbers, and apply the inverse transform to each U_{i}.

Example 1: Exponential Distribution

Here $F(x)=1-e^{-\lambda x}, x \geq 0$, and $F^{-1}(u)=-\lambda^{-1} \ln (1-u), u \in[0,1)$. Therefore $X=-\lambda^{-1} \ln (1-U)$ will have an exponential distribution. (Note that $1-U$ can be replaced by U since they have the same distribution.)

Example 2: Discrete Distributions

Let X be a discrete RV with $\mathbb{P}\left(X=x_{i}\right)=p_{i}, i=1, \ldots, n$, and $x_{i}<x_{i+1}$. The transform method then yields the following scheme:

- generate $U \sim U(0,1)$
- Find the smallest integer k such that $U \leq F\left(x_{k}\right)$
- return x_{k}

Example 3: Order statistics

Let X_{1}, \ldots, X_{n} be iid random variables with cdf F. Let

$$
X_{(1)}=\min \left(X_{1}, \ldots, X_{n}\right), \quad X_{(n)}=\max \left(X_{1}, \ldots, X_{n}\right)
$$

denote the minimal and maximal elements. We wish to generate $R V s$ distributed as $X_{(1)}$ and $X_{(n)}$.

One option is to generate X_{1}, \ldots, X_{n}, and take the extremal elements. When n is large, a more efficient scheme is the following. Observe that the cdf of $X_{(n)}$ is $F_{(n)}(x)=F(x)^{n}$. Therefore, for a uniformly distributed RV $U \sim U(0,1)$,

$$
X_{(n)}=F_{(n)}^{-1}(U)=F^{-1}\left(U^{1 / n}\right)
$$

will have the required distribution. Similarly, the cdf of $X_{(1)}$ is $F_{(1)}(x)=1-\left(1-(F(x))^{n}\right.$, so that

$$
X_{(1)}=F^{-1}\left(1-(1-U)^{1 / n}\right)
$$

will have the required distribution. Again, we may replace $1-U$ by U in the last formula.

2.3 Acceptance-Rejection Methods

Suppose that we wish to sample from a pdf $f(x)$, the target pdf. Let $g(x)$ be another pdf, the proposal pdf, such that $f(x) \leq C g(x)$ for some $C>1$.

Consider the following Acceptance-Rejection Algorithm:

1. Sample Z from $g(x)$.
2. Sample $U \sim U(0,1)$.
3. If $C g(Z) U \leq f(Z)$, return $X=Z$. Otherwise, return to step 1 .

It is easily verified that the RV X generated according to this algorithm has the required pdf $f(x)$.

Assuming that sampling from $g(x)$ is easy, we obtain a procedure for sampling from $f(x)$. The efficiency of the algorithm is defined as

$$
\mathbb{P}\{(Z, U) \text { is accepted }\}=\frac{1}{C}
$$

Since the trials are independent, the number of trials till acceptance has a geometric distribution with parameter C^{-1}, and mean C.

Example 4: Gaussian distribution

To generate a $N(0,1) \mathrm{RV}$, we may first generate positive $\mathrm{RV} X$ with distribution

$$
f(x)=\sqrt{2 / \pi} e^{-x^{2} / 2}, \quad x \geq 0
$$

and then assign a random sign to X. To sample from the target pdf $f(x)$, we can use as proposal pdf the exponential distribution : $g(x)=e^{-x}, x \geq 0$. It may be seen that $f(x) \leq C g(x)$ for $C=\sqrt{2 e / \pi}$.

We therefore sample independent $\operatorname{RVs} Z \sim \operatorname{Exp}(1), U \sim U(0,1)$, and accept Z if

$$
U \leq \frac{f(Z)}{C g(Z)}=\exp \left(-(Z-1)^{2} / 2\right)
$$

2.4 Some Specific Formulae

There are numerous specific formulae and methods that apply to specific distributions. Below are some examples.

Gaussian: Box-Müller approach. If U_{1}, U_{2} are independent $U(0,1) \mathrm{RVs}$, then

$$
\begin{aligned}
& X=\sqrt{-2 \ln U_{1}} \cos \left(2 \pi U_{2}\right) \\
& Y=\sqrt{-2 \ln U_{1}} \sin \left(2 \pi U_{2}\right)
\end{aligned}
$$

are two independent $N(0,1)$ RVs.
Binomial: A binomial RV $X \sim \operatorname{Bin}(p, n)$ can be written at the sum $X_{1}+\cdots+X_{n}$ of independent $\operatorname{Bern}(p)$ RVs. We can therefore write

$$
X=\sum_{i=1}^{n} 1_{\left\{U_{i} \leq p\right\}}
$$

When n is large, $\frac{1}{n} X-p$ converges to a Normal $N(0, p(1-p)$ RV (by the CLT). Hence X is close to a $N(n p, n p(1-p)) \mathrm{RV}$. We can therefore approximate a binomial RV by generating such a Normal RV, and rounding the result to the nearest non-negative integer. This normal approximation is reasonably accurate starting from $n \max \{p, 1-$ $p\}>10$.

Geometric: The geometric distribution $f(x)=p(1-p)^{x-1}, x=1,2 \ldots$ may be interpreted as the number of $\operatorname{Bernoulli}(p)$ trials till the first success. It may be seen that if $Y \sim \operatorname{Exp}(\lambda)$ with $\lambda=-\ln (1-p)$, then $X=1+\lfloor Y\rfloor$ has the required geometric distribution.

2.5 Random Vectors

Suppose we wish to generate a random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ from a given n dimensional distribution with pdf $F(x)$ or $\operatorname{cdf} f(x)$.

In the sequential approach, we observe that the joint distribution can be represented as

$$
f\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2} \mid x_{1}\right) \ldots f_{n}\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)
$$

We can therefore sample sequentially $X_{1} \sim f_{1}, X_{2} \sim f_{2}\left(\cdot \mid X_{1}\right)$, etc.
Feasibility of this approach depends on the ability to calculate the conditional distributions. For Markov models, for example, this is naturally available.

The Acceptance-Rejection approach is directly applicable in the vector case as well. An important special case is the following:

Example: Uniform Samples. Suppose we wish to sample uniformly from a set S in \mathbb{R}^{n}, of positive volume. If S is contained in a box B, we can sample X from B and accept it if $X \in S$. The efficiency of this scheme evidently depends on the ratio $\operatorname{vol}(S) / \operatorname{vol}(B)$. For Gaussian random vectors, we can sample from $N(\mu, \Sigma)$ by noting that the required
distribution can be obtained by $X=B Z+\mu$, where B satisfies the Cholesky decomposition $\Sigma=B B^{T}$, and Z is a vector of independent $N(0,1)$ RVs.

Some specific methods for generating uniform samples from useful sets are listed below.

1. Unit Sphere: Let $X_{1}, \ldots X_{n}$ be iid Gaussian RVs from $N(0,1)$. Then the vector

$$
Y=\frac{1}{\|X\|}\left(X_{1}, \ldots, X_{n}\right)
$$

where $\|X\|=\left(\sum_{i} X_{i}^{2}\right)^{1 / 2}$, is uniformly distributed over the unit sphere $\left\{y \in \mathbb{R}^{N}\right.$: $\|y\|=1\}$.
2. Unit Ball: To obtain a uniform sample from the unit ball $\{\|z\| \leq 1\}$, we can multiply the above uniform sample Y from the unit sphere by $U^{1 / n}$, where $U \sim$ $U(0,1)$.
3. Unit Simplex: The unit corner simplex

$$
\Delta_{c}^{n}=\left\{y \in \mathbb{R}^{n}: y_{i} \geq 0, \sum_{i} y_{i} \leq 1\right\}
$$

is the convex hull of the points $0, e_{1}, \ldots, e_{n}$. It can of course be sampled uniformly by the rejection method relative to the unit box, but the efficiency decreases quickly in the dimension n. A more efficient method is therefore required for large n.
Let S be another n-dimensional simplex,

$$
S=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, x_{1} \leq x_{2}, \ldots, x_{n} \leq 1\right\}
$$

which is the convex hull of the points $0, e_{n}, e_{n}+e_{n-1}, \ldots, \mathbf{1}$, where $\mathbf{1}=e_{1}+\cdots+e_{n}$. The simplex Δ_{c}^{n} can be obtained from the simplex S by the linear transformation

$$
y_{1}=x_{1}, y_{2}=x_{2}-x_{1}, \ldots, y_{n}=x_{n}-x_{n-1} .
$$

Drawing uniform samples from S is easily done by sampling n independent $U(0,1)$ RVs, U_{1}, \ldots, U_{n}, and reordering them in increasing size, $U_{(1)}, \ldots, U_{(n)}$.
To obtain a uniform sample from Δ_{c}^{n} we now apply the above transformation to $x=\left(U_{(1)}, \ldots, U_{(n)}\right)$ (note that a linear transformation preserves uniformity).

To obtain uniform samples from the unit n-simplex

$$
\Delta^{n}=\left\{y \in \mathbb{R}^{n+1}: y_{i} \geq 0, \sum_{i} y_{i}=1\right\}
$$

we can sample uniformly $Y \in R^{n}$ from the corner simplex Δ_{c}^{n}, and add the $n+1$ coordinate $y_{n+1}=1-\sum_{i=1}^{n} Y_{i}$.
4. General n-Simplex: Consider a n-dimensional simplex defined by arbitrary $n+1$ vertices, namely S is the convex hull of points $z_{0}, z_{1}, \ldots, z_{n}$. Sampling uniformly from S can be done by sampling Y uniformly from Δ_{c}^{n}, and applying the linear transformation

$$
Z=M Y+z_{0}
$$

where M is the matrix with columns $z_{1}-z_{0}, \ldots, z_{n}-z_{0}$.
5. Random Permutations: Recall that $\{1,2, \ldots, n\}$ has n ! different permutations. To sample a random permutation uniformly we may proceed in two ways:
a. Sample $U(0,1)$ independent RVs, U_{1}, \ldots, U_{N}, and sort them in increasing order. The resulting index sequence forms a random permutation.
b. Sample n times sequentially, uniformly and without replacement from $\{1,2, \ldots, n\}$.

2.6 Appendix: Some Common Probability Distributions

Continuous:

- Uniform: $X \sim U[a, b], b>a . f(x)=\frac{1}{b-a}, a \leq x \leq b$
- Normal: $X \sim N\left(m, \sigma^{2}\right), \sigma>0 . f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-m)^{2}}{2 \sigma^{2}}\right), x \in \mathbb{R}$
- Exponential: $X \sim \operatorname{Exp}(\lambda), \lambda>0 . f(x)=\lambda e^{-\lambda x}, x \geq 0$
- Gamma: $X \sim \operatorname{Gamma}(a, \lambda), a, \lambda>0 . f(x)=\frac{\lambda^{a}}{\Gamma(a)} x^{a-1} e^{-\lambda x}, \quad x \geq 0$ $\Gamma(a) \triangleq \int_{0}^{\infty} e^{-x} x^{a-1} d x, E(X)=a / \lambda, \operatorname{Var}(X)=a / \lambda^{2}$
- Beta: $X \sim \operatorname{Beta}(a, b), a, b>0 . f(x)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1}, x \in[0,1]$
- Weibull: $X \sim \operatorname{Weib}(a, \lambda), a, \lambda>0 . f(x)=a \lambda(\lambda x)^{a-1} \exp \left(-(\lambda x)^{a}\right), \quad x \geq 0$
- Pareto: $X \sim \operatorname{Pareto}(a, \lambda), a, \lambda>0 . f(x)=a \lambda(1+\lambda x)^{-(a+1)}, x \geq 0$

Discrete:

- Bernoulli: $X \sim \operatorname{Ber}(p), 0 \leq p \leq 1$. $p(x)=p^{x}(1-p)^{1-x}, x \in\{0,1\}$
- Binomial: $X \sim \operatorname{Bin}(n, p), 0 \leq p \leq 1$. $p(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, x \in\{0,1, \ldots, n\}$ $E(X)=n p, \operatorname{Var}(X)=n p(1-p)$
- Geometric: $X \sim G(p), 0 \leq p \leq 1$. $p(x)=p(1-p)^{x-1}, x=1,2, \ldots$ $E(X)=p^{-1}, \operatorname{Var}(X)=\frac{1-p}{p^{2}}$
- Poisson: $X \sim \operatorname{Pois}(\lambda), \lambda>0 . p(x)=e^{-\lambda \frac{\lambda^{x}}{x!}}, x=0,1, \ldots$ $E(X)=\lambda, \operatorname{Var}(X)=\lambda$

[^0]: Monte Carlo Methods - Lecture Notes, N. Shimkin, Spring 2015

