

The Particle Filter: Measurement Update • Recall that $p(\mathbf{x}_t | \mathbf{y}_{1:t}) = \frac{1}{c} p(\mathbf{y}_t | \mathbf{x}_t) p(\mathbf{x}_t | \mathbf{y}_{1:t-1}),$ and $\{\hat{\mathbf{x}}_{t}^{(i)}, \hat{w}_{t}^{(i)}\}$ approximate $p(x_t | y_{1:t-1}).$ • To obtain an approximation $\{\overline{\mathbf{x}}_{t}^{(i)}, \overline{w}_{t}^{(i)}\}_{i=1}^{N}$ to $p(\mathbf{x}_t | \mathbf{y}_{1:t})$, we only need to modify the weights accordingly: $\overline{w}_{t}^{(i)} = \hat{w}_{t}^{(i)} p(\mathbf{y}_t | \hat{\mathbf{x}}_{t}^{(i)}),$ with $\overline{\mathbf{x}}_{t}^{(i)} = \hat{\mathbf{x}}_{t}^{(i)}.$

- Additional work is required on the computational issue in particular, optimizing the choice of N, and related error bounds.
- Another promising direction is the merging of sampling methods with more disciplined approaches (such as Gaussian filters, and the Rao-Blackwellization scheme ...).

27

