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The Estimation Problem:

Consider a discrete-time stochastic system with state

xt∈X (usually Rn), and observation yt∈Y.  The system is 

specified by the following prior data:

p(xo): initial state distribution

p(xt+1| xt): state transition law (t=0, 1, 2, ..)

p(yt| xt): measurement distribution (t=1, 2, ..)

Denote 
{ } { }0: 0 1: 1, , , , , .t t t t= =x x x y y y… …
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The Estimation Problem (cont’d)

Note:

� As usual, we assume the Markovian state property:

� The above laws are often specified through state 

equations:

� The system may be time-varying, for simplicity we 

omit the time variable.

1 0: 1: 1 0: 1: 1( | , ) ( | ), ( | , ) ( | )t t t t t t t t t tp p p p+ + −= =x x y x x y x y y x

1 ( , ); ( , )t t t t t tf w h v+ = =x x y x
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The Estimation Problem (cont’d)

� We wish to estimate the state xt, based on the prior 

data and the observations y1:t

� The MMSE-optimal estimator, for example, is given 

by                      with covariance

� More generally, compute the posterior state 

distribution:

We can then compute

1:
ˆ ( | )t t tE=x x y 1:cov( | ).t t tP = x y

1:
ˆ ( ) ( | ),t t t t tp p= ∈x x y x X

MAP

ˆ ˆ ( ) (and its covariance)

ˆ ˆarg max ( ), (etc.)
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Posterior Distribution Formulas:

Using the Bayes rule, we obtain the following two-step 

recursive formulas that relate p(xt|y1:t) to p(xt-1| y1:t-1) and 

yt:

�Time Update (prediction step):

�Measurement Update:

1

1: 1 1 1 1: 1 1( | ) ( | ) ( | )
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Posterior Distribution Formulas: (2)

Unfortunately, these are hard to compute directly –

especially when x is high-dimensional!

Some well-known approximations:

�The Extended Kalman Filter

�Gaussian Sum Filters

�General/Specific Numerical Integration Methods

�Sampling-based methods – Particle Filters.
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Monte-Carlo Sampling:

Crude Monte Carlo

The basic idea:

�Estimate the expectation integral

by the following mean:

where                   That is,             are independent 

samples from p(x).

~ ( )( ) ( ( )) ( ) ( )x pI g E g g p d= = ∫x x x x x

( )
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Crude Monte-Carlo – Interpretation

� We can interpret Monte-Carlo sampling as trying to 

approximate p(x) by the discrete distribution

It is easily seen that                                      

� The samples x(i) are sometimes called “particles”, 

with weights w(i) = N-1.

( )

1

1
ˆ ( ) ( ).

N
i

n

i
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N
δ
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x
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Crude Monte Carlo: Properties

The following basic properties follow from standard results for i.i.d. 

sequences.

1. Bias: IN (g) is an unbiased estimate of I(g), namely

2. SLLN:

3. CLT:

whenever

Advantages (over numerical integration):

� Straightforward scheme.

� Focuses on “important” areas of p(x).

� Rate of convergence does not depend (directly) on dim(x).

( ( )) ( ).NE I g I g=

a.s.( ) ( ).N N
I g I g→∞→

[ ] in distr. 2( ) ( ) (0, )N gN
N I g I g σ→∞− →N

2 cov( ( )) .g gσ = < ∞x
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The Monte-Carlo Method: Origins

� Conceiver: Stanislav Ulam (1946).

� Early developments (1940’s-50’s):

� Ulam & Von-Neumann: Importance Sampling, Rejection  
Sampling.

� Metropolis & Von-Neumann: Markov-Chain Monte-Carlo 
(MCMC).

A surprisingly large array of applications, including

� global optimization

� statistical and quantum physics

� computational biology

� signal and image processing

� rare-event simulation

� state estimation …
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Importance Sampling (IS)

Idea:

� Sample x from another distribution, q(x).

� Use weights to obtain the correct distribution.

Advantages:

� May be (much) easier to sample from q than from p.

� The covariance       may be (much) smaller

⇒ Faster convergence / better accuracy.

2

gσ
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Importance Sampling (2)

� Let q(x) be a selected distribution over x – the 

proposal distribution.  Assume that                 

� Observe that:

where

is the likelihood ratio, or simply the weight-function.

( ) 0 ( ) 0.p q> ⇒ >x x
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Importance Sampling (3)

� This immediately leads to the IS algorithm:

(1) Sample 

(2) Compute the weights and

Basic Properties:

� The above-mentioned convergence properties are 

maintained.

� The CLT covariance is now

� This covariance is minimized by q(x)~p(x) |g(x)|.

Unfortunately this choice is often too complicated, and we 
settle for approximations.
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Importance Sampling (4)

Additional Comments:

� It is often convenient to use the normalized weights

so that

� The weights w(i) are sometimes not properly normalized 

for example, when p(x) is known up to a (multiplicative) 

constant.

We can still use the last formula, with

� We may interpret                as a “weighted-particles”

approximation to p(x):
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The Particle Filter Algorithm

We can now apply these ideas to our filtering problem.  

The basic algorithm is as follows:

0. Initialization: sample from p0(x) to obtain                           

with                For t=1,2,…, given                 

1. Time update: For i=1,…, N sample

Set 

2. Measurement update: For i=1,…, N, evaluate the 

(unnormalized) importance weights:

3. Resampling: Sample N points           from the discrete 

distribution corresponding to                   Continue with 

{ }( ) ( )
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The Particle Filter Algorithm (2)

� Output:  Based on                we can estimate

We may also use               for that purpose.

This algorithm is the original “bootstrap filter” introduced in Gordon 

et al. (1993).

CONDENSATION is a similar algorithm developed independently in 

the computer vision context (Isard and Blake, 1998).

Many improvements and variations now exist.

{ }( ) ( )
, ,

i i

t tx w

( ) ( )

1:

1

( ) ( )

1:

1

( | ) ( )

( ( ) | ) ( )

N
i i

t t t t

i

N
i i

t t t t

i

p w

E g w g

δ
=

=

≈ −

≈

∑

∑

x y x x

x y x

{ }( ) ( )ˆ ,
i i

t tx w



10

19

Particle Flow

)|( 1:11 −−≈ ttp yx

)|( 1:1 −≈ ttp yx

)|( :1 ttp yx≈

)|(
)(i

ttp xy

(from Doucet et. al., 2001) 
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The Particle Filter: Time Update

� Recall that               approximates                        

and                  is given.

� An approximation                is therefore obtained by 

sampling                        and setting

� For example, for the familiar state model                       

we get

( ) ( ) ( ) ( )

1 1 1
ˆ ( , ), ~ (0, ).i i i i
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The Particle Filter: Time Update (2)

� It is possible (and often useful) to sample       from 

another (proposal) distribution

In that case we need to modify the weights:

� The ideal choice for                would by

� Some schemes exist which try to approximate 

sampling with q* - e.g., using MCMC.
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The Particle Filter: Measurement Update

� Recall that

and                 approximate

� To obtain an approximation                  to 

we only need to modify the weights 

accordingly:

with

1: 1: 1
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The Particle Filter: Resampling

� Resampling is not strictly required for asymptotic 

convergence (as            ).

� However, without it, the distributions                tend to 

degenerate, with few “large” particles, and many small 

ones.

� The idea is therefore to split large particles into several 

smaller ones, and discard very small particles.

� Random sampling from               is one option.  Another is 

a deterministic splitting of particles according to      

namely:                                 particles at            with

In fact, the last option tends to reduce the variance.

N →∞
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i i

t i tw N w
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Additional Issues and Comments

Data Association:

� This is an important problem for applications such as 

multiple target tracking, and visual tracking.

� Within the Kalman Filter framework, such problems are 

often treated by creating multiple explicit hypothesis 

regarding the data origin which may lead to combinatorial 

explosion.

� Isard and Blake (1998) observed that particle filters open 

new possibilities for data association for tracking.  

Specifically, different particles can be associated to 

different measurements, based on some “closeness” (or 

likelihood) measure.

� Encouraging results have been reported.
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Additional Issues and Comments (2)

Joint Parameter and State Estimation:

� As is well known, this “adaptive estimation” problem 

can be reduced to a standard estimation problem by 

embedding the parameters in the state vector.

� This however leads to a bi-linear state equation, for 

which standard KF algorithms did not prove 

successful. The problem is currently treated using 

non-sequential algorithms (e.g. EM + smoothing).

� Particle filters have been applied to this problem with 

encouraging results.
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Additional Issues and Comments (3)

Low-noise State Components:

� State components which are not excited by external 

noise (such as fixed parameters) pose a problem 

since the respective particle components may be 

fixed in their place, and cannot correct initially bad 

placements.

� The simplest solution is to add a little noise.  

Additional suggestions involve intermediate MCMC 

steps, and related ideas.
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Conclusion:

� Particle Filters and Sequential Monte Carlo Methods are an 

evolving and active topic, with good potential to handle 

“hard” estimation problems, involving non-linearity and 

multi-modal distributions.

� In general, these schemes are computationally expensive 

as the number of “particles” N needs to be large for 

precise results.

� Additional work is required on the computational issue – in 

particular, optimizing the choice of N, and related error 

bounds.

� Another promising direction is the merging of sampling 

methods with more disciplined approaches (such as 

Gaussian filters, and the Rao-Blackwellization scheme …).
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Particle Filters:

� N.J. Gordon, D. J. Salmond and A. Smith, “Novel approach to non-linear / 

non-Gaussian Bayesian state estimation”, IEE Proceedings-F 140(2), pp. 107-

113.

� M. Isard and A. Blake, “CONDENSATION – conditional density propagation for 

visual tracking”, International Journal of Computer Vision 28(1), pp. 5-28.

� A Doucet, N. de Freitas and N. Gordon (eds.) Sequential Monte Carlo Method 

in Practice, Springer, 2001.
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Gaussian Bayesian tracking”, IEEE Trans. on Signal Processing 50(2), 2002.


