Composing Ordered Sequential Consistency
using Leading Updates

Kfir Lev-Ari1, Edward Bortnikov2, Idit Keidar1,2, and Alexander Shraer3

1Viterbi Department of Electrical Engineering, Technion, Haifa, Israel
2Yahoo Research, Haifa, Israel
3Google, Mountain View, CA, USA

Abstract

We define ordered sequential consistency (OSC), a correctness criterion for concurrent objects, which captures the typical behavior of many real-world services, e.g., ZooKeeper, etcd, Chubby, Doozer, and Consul. A straightforward composition of OSC objects is not necessarily OSC. To remedy this, we recently implemented a composition framework that injects dummy updates in specific scenarios. We prove that injecting such updates, which we call here leading updates, enables correct OSC composition.

We generalize OSC to define G-OSC, a generic criterion for concurrent objects, which encompasses a range of criteria, including sequential consistency and linearizability.