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Abstract

We analyze the exact exponential decay rate of the expected amount of information leaked to the wiretapper in

Wyner’s wiretap channel setting using wiretap channel codes constructed from both i.i.d. and constant-composition

random codes. Our analysis for those sampled from i.i.d. random coding ensemble shows that the previously-known

achievable secrecy exponent using this ensemble is indeed the exact exponent for an average code in the ensemble.

Furthermore, our analysis on wiretap channel codes constructed from the ensemble of constant-composition random

codes, leads to an exponent which, in addition to being the exact exponent for an average code, is larger than the

achievable secrecy exponent that has been established so far in the literature for this ensemble (which in turn was

known to be smaller than that achievable by wiretap channel codes sampled from i.i.d. random coding ensemble).

We also show examples where the exact secrecy exponent for the wiretap channel codes constructed from random

constant-composition codes is larger than that of those constructed from i.i.d. random codes.

Index Terms

Wiretap channel, Channel resolvability, Secrecy exponent, Resolvability exponent

I. INTRODUCTION

The problem of communication in presence of an eavesdropper wiretapping the signals sent to the legitimate

receiver (see Figure 1) was first studied by Wyner [1] and later, in a broader context, by Csiszár and Körner

[2], where it was shown (among others) that as long as the eavesdropper’s channel is weaker than that of the

legitimate receiver, reliable and secure communication at positive rates is feasible. More precisely, it was shown

that, given any distribution on the common input alphabet of the channels, PX , for which the mutual information

developed across the legitimate receiver’s channel is higher than that developed across the wiretapper’s channel, that

is, I(X;Y ) > I(X;Z), with (X,Y, Z) ∼ PX(x)WM(y|x)WE(z|x) (where X , Y , and Z represent the common
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input, legitimate receiver’s channel output, and wiretapper’s channel output, respectively), as long as the secret

message rate Rs , 1
n log |Sn| is below I(X;Y )− I(X;Z) there exists a sequence of coding schemes (indexed by

the block-length n) using which

lim
n→∞

max
s∈Sn

Pr{ŝML(Y n) 6= S|S = s} = 0, (1a)

lim
n→∞

1

n
I(S;Zn) = 0. (1b)

In the above, S represents the secret message, ŝML(Y n) is the maximum-likelihood (ML) estimation of the sent

message given the output sequence of the legitimate receiver’s channel and Zn represents the output sequence of

the wiretapper’s channel (see Figure 1).

S ∈ Sn Alice’s Encoder

WM : X → Y

WE : X → Z

Bob’s Decoder

Eve

Ŝ
Xn ∈ Xn

Y n ∈ Yn

Zn ∈ Zn

Fig. 1. Wiretap Channel

Classical codes for the wiretap channel are constructed by associating each message with a (random) code that

operates at a rate R just below the mutual information developed across the eavesdropper’s channel. To communicate

a message, the stochastic encoder of Alice picks a codeword uniformly at random from the code associated to that

message and transmits it via consecutive uses of the channel [1]–[3]. Such constructions, known as capacity-based

constructions (with a slight abuse of terminology) [4], will guarantee that the normalized amount of information

that Eve learns about the secret message by observing her channel output signal, 1
nI(S;Zn), will be arbitrarily

small, provided that the block-length n is sufficiently large. Recently, resolvability-based constructions for wiretap

channel codes, namely, those associating each message with a (random) code operating at a rate just above the

mutual information of the wiretapper’s channel was shown to be more powerful than the capacity-based constructions

to prove achievability results. Among other useful properties surveyed in [4], such constructions can be used to

easily show that the unnormalized amount of information Eve learns about the secret message, I(S;Zn), vanishes

as the block-length increases, namely to establish strong secrecy (a notion first introduced by Maurer and Wolf

[5]). In particular, using the resolvability-based wiretap channel codes for stationary memoryless wiretap channels,

it can be shown that the amount of information Eve learns about the secret message vanishes exponentially fast in

the block-length, thus, it is natural to study the rate of this exponential decay.

Definition 1. Given the rate pair (Rs, R) and a pair of stationary memoryless channels (WM,WE), a number η

is an achievable secrecy exponent for the wiretapper channel WE, if there exists a sequence of coding schemes

of block-length n and secret message rate Rs, requiring the entropy rate R at the encoder that are reliable for

communication over WM and guarantee

lim inf
n→∞

− 1

n
log I(S;Zn) ≥ η. (2)
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Hayashi [6] was first to derive a lower bound to the achievable secrecy exponents using the resolvability-based

construction of wiretap channel codes from i.i.d. random codes and, later on, improved this lower bound using

privacy amplification in [7]. More recently, it was shown (see special cases of [8, Theorem 2], [9, Theorem 3.1],

or the proof given in [10]) that privacy amplification is unnecessary and the exponent derived in [7] lower-bounds

the exponential decay rate of the ensemble average of the information leaked to Eve when a wiretap channel code

constructed from i.i.d. random codes is used for communication.

To study the universally achievable (as defined in [11]) secrecy exponents in [12], constructing codes for wiretap

channel from random constant-composition codes is investigated and, in conjunction with privacy amplification, a

lower bound to the achievable secrecy exponent using this class of wiretap channel codes is derived. This lower

bound is also shown to be smaller than the lower bound to the achievable exponent using i.i.d. random codes

derived in [7].

A. Contribution and Paper Outline

In this paper we, firstly, show that the exponent derived via the method of [10] (which was first established in [7])

is indeed the exact secrecy exponent for an average code in the ensemble and, secondly, extend the analysis of [10]

to the ensemble of constant-composition random codes (see Theorem 2 and its corollary). This, in particular, implies

the previously-known lower bound to the achievable secrecy exponent using i.i.d. random codes characterizes the

exact exponential decay rate of the average amount of information leaked to the eavesdropper using wiretap channel

codes constructed from i.i.d. random codes. Moreover, it turns out that the exact secrecy exponent for the wiretap

channel codes constructed from constant-composition random codes is larger than the lower bound derived in [12]

and there are examples where this dominance is strict. Further, examples show that in general there is no ordering

between the secrecy exponents of the ensembles of i.i.d. and constant-composition codes. In other words, for

some channels the i.i.d. ensemble yields a better secrecy exponent, whereas in the others, the constant-composition

ensemble prevails (see Section IV-B).

The analysis of [10] is based on pure random coding arguments (no privacy amplification is used) and is carried

out by lower-bounding the achievable resolvability exponents (see Definition 5) using random codes. We will show,

in this work, that this method not only proves the achievability of the exponent, but also, using very similar steps,

establishes its exactness (see Definition 7). On the other side, a simple observation shows that the exact resolvability

exponent equals the exact secrecy exponent for an ensemble (see Theorem 1), which in turn, allows us to conclude

the exponent derived through this method is the exact secrecy exponent as well.

The remainder of this paper is organized as follows. After setting our notation conventions in Section II, we

prove the equivalence of secrecy and resolvability exponents in Section III and reduce the analysis of the exact

secrecy exponent for an ensemble to that of the exact resolvability exponent. We present our main result on exact

secrecy exponents in Section IV, argue that the exact secrecy exponent for the ensemble of constant-composition

random codes is larger than the lower bound derived in [12], and give numerical examples comparing the exponents

for two ensembles of i.i.d. and constant-composition random codes. Our main result is proved in Section V. To

streamline the presentation, we relegate the straightforward but tedious parts of the proof to the appendices.

January 15, 2016 DRAFT



4

B. Related Work

In addition to those cited above, [13] also presents a simple achievability proof for channel resolvability. Based on

this proof the authors, in their subsequent work [14], establish strong secrecy for wiretap channel using resolvability-

based constructions for wiretap channel codes. The performance of a code for the wiretap channel is measured via

two figures of merit, namely, the error probability and information leakage, both of which decay exponentially in

block-length when a wiretap channel code from the ensemble of random codes is employed on stationary memoryless

channels (as we will also briefly discuss in Section III). The trade-off between secrecy and error exponents (as well

as other generalizations of the model) is studied in [15].

Another important problem, in the realm of information-theoretic secrecy, is secret key agreement [16], [17]. The

secrecy exponents related to this model are studied in [7], [15], [18], [19] and, in particular, in [18], [19] shown to

be exact.

II. NOTATION

We use uppercase letters (like X) to denote a random variable and the corresponding lowercase version (x) for a

realization of that random variable. The same convention applies to the sequences, i.e., xn = (x1, . . . , xn) denotes

a realization of the random sequence Xn = (X1, . . . , Xn). We denote finite sets by script-style uppercase letters

like A. The cardinality of the set A is denoted by |A|.

We write f(n) ≤̇ g(n) if there exists a function p(n) such that lim supn→∞
1
n log(p(n)) = 0 and f(n) ≤

p(n)g(n). As noted in [20], when functions f and g depend on other variables than n it is understood that p(n)

can only depend on channel transition probabilities, the cardinality of its input and output alphabet, and its input

distribution (and not the other parameters f and g may depend on).1 f(n)
.
= g(n) means f(n) ≤̇ g(n) and

f(n) ≥̇ g(n).

For a ∈ R, [a]+ , max{a, 0} denotes positive clipping.

We denote the set of distributions on alphabet X as P(X ). If P ∈ P(X ), Pn ∈ P(Xn) denotes the product

distribution Pn(xn) ,
∏n
i=1 P (xi) (where xn denotes the length-n sequence (x1, . . . , xn) ∈ Xn). Likewise, if

V : X → Y is a conditional distribution (that is, ∀x ∈ X : V (·|x) ∈ P(Y)), V n : Xn → Yn denotes the conditional

distribution V n(yn|xn) =
∏n
i=1 V (yi|xi). For a joint distribution Q ∈ P(X × Y), QX (respectively QY ) denotes

its x- (respectively y-) marginal. For P ∈ P(X ) and a stochastic matrix V : X → Y , P × V ∈ P(X ×Y) denotes

the joint distribution P (x)V (y|x) and P ◦ V ∈ P(Y) denotes the y-marginal of the joint distribution P × V , that

is (P ◦ V)(y) =
∑
x P (x)V (y|x).

We denote the type of a sequence xn ∈ Xn by Q̂xn ∈ P(X ). A distribution P ∈ P(X ) is an n-type if ∀x ∈

X : nP (x) ∈ Z. We denote the set of n-types on X as Pn(X ) ( P(X ) and use the fact that |Pn(X )| ≤ (n+ 1)|X |

[21, Lemma 2.2] repeatedly. If P ∈ Pn(X ), we denote the set of all sequences of type P as T nP ⊂ Xn.

1Let θ be a parameter that f and g depend on. If fθ(n) ≤̇ gθ(n) then, ∀θ : lim supn→∞
1
n
log
(
fθ(n)
gθ(n)

)
≤ 0 but the reverse is not true.

In fact fθ(n) ≤̇ gθ(n) is equivalent to lim supn→∞ supθ
1
n
log
(
fθ(n)
gθ(n)

)
≤ 0 which is a stronger statement than the former.
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The divergence between two distributions P,Q ∈ P(X ) is defined as

D(P‖Q) ,
∑
x∈X

P (x) log
P (x)

Q(x)
(3)

(here and in the sequel the bases of log and exp are arbitrary but the same). For two stochastic matrices V : X → Y

and W : X → Y , and P ∈ P(X ), the conditional divergence is defined as

D(V ‖W |P ) ,
∑
x∈X

P (x)
∑
y∈Y

V (y|x) log
V (y|x)

W (y|x)
. (4)

For P ∈ P(X ),

H(P ) , −
∑
x∈X

P (x) logP (x). (5)

For Q ∈ P(X × Y), I(Q) , D(Q‖QX × QY ). If P ∈ P(X ) and V : X → Y is a stochastic matrix, I(P, V ) ,

I(P × V ) denotes the mutual information developed across the channel V with input distribution P .

III. SECRECY VIA CHANNEL RESOLVABILITY

As we mentioned earlier, channel resolvability is a convenient and powerful tool for the analysis of secrecy

[4]. The concept of resolvability dates back to Wyner [22] where he observed that, given a stationary memoryless

channel W : X → Z and an input distribution PX that induces the distribution PZ = PX ◦W at its output, it is

possible to well-approximate the product distribution PnZ at the output of Wn (the product channel corresponding

to n independent uses of W ) by transmitting a uniformly chosen codeword from a code of rate R > I(X;Z).

Indeed, if the code is sampled from the i.i.d. random coding ensemble, with very high probability the normalized

divergence between the channel output distribution and PnZ can be made arbitrarily small by choosing n sufficiently

large. Han and Verdú [23] and Hayashi [6] developed this theory further by replacing the measure of approximation

by normalized variational (`1) distance and unnormalized divergence, respectively, and showed firstly, that the same

limits on the code size hold in these cases and, secondly, that the distance between the output distribution and

the target distribution PnZ vanishes exponentially fast as the block-length increases (the same result is derived in

[10], [13] as well). In particular, in [6], [9], [10], [14], the exponential decay of the informational divergence is

leveraged to establish an exponentially decaying upper bound on the information leaked to the eavesdropper in

wiretap channel’s model (using resolvability-based constructions of wiretap channel codes).

We can extend the notion of resolvability and ask for the approximation of arbitrary target distributions. Given

a code C = {xn1 , . . . , xnM} and the channel W : X → Z , denote by PC the output distribution of Wn when a

uniformly chosen codeword from C is transmitted, that is,

PC(z
n) =

1

M

M∑
i=1

Wn(zn|xni ). (6)

Definition 2. Given a stationary memoryless channel W : X → Z , a rate R, and a sequence of target distributions

Φ = {Φn ∈ P(Zn) : n ∈ N}, a number EΦ(W,R) is an achievable resolvability exponent over the channel W , at

rate R, with respect to Φ if there exists a sequence of codes of block length n, Cn, such that lim supn→∞
1
n log |Cn| ≤

R and

lim inf
n→∞

− 1

n
logD(PCn‖Φn) ≥ EΦ(W,R). (7)

January 15, 2016 DRAFT
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Definition 3. The supremum of all achievable resolvability exponents over W : X → Z , at rate R, with respect to

Φ = {Φn ∈ P(Zn), n ∈ N} is called the resolvability exponent of the channel W : X → Z at rate R with respect

to Φ.

It should be obvious that computing “the” resolvability exponent is a difficult task as it necessitates a search over

all possible sequences of codes and find the best resolvability code. The usual way to circumvent such a difficulty

is to use the probabilistic method and analyze the achievable exponents for the ensembles of random codes.

Definition 4. Given Π = {PXn ∈ P(Xn) : n ∈ N}, a sequence of probability distributions on Xn, an ensemble

of random codes of rate R is a sequence of random codes Cn of block-length n and size M = exp(nR), obtained

by sampling the codewords independently from the distribution PXn . In other words,

Pr
{
Cn = {xn1 , . . . , xnM}

}
=

M∏
i=1

PXn(xni ). (8)

Definition 5. Given Π = {PXn ∈ P(Xn) : n ∈ N}, a stationary memoryless channel W : X → Z , a rate R, and a

sequence of target distributions Φ , {Φn ∈ P(Zn) : n ∈ N}, a number EΦ
s (Π,W,R) is an achievable resolvability

exponent for the ensemble of random codes of rate R defined by Π, over the channel W : X → Z , with respect to

the sequence of target distributions Φ if

lim inf
n→∞

− 1

n
logE[D(PCn‖Φn)] ≥ EΦ

s (Π,W,R), (9)

where Cn is a random code of size M = exp(nR) distributed according to (8).

Definition 6. The supremum of all achievable resolvability exponents for the random codes of rate R defined by

Π = {PXn ∈ P(Xn) : n ∈ N}, over the channel W : X → Z , with respect to the sequence of target distribution

Φ = {Φn ∈ P(Zn) : n ∈ N} is called the resolvability exponent of the ensemble Π.

Remark. It is clear that the resolvability exponent of an ensemble equals lim infn→∞− 1
n logE[D(PCn‖Φn)]. The

reader may notice that this definition is somewhat conservative in the sense that, while it guarantees that for any

E below the resolvability exponent of the ensemble there exists a sequence of codes C?n (in the ensemble) and n0

such that ∀n > n0 : D(PC?n‖Φn) ≤ exp(−nE), larger exponents may also be achievable; namely, for E′ satisfying

lim infn→∞− 1
n logE[D(PCn‖Φn)] < E′ < lim supn→∞− 1

n logE[D(PCn‖Φn)], there exists a sub-sequence of

codes C?n1
, C?n2

, . . . (in the ensemble) such that ∀i : D(PC?ni
‖Φni) ≤ exp(−niE′). While this is a valid concern in

general, we shall see that for the ensembles of interest, namely the ensembles of i.i.d. and constant-composition

random codes, and specific sequences of target distributions,

lim sup
n→∞

− 1

n
logE[D(PCn‖Φn)]

= lim inf
n→∞

− 1

n
logE[D(PCn‖Φn)]. (10)

In other words, the exact resolvability exponent for those ensembles exists. This excludes such circumstances.
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Definition 7. The exact resolvability exponent of the ensemble of random codes of rate R defined with the sequence

of distributions Π = {PXn ∈ P(Xn) : n ∈ N}, over the channel W : X → Z , with respect to the sequence of

target distributions Φ = {Φn ∈ P(Zn) : n ∈ N} is defined as

EΦ
s (Π,W,R) , lim

n→∞
− 1

n
logE[D(PCn‖Φn)] (11)

provided that the limit exists.

For the sake of completeness, let us also formally define the error exponent for an ensemble of random codes.

Definition 8. Given Π = {PXn ∈ P(Xn) : n ∈ N}, a stationary memoryless channel W : X → Y , and a rate R,

a number Er(Π,W,R) is called an achievable error exponent of the ensemble Π at rate R on channel W , if

lim inf
n→∞

− 1

n
logE[Pr{ŝML(Y n) 6= S}] ≥ Er(Π,W,R) (12)

when Cn, a random code of size M = exp(nR) is used to communicate a uniformly chosen message S ∈

{1, 2, . . . ,M} via n independent uses of W , yn is the output sequence of Wn, and ŝML(yn) is the ML estimation

of S given yn.

Remark. For the ensembles of interest in this paper, i.e., the ensembles of i.i.d. and constant-composition random

codes the exact error exponents are well-known [21], [24], [25] (the exactness of the error exponent for constant-

composition random codes follows from exponential tightness of the truncated union bound, cf. [26, Appendix A]

for example).

Definition 9. Given a sequence of distributions on Xn, Π = {PXn ∈ P(Xn) : n ∈ N}, and a rate pair (Rs, R) a

(random) wiretap channel code of secret message rate Rs is obtained by partitioning a random code of rate Rs +R

in the ensemble into Ms = exp(nRs) sub-codes of rate R, denoted as Csn, s ∈ {1, 2, . . . ,Ms}, each associated to

a message. To communicate the message s, the encoder transmits a codeword from the sub-code Csn uniformly at

random (thus it requires an entropy rate of R).

Theorem 1. Let WM : X → Y and WE : X → Z be the pair of legitimate receiver’s and wiretapper’s stationary

memoryless channels respectively (see Figure 1). Fix a sequence of distributions Π = {PXn ∈ P(Xn) : n ∈ N}

and an arbitrary sequence of target distributions Φ = {Φn ∈ P(Zn) : n ∈ N}. Let Er(Π,WM, R) be an achievable

error exponent for the ensemble Π over the channel WM (at rate R) and EΦ
s (Π,WE, R) be the exact resolvability

exponent of the ensemble Π over the channel WE with respect to the sequence of target distributions Φ (see

Definition 7). Then for any rate pair (Rs, R) such that EΦ
s (Π,WE, R+Rs) > EΦ

s (Π,WE, R), using the ensemble

of random wiretap codes constructed as in Definition 9, when the secret message S is uniformly distributed,

lim inf
n→∞

− 1

n
logE[Pr{ŝML(Y n) 6= S}] ≥ Er(Π,WM, R+Rs) (13)

lim
n→∞

− 1

n
logE[I(S;Zn)] = EΦ

s (Π,WE, R), (14)

where ŝML(yn) is the ML estimation of the sent message given yn, the output of legitimate receiver’s channel. In

other words, Es is also the exact secrecy exponent for the ensemble Π.
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Proof: That Er(Π,WM, R+Rs) is an achievable error exponent for the legitimate receiver is clear: probability

of decoding the message S incorrectly is upper-bounded by probability of incorrect decoding of the sent codeword

and the result follows. We shall, hence, only prove (14).

Since, to communicate a particular message s ∈ Sn, the encoder transmits a codeword from the code Csn associated

to the message s, conditioned on S = s the output of Wn
E has distribution PCsn and, since S is uniformly distributed,

the unconditional output distribution of Wn
E will be PCn (cf. (6)). Therefore,

E[I(S;Zn)] = E[D(PCsn‖Φn|PS)]− E[D(PCn‖Φn)]. (15)

Using the linearity of expectation and the fact that the sub-codes Csn are identically distributed,

E[D(PCsn‖Φn|PS)] =

Ms∑
s=1

PS(s)E[D(PCsn‖Φn)]

= E[D(PC1n‖Φn)], (16)

thus, by (11), we have

lim
n→∞

− 1

n
logE[D(PCsn‖Φn|PS)] = EΦ

s (Π,WE, R), (17)

lim
n→∞

− 1

n
logE[D(PCn‖Φn)] = EΦ

s (Π,WE, R+Rs)

> EΦ
s (Π,WE, R). (18)

where the last inequality follows since Rs > 0 and Es is strictly increasing in R. Using (17) and (18) in (15)

concludes the proof.

Remark 1. That (a lower bound to) the resolvability exponent, lower-bounds the secrecy exponent is already used

in [6], [9], [10]. Theorem 1 complements this result by showing that the exact resolvability exponent equals the

exact secrecy exponent.

Remark 2. In the proof of Theorem 1, to show that Er is an achievable error exponent, we used a decoder which

estimates the sent codeword and then decides to which sub-code it belongs. In [27] it has been shown that the error

exponent of this decoder is the same as that of the optimal decoder (that computes the likelihood score for each

message s by summing up the likelihoods of all codewords in Csn and then deciding on the most likely message)

for an average code in the ensemble when the code sampling distribution PXn depends on xn only through its

type.

Remark 3. Using standard expurgation arguments it is easy to prove the existence of a sequence of wiretap codes

(in the ensemble) using which

lim inf
n→∞

− 1

n
log max

s∈Sn
Pr{ŝML(Y n) 6= S|S = s}

≥ Er(Π,WM, R+Rs) (19)

lim inf
n→∞

− 1

n
log max

s∈Sn
D(PCsn‖Φn)

≥ EΦ
s (Π,WE, R) (20)

January 15, 2016 DRAFT
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where Sn ⊆ {1, 2, . . . ,Ms} is of cardinality at least 1
2Ms. The second equality implies, using this sequence of

codes, lim inf
n→∞

− 1
n log I(S;Zn) ≥ EΦ

s (Π,WE, R) regardless of the distribution of secret messages PS (see [28,

Appendix B] for more details). Moreover, as noted in [14], maxs∈Sn D(PCsn‖Φn) being small not only guarantees

secrecy (that Eve learns very little about S by observing Zn), but also implies stealth. Namely, Eve cannot even

detect that Alice is sending useful messages over the channel (letting aside their content).

Remark 4. Equations (13) and (14) suggest a trade-off in code design in terms of the choice of Π = {PXn ∈

P(Xn) : n ∈ N}. The sequence of input distributions Π that maximizes Es may not coincide with the one that

maximizes Er.

In light of Theorem 1 we shall focus on deriving the exact resolvability exponents for the ensembles of i.i.d. and

constant-composition random codes.

IV. EXACT RESOLVABILITY EXPONENTS

A. Main Result

Theorem 2. Let Cn be a random code of block-length n and rate R created by sampling exp(nR) codewords

independently from the distribution PXn ∈ P(Xn) (see (8)). Let W : X → Z be a discrete stationary memoryless

channel and PCn (cf. (6)) denote the (random) output distribution of Wn when a uniformly chosen codeword from

Cn is transmitted via n independent uses of W . Take the sequence of target distributions to be

Φn(zn) , E[PCn(zn)], n ∈ N (21)

(note that the above expectation is taken with respect to the randomness in codebook generation, thus the target

distribution depends on PXn ).

For any PX ∈ P(X ) such that I(PX ,W ) > 0,

lim
n→∞

− 1

n
log(E[D(PCn‖Φn)])

=


Ei.i.d.

s (PX ,W,R), if PXn(xn) = PnX(xn),

Ec.c.
s (PX ,W,R), if PXn(xn) =

1{xn∈T nPX }
|T nPX |

,
(22)

where

Ei.i.d.
s (PX ,W,R)

= min
Q∈P(X×Z)

{
D(Q‖PX ×W ) + [R− f(Q)]+

}
, (23a)

with

f(Q) ,
∑

(x,z)∈X×Z

Q(x, z) log
W (z|x)

(PX ◦W)(z)
, (23b)

and

Ec.c.
s (PX ,W,R)

= min
V : X→Z

{
D(V ‖W |PX) + [R− g(V )]+

}
(24a)
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with

g(V ) , ω(V ) + min
V ′ : X→Z

PX◦V ′=PX◦V

{
I(PX , V

′)− ω(V ′)
}
, (24b)

and

ω(V ) ,
∑

(x,z)∈X×Z

PX(x)V (z|x) logW (z|x). (24c)

Both exponents Ei.i.d.
s and Ec.c.

s are positive and strictly increasing in R for R > I(PX ,W ). Moreover, the value

of Ei.i.d.
s can be computed through

Ei.i.d.
s (PX ,W,R) = max

0≤λ≤1
{λR− F0(PX ,W, λ)} (25a)

with

F0(PX ,W, λ)

, log
∑

(x,z)∈X×Z

PX(x)W (z|x)1+λ(PX ◦W)(z)−λ. (25b)

Corollary 3. The exponents Ei.i.d.
s (PX ,WE, R) and Ec.c.

s (PX ,WE, R) (of Theorem 2) are the exact secrecy

exponents for the ensembles of random wiretap channel codes of rate pair (R,Rs) constructed from the ensembles

of random i.i.d. and constant-composition codes, respectively, provided that Rs > 0 and R > I(PX ,WE).

B. Comparison of Exponents

Corollary 3 states that the exponent Ei.i.d.
s which was already derived in [7], [9], [10] is indeed the exact secrecy

exponent for the ensemble of i.i.d. random codes (the exponent is expressed in the form of (25) in [7], [9], [10]). In

contrast, it can be shown that Ec.c.
s , the exact secrecy exponent for the ensemble of constant-composition random

codes, is larger than the previously-derived lower bound in [12]:

Ec.c.
s (PX ,WE, R) = max

0≤λ≤1
{λR− E0(PX ,WE, λ)} (26a)

with

E0(PX ,W, λ)

, log
∑
z∈Z

(∑
x∈X

PX(x)W (z|x)
1

1−λ

)1−λ
, (26b)

(note that the function E0 in (26b) is essentially Gallager’s E0 [24]). For every discrete memoryless stationary

channel W : X → Z ,

Ec.c.
s (PX ,W,R) ≥ Ec.c.

s (PX ,W,R). (27)

This follows from the fact that g(V ) ≤ I(PX , V ) using similar steps as in [21, Problem 10.24] to derive Gallager-

style expressions of error exponents (see Appendix A-D for a complete proof).

As for comparing the secrecy exponents Ei.i.d.
s and Ec.c.

s , numerical examples show that in general there is no

ordering between them. In particular, as shown in Figures 2 and 3, for binary symmetric channel and binary erasure

channel the ensemble of constant-composition codes leads to a larger exponent than the ensemble of i.i.d. random
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codes. The two exponents are equal when the input distribution is uniform. On the other side, in Figures 4 and 5 we

see that for asymmetric channels (Z-channel and binary asymmetric channel) the ensemble of constant-composition

random codes results in a smaller secrecy exponent compared to the ensemble of i.i.d. random codes.

0.2 0.4 0.6 0.8 1

0.2

0.4

R
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Ei.i.d.
s

Ec.c.
s

Ec.c.
s

(a) PX(0) = 0.3, PX(1) = 0.7

0.2 0.4 0.6 0.8 1

0.2

0.4
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Ei.i.d.
s

Ec.c.
s

Ec.c.
s

(b) PX(0) = PX(1) = 0.5

Fig. 2. Comparison of secrecy exponents for Binary Symmetric Channel with crossover probability 0.11
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0.4
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Ei.i.d.
s

Ec.c.
s

Ec.c.
s

(a) PX(0) = 0.28, PX(1) = 0.72

0.2 0.4 0.6 0.8 1

0.2

0.4

R
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Ei.i.d.
s

Ec.c.
s

Ec.c.
s

(b) PX(0) = PX(1) = 0.5

Fig. 3. Comparison of secrecy exponents for Binary Erasure Channel with erasure probability 0.5

0.2 0.4 0.6 0.8 1

0.2

0.4

R
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Ei.i.d.
s

Ei.i.d.
s

Ei.i.d.
s

(a) PX(0) = 0.36, PX(1) = 0.64

0.2 0.4 0.6 0.8 1

0.2

0.4

R
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Ei.i.d.
s

Ec.c.
s

Ec.c.
s

(b) PX(0) = 0.58, PX(1) = 0.42 (capacity-achieving)

Fig. 4. Comparison of secrecy exponents for Z-channel with WE(0|1) = 0.303

The reader may find details on how the exponents are computed in Appendix B.

V. PROOF OF THEOREM 2

In this section we fix PX and set PXZ(x, z) = PX(x)W (z|x). Moreover we assume, without essential loss of

generality, that (i) supp(PX) = X and (ii) for every z ∈ Z , there exists at least one x ∈ X such that W (z|x) > 0.
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0.2 0.4 0.6 0.8 1

0.2

0.4
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Ei.i.d.
s

Ec.c.
s

Ec.c.
s

(a) PX(0) = 0.42, PX(1) = 0.58

0.2 0.4 0.6 0.8 1

0.2

0.4
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Ei.i.d.
s

Ec.c.
s

Ec.c.
s

(b) PX(0) = 0.57, PX(1) = 0.43 (capacity-achieving)

Fig. 5. Comparison of secrecy exponents for binary asymmetric channel with WE(1|0) = 0.01, WE(0|1) = 0.303

Recall that the setting we are considering is as follows: A random code Cn = {Xn
1 , . . . , X

n
M} of block-length n

and size M = exp(nR) is generated by sampling each codeword independently from distribution PXn . A uniformly

chosen codeword from this code is transmitted through the product channel Wn and the (random) distribution of

its output sequence is as in (6).

Note that PCn(zn) is the average of M i.i.d. random variables Wn(zn|Xn
i ), i = 1, . . . ,M and, hence, is naturally

expected to concentrate around its mean, which is exactly the target distribution Φn(zn). To prove Theorem 2 we

analyze the deviations of the i.i.d. average PCn(zn) from its mean for every zn ∈ Zn.

Lemma 4. Let Φn be as defined in (21). Then,

(i) PCn � Φn with probability 1.

(ii) For both choices of PXn in (22), ∀zn ∈ supp(Φn) : Φn(zn) > (1/α)n where α > 1 is a constant that only

depends on PX and W .

Proof: See Appendix A-E.

Remark. While when PXn = PnX , Φn = PnZ and, hence, supp(Φn) = Zn, when PXn is the uniform distribution

over the type-class T nPX the support of Φn need not to be Zn. For instance, consider a binary erasure channel

and PX being uniform distribution on {0, 1}. Then Φn puts no mass on all-zero (and by symmetry all-one) output

sequences.

Let

L(zn) ,


PCn (zn)
Φn(zn) if Φn(zn) > 0,

1 otherwise,
(28)

denote the (random) likelihood ratio of each sequence zn ∈ Zn. By construction,

E[L(zn)] = 1, ∀zn ∈ Zn. (29)

Using the linearity of expectation we have,

E[D(PCn‖Φn)] = E

[ ∑
zn∈Zn

PCn(zn) log

(
PCn(zn)

Φn(zn)

)]
(30)
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=
∑

zn∈Zn
E
[
PCn(zn) log

(
PCn(zn)

Φn(zn)

)]
(31)

=
∑

zn∈Zn
Φn(zn)E[L(zn) logL(zn)] (32)

=
∑

P∈Pn(Z)

∑
zn∈T nP

Φn(zn)E[L(zn) log (L(zn))]. (33)

For convenience, let us define

Qn ,
{
Q ∈ Pn(X × Z) : PXn(T nQX ) > 0

}
(34)

Q ,
{
Q ∈ P(X × Z) : PXn(T nQX ) > 0

}
(35)

as the set of all feasible joint n-types and joint distributions, respectively.2

Theorem 2 follows as a corollary to Theorem 5.

Theorem 5. For any Q ∈ Qn let

gn(Q) , ω(Q)

+ min
Q′∈Qn[QZ ]

{I(Q′) +D(Q′X‖PX)− ω(Q′)}, (36)

where

Qn[QZ ] ,
{
Q′ ∈ Qn : Q′Z = QZ}, ∀QZ ∈ Pn(Z), (37)

and

ω(Q) ,
∑
x,z

Q(x, z) logW (z|x). (38)

Then, ∀zn ∈ Zn :

Φn(zn)
(
E[L(zn) logL(zn)] +

log(e)

M

)
.
= exp

(
−n[min{E1(Q̂zn), E2(Q̂zn)}+H(Q̂zn)]

)
(39)

where

E1(QZ) = min
Q′∈Qn[QZ ]:
gn(Q′)≤R+δn

{
D(Q′‖PXZ) +R− gn(Q′)

}
, (40)

E2(QZ) = min
Q′∈Qn[QZ ]:
gn(Q′)>R+δn

D(Q′‖PXZ), (41)

and

δn ,
2 log(e) + 2|X ||Z| log(n+ 1)

n
. (42)

2More simply, Qn = Pn(X × Z) (respectively Q = P(X × Z)) for the i.i.d. random coding ensemble (since supp(PX) = X ), and

Qn = {Q ∈ Pn(X ×Z) : QX = PX} (respectively Q = {Q ∈ P(X ×Z) : QX = PX}) for the ensemble of random constant-composition

codes.
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Proof of Theorem 2: Plugging (39) into (33) we get

E[D(PCn‖Φn)] + log(e)
1

M
.
= exp

(
−n min

QZ∈Pn(Z)
min{E1(QZ), E2(QZ)}

)
. (43)

Moreover, since limn→∞ δn = 0 and the sets of n-types are dense,

lim
n→∞

min
QZ∈Pn(Z)

min{E1(QZ), E2(QZ)}

= min
Q∈Q
{D(Q‖PXZ) + [R− g?(Q)]+} , Es(PX ,W,R), (44)

where

g?(Q) , ω(Q)

+ min
Q′∈Q
Q′Z=QZ

{I(Q′) +D(Q′X‖PX)− ω(Q′)}. (45)

It can be shown that g?(PXZ) = I(X;Z) (see (ii) of Lemma 7 in Appendix A-A). Consequently, Es(PX ,W,R) ≤

[R− I(X;Z)]+ < R when I(X;Z) > 0. Using this observation in (43) shows

lim
n→∞

− 1

n
logE[D(PCn‖Φn)] = Es(PX ,W,R). (46)

Also, g?(PXZ) = I(X;Z) implies Es, as defined in (44), is zero for R ≤ I(X;Z) and strictly positive for

R > I(X;Z) as the objective function of (44) is the sum of two non-negative functions of Q, and is zero iff both

are zero (i.e., iff Q = PXZ and R ≤ I(X;Z)).

For the ensemble of i.i.d. random codes, it can be verified that g?(Q) = f(Q) defined in (23b) (see (i) in

Lemma 7 in Appendix A-A). The equivalence of (23) and (25) is shown in Appendix A-B.

Similarly, for the ensemble of constant-composition random codes, any Q ∈ Q must be of the form PX × V for

some stochastic matrix V : X → Z which reduces the exponent to (24).

That the exponents Ei.i.d.
s and Ec.c.

s are strictly increasing in R is proved in Appendix A-C.

It remains to prove Theorem 5. For this we shall use the following auxiliary lemma which is proved in

Appendix A-F.

Lemma 6. Let A be an arbitrary non-negative random variable. Then, for any θ > 0,

c(θ)
[var(A)

E[A]
− τθ(A)

]
≤ E[A ln(A/E[A])] ≤ var(A)

E[A]
(47)

where

τθ(A) , E[A]
[
θ2 Pr{A > (θ + 1)E[A]}

+ 2

∫ +∞

θ

vPr{A > (v + 1)E[A]}d v
]
, (48)

and

c(θ) ,
(1 + θ) ln(1 + θ)− θ

θ2
. (49)
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Remark. It follows from Jensen’s inequality that E[A ln(A/E[A])]) ≥ 0. Lemma 6 improves this lower bound for

random variables with sufficiently small tails.

Proof of Theorem 5: Assume hereafter that zn ∈ Zn is fixed. We, firstly, have

Φn(zn) =
∑

xn∈Xn
PXn(xn)Wn(zn|xn) (50)

=
∑

xn∈Xn
PXn(xn)

∑
Q∈Qn[Q̂zn ]

1{(xn, zn) ∈ T nQ } exp(nω(Q)) (51)

=
∑

Q∈Qn[Q̂zn ]

{ ∑
xn∈Xn

PXn(xn)1{(xn, zn) ∈ T nQ }
}

︸ ︷︷ ︸
,pQ

exp(nω(Q)) (52)

where ω(Q) is defined in (38). It is clear that
∑
Q∈Qn[Q̂zn ] pQ = 1 (our notation is somewhat imprecise because

pQ depends on zn through its type; but, as we have fixed zn throughout the proof, we avoid explicitly showing

this dependence for the sake of brevity). It can also be shown (see Appendix A-G) that for any distribution PXn

that depends on xn only though its type—including our cases of interest,

pQ =
|T nQ |

|T nQZ ||T
n
QX
|
PXn(T nQX ), ∀Q ∈ Qn[Q̂zn ]. (53)

For both ensembles of i.i.d. and constant-composition random codes, PXn(T nQX )
.
= exp(−nD(QX‖PX)), for

Q ∈ Qn, thus

pQ
.
= exp

(
−n[I(Q) +D(QX‖PX)]

)
. (54)

Combining the exponent in (54) and ω(Q), we have

Φn(zn)
.
= exp

(
−n min

Q∈Qn[Q̂zn ]
{I(Q) +D(QX‖PX)− ω(Q)}

)
(55)

= exp
(
−n
[

min
Q∈Qn[Q̂zn ]

D(Q‖PXZ) +H(Q̂zn)
])

(56)

Note that if Φn(zn) = 0, then the exponent of the above is infinity which means minQ∈Qn[Q̂zn ]D(Q‖PXZ) = +∞.

This implies both exponents E1(Q̂zn) and E2(Q̂zn) (see (40) and (41)) are infinity and (39) holds. Therefore, we

shall restrict our attention to the non-trivial case when zn ∈ supp(Φn).

Using the type-enumeration method [27], [29] we have

PCn(zn) =
1

M

M∑
i=1

Wn(zn|Xn
i ) (57)

=
1

M

∑
Q∈Qn[Q̂zn ]

NQ exp
(
nω(Q)

)
(58)

where

NQ ,
∣∣{xn ∈ Cn : (xn, zn) ∈ T nQ

}∣∣ (59)
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is the number of codewords in Cn that have joint type Q with zn and ω(Q) is defined in (38). The collection {NQ :

Q ∈ Qn[Q̂zn ]} has a multinomial distribution with cluster size M and success probabilities {pQ : Q ∈ Qn[Q̂zn ]}

(defined in (53)). Since zn ∈ supp(Φn),

L(zn) =
PCn(zn)

Φn(zn)
=

1

M

∑
Q∈Qn[Q̂zn ]

NQ`(Q), (60)

where we have defined

`(Q) ,
exp
(
nω(Q)

)
Φn(zn)

. (61)

Using (55) we have

`(Q)
.
= exp

(
ngn(Q)

)
, (62)

with gn(Q) defined in (36). It also can be verified (see Appendix A-H) that explicit bounds on `(Q) are

(n+ 1)−2|X ||Z| exp
(
ngn(Q)

)
≤ `(Q)

≤ (n+ 1)|X ||Z| exp
(
ngn(Q)

)
. (63)

Using the elementary properties of the multinomial distribution, it can be checked (see Appendix A-I) that if

A ,
1

M

∑
Q∈A

NQ`(Q) (64)

for some A ⊆ Qn[Q̂zn ], then

E[A] =
∑
Q∈A

pQ`(Q), (65a)

var(A) =
1

M

∑
Q∈A

pQ`(Q)2 − 1

M

(
E[A]

)2
. (65b)

Partition Qn[Q̂zn ] as

Q′ , {Q ∈ Qn[Q̂zn ] : gn(Q) ≤ R+ δn}, (66)

Q′′ , {Q ∈ Qn[Q̂zn ] : gn(Q) > R+ δn}, (67)

(with δn defined as in (42)), and split the sum in (60) as

L(zn) =
1

M

∑
Q∈Q′

`(Q)NQ︸ ︷︷ ︸
,L1

+
1

M

∑
Q∈Q′′

`(Q)NQ︸ ︷︷ ︸
,L2

. (68)

Using (65a) we have

E[L1] =
∑
Q∈Q′

`(Q)pQ , µ1, (69)

E[L2] =
∑
Q∈Q′′

`(Q)pQ , µ2. (70)

Moreover, using (65b) we have

var(L1) +
1

M
µ2

1 =
1

M

∑
Q∈Q′

`(Q)2pQ , ν1. (71)
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One can check (using the upper bound of (63)) that the choice of Q′ implies

ν1 ≤̇ µ1. (72)

For non-negative l1 and l2, and l = l1 + l2,

l ln(l) = l1 ln(l) + l2 ln(l) (73)

= l1 ln(l1) + l1 ln(1 + l2/l1) + l2 ln(l) (74)

≤ l1 ln(l1) + l2(1 + ln(l)) (75)

(since ln(1 + l2/l1) ≤ l2/l1), thus,

E[L(zn) logL(zn)] = log(e)E[L(zn) lnL(zn)] (76)

≤ log(e)
(
E[L1 ln(L1)] + E[L2(1 + lnL(zn))]

)
(77)

(∗)
≤ log(e)E[L1 ln(L1)] + log(e)(1 + n lnα)E[L2] (78)

where (∗) follows from (ii) in Lemma 4 (as L(zn) ≤ 1/Φn(zn)). The upper bound of (47) implies

E[L1 ln(L1)] ≤ µ1 ln(µ1) +
var(L1)

µ1

(∗)
≤ var(L1)

µ1
(79)

where (∗) follows since µ1 ≤ 1. Moreover, using (71) and the fact that µ1 + µ2 = 1 we have

var(L1)

µ1
=
ν1

µ1
− µ1

M
(80)

= ν1
µ1 + µ2

µ1
− 1− µ2

M
(81)

= ν1 + µ2

( ν1

µ1
+

1

M

)
− 1

M
. (82)

Using (82) in (79) we have

E[L1 ln(L1)] +
1

M
≤ ν1 +

( ν1

µ1
+

1

M

)
µ2 (83)

≤̇ ν1 + µ2 (84)

where the last inequality follows from (72) and the fact that M ≥ 1.

Using (84) and (70) (and noting that α ≥ 1 only depends on PX and W ) we can further upper-bound (78) as

E[L(zn) logL(zn)] + log(e)
1

M
≤̇ ν1 + µ2. (85)

Using the same reasoning as that we used for deriving (55) we have

Φn(zn)µ2 =
∑
Q∈Q′′

pQ exp
(
nω(Q)

)
(86)

.
= exp

(
−n[E2(Q̂zn) +H(Q̂zn)]

)
. (87)

Furthermore, using (62), we have

1

M
`(Q)2pQ

.
= exp

(
n[gn(Q)−R]

)
`(Q)pQ (88)
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which implies

Φn(zn)ν1
.
= exp

(
−n[E1(Q̂zn) +H(Q̂zn)]

)
. (89)

Plugging the (upper) bounds of (87) and (89) into (85) we get

Φn(zn)
(
E[L(zn) logL(zn)] + log(e)

1

M

)
≤̇ exp

(
−n[min{E1(Q̂zn), E2(Q̂zn)}+H(Q̂zn)]

)
. (90)

Now we shall establish the lower bound counterpart of (90) to complete the proof. The choice of Q′ implies

Pr
{
L2 ∈ (0, e2)

}
= 0. (91)

This holds since the lower bound of (63), together with the choice of Q′′ in (67) imply ∀Q ∈ Q′ : `(Q) ≥

e2 exp(nR). Therefore, either ∀Q ∈ Q′ : NQ = 0 which implies L2 = 0 or ∃Q0 ∈ Q′′ such that NQ0 ≥ 1, in

which case,

L2 ≥
1

M
`(Q0)NQ0

≥ 1

M
`(Q0) ≥ e2. (92)

Equation (91) implies,

E[L2 ln(L2)] =
∑
l≥e2

l ln(l) Pr{L2 = l} (93)

≥ ln(e2)
∑
l≥e2

lPr{L2 = l} = 2E[L2]. (94)

For positive l1 and l2, and l = l1 + l2 ≥ max{l1, l2},

l ln(l) = l1 ln(l) + l2 ln(l) (95)

≥ l1 ln(l1) + l2 ln(l2). (96)

Therefore,

E[L(zn) lnL(zn)] ≥ E[L1 ln(L1)] + E[L2 ln(L2)]. (97)

Using the lower bound of (47) (with τθ(L1) and c(θ) defined as in (48) and (49) respectively), ∀θ > 0:

E[L1 ln(L1)] ≥ E[L1] ln(E[L1]) + c(θ)
[var(L1)

E[L1]
− τθ(L1)

]
(98)

(a)
= (1− E[L2]) ln(1− E[L2]) + c(θ)

[var(L1)

E[L1]
− τθ(L1)

]
(99)

(b)
≥ −E[L2] + c(θ)

[var(L1)

E[L1]
− τθ(L1)

]
. (100)

In the above (a) follows since E[L1] = 1 − E[L2] and (b) since (1 − ζ) ln(1− ζ) ≥ −ζ. Using (94) and (100) in

(96) shows that ∀θ > 0:

E[L(zn) lnL(zn)] ≥ c(θ)
[var(L1)

E[L1]
− τθ(L1)

]
+ E[L2]. (101)
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Now we shall upper-bound τθ(L1). Starting by bounding the tail of L1 we have

Pr{L1 ≥ (v + 1)E[L1]}

= Pr

∑
Q∈Q′

`(Q)(NQ −MpQ) ≥Mv E[L1]

 (102)

≤ Pr

 ⋃
Q∈Q′

{
`(Q)(NQ −MpQ) ≥ Mv E[L1]

|Q′|

} (103)

(a)
≤
∑
Q∈Q′

Pr

{
`(Q)(NQ −MpQ) ≥ Mv E[L1]

|Q′|

}
(104)

(b)
≤
∑
Q∈Q′

E[`(Q)4(NQ −MpQ)4]

(Mv E[L1]/|Q′|)4
(105)

=
|Q′|4

v4(E[L1])4

1

M4

∑
Q∈Q′

`(Q)4 E[(NQ −MpQ)4], (106)

where (a) is the union bound and (b) follows by Markov inequality. For N ∼ Binomial(M,p),

E[(N −Mp)4] = Mp(1− p)[1 + 3(M − 2)p(1− p)] (107)

≤ var(N) + 3 var(N)2. (108)

Continuing (106) we have

1

M4

∑
Q∈Q′

`(Q)4 E[(NQ −MpQ)4]

≤ 1

M4

∑
Q∈Q′

`(Q)4
(
var(NQ) + 3 var(NQ)2

)
(109)

(a)

≤̇ 1

M2

∑
Q∈Q′

`(Q)2 var(NQ) + 3
1

M4

∑
Q∈Q′

`(Q)4 var(NQ)2 (110)

(b)
≤ 1

M2

∑
Q∈Q′

`(Q)2 var(NQ)

+ 3
[ 1

M2

∑
Q∈Q′

`(Q)2 var(NQ)
]2

(111)

(c)
≤ ν1 + 3ν1

2
(d).
= ν1, (112)

where (a) follows since `(Q) ≤ exp(nδn)M
.
= M for Q ∈ Q′, (b) since for positive summands, the sum of the

squares is less than the square of the sums, (c) since var(NQ) ≤ MpQ, and (d) since ν1 ≤̇ µ1 ≤ 1 (see (72)).

Plugging (112) into (106) we get

Pr{L1 ≥ (v + 1)E[L1]} ≤̇ |Q
′|4ν1

(E[L1])4

1

v4
(113)
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Using the above in (48) we get

τθ(L1) = E[L1]
[
θ2 Pr{L1 > (θ + 1)E[L1]}

+ 2

∫ +∞

θ

vPr{L1 > (v + 1)E[L1]} d v
]

(114)

≤̇ E[L1]
[θ2

θ4
+ 2

∫ +∞

θ

v

v4
d v
] |Q′|4
E[L1]4

ν1 (115)

.
=

ν1

µ1
3

|Q′|4

θ2
. (116)

Since (116) implies τθ(L1) ≤ d(n) |Q
′|4ν1
θ2µ3

1
for some sub-exponentially increasing sequence d(n) (which only depends

on |X | and |Z|), taking

θn , 2
√
d(n)

|Q′|2

µ1
, (117)

we will have

τθn(L1) ≤ 1

4

ν1

µ1
. (118)

Using (71) and (118) in (101) we have

E[L(zn) lnL(zn)] ≥ c(θn)
[var(L1)

E[L1]
− τθn(L1)

]
+ E[L2] (119)

≥ c(θn)
[ ν1

µ1
− 1

M
µ1 −

1

4

ν1

µ1

]
+ E[L2] (120)

(∗)
≥ c(θn)

[3

4

ν1

µ1
− 1

M

]
+ E[L2] (121)

(where (∗) follows because µ1 ≤ 1). Since (for θ > 0), c(θ) ≤ c(0) = 1
2 < 1, we can further lower-bound (121) as

E[L(zn) lnL(zn)] ≥ 3

4
c(θn)

ν1

µ1
+ E[L2]− 1

M
(122)

Moreover,

c(θn) =
1

θn

(1 + θn) ln(1 + θn)− θn
θn

(123)

(a)
≥ 1

θn

(1 + µ1θn) ln(1 + µ1θn)− µ1θn
µ1θn

(124)

= µ1
(1 + µ1θn) ln(1 + µ1θn)− µ1θn

(µ1θn)2
(125)

(b)

≥̇ µ1, (126)

where (a) follows since (1+θ) ln(1+θ)−θ
θ is increasing in θ and µ1 ≤ 1, and (b) since (1+θ) ln(1+θ)−θ

θ2 is decreasing

in θ and µ1θn = 2
√
d(n)|Q′|2 ≤ 2

√
d(n)(n+ 1)2|X ||Z|. Using this lower bound in (122) we get

E[L(zn) logL(zn)] + log(e)
1

M

= log(e)
(
E[L(zn) lnL(zn)] +

1

M

)
≥̇ ν1 + µ2 (127)
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which, in turn, shows

Φn(zn)
(
E[L(zn) logL(zn)] + log(e)

1

M

)
≥̇ exp

(
−n[min{E1(Q̂zn), E2(Q̂zn)}+H(Q̂zn)]

)
, (128)

using the (lower) bounds of (87) and (89). Combining (90) and (128) concludes the proof.

VI. CONCLUSION AND DISCUSSION

We analyzed the exact exponential decay rate of the information leaked to the eavesdropper in Wyner’s wiretap

channel setting when an average wiretap channel code in the ensemble of i.i.d. or constant-composition random

codes is used for communication. Our analysis shows that the previously-derived lower bound on the secrecy

exponent of i.i.d. random codes in [7]–[10] is, indeed, tight. Moreover, our result for constant-composition random

codes improves upon that of [12] (see (27) and examples in Section IV-B).

A key step in our analysis (which is applicable to any ensemble of random codes with independently sampled

codewords) is to observe the equivalence of secrecy and resolvability exponents for the ensemble and, as a result,

reducing the problem to the analysis of the resolvability exponent. The latter is easier as the informational divergence

of interest (whose exponential decay rate is being assessed) involves a single random distribution (the output

distribution) while the former involves two (the conditional and unconditional output distributions). We should

emphasize that establishing secrecy via channel resolvability is a standard technique which was used in [6], [9],

[10], [14] (also, in combination with privacy amplification in [7], [12]) whose advantages are discussed in [4]. Our

result (Theorem 1) highlights the usefulness of this tool by showing that the resolvability exponent is not only a

lower bound to the secrecy exponent but also equals the secrecy exponent.

Thanks to such a reduction, we extended the method of [10] to derive the exact resolvability exponent of random

codes. It is noteworthy that, as it was already envisioned in [10], the method presented there was conveniently

applicable to the ensemble of constant-composition random codes (as well as the ensemble of i.i.d. random codes

already studied in [10]).

It is remarkable that, unlike the channel coding problem for which constant-composition random codes turn out

to be never worse than i.i.d. random codes in terms of the exponent [21], for the resolvability problem we have

examples (see Figures 4 and 5) where i.i.d. random codes are better than constant-composition codes. The examples

presented in Section IV-B suggest that the superior ensemble (in terms of the secrecy exponent) depends on the

channel WE alone (i.e., for a given channel, either of the ensembles yields a better secrecy exponent for all input

distributions). A subject for future research would be to characterize the set of channels for which the ensemble of

i.i.d. random codes results in a better secrecy exponent (and vice versa).

As shown in [2], for general pairs of channels (WM,WE) if I(X;Y ) ≤ I(X;Z) for all input distributions PX , one

can prefix the channel with an auxiliary channel PX|U : U → X , and by choosing PU such that I(U ;Y )−I(U ;Z) >

0 (when U −−◦ X −−◦ (Y,Z) have distribution PU (u)PX|U (x|u)WM(y|x)WE(z|x)) achieve secret message rates up

to I(U ;Y )− I(U ;Z). Channel prefixing is also proposed in [9] as a technique to treat the wiretap channels with

cost constraints (the auxiliary channel PX|U will be chosen in such a way that its output sequence satisfies the cost
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constraints for the physical channel). It is obvious that our results (as well as those of others cited) are immediately

extensible to such cases.

APPENDIX A

COMPLEMENTARY PROOFS

A. Properties of g? and g

Lemma 7. Let f : Q → R and g? : Q → R be defined as in (23b) and (45) respectively, then

(i) ∀Q ∈ Q :

f(Q) ≤ g?(Q) ≤ I(Q) +D(QX‖PX), (129)

and the lower bound is attained if and only if P̃X(x) , PX(x)
∑
zW (z|x)QZ(z)

PZ(z) ∈ Q.

(ii) g?(PX,Z) = I(X;Z),

Proof: The upper bound of (129) follows since Q′ = Q is a feasible point in the minimization of (45). To

establish the lower bound we have

I(Q′) +D(Q′X‖PX)− ω(Q′)

= D(Q′‖PXZ)−D(Q′Z‖PZ) +
∑
z

Q′Z(z) log
1

PZ(z)
. (130)

Therefore,

min
Q′:Q′Z=QZ

{I(Q′) +D(Q′X‖PX)− ω(Q′)}

= min
Q′:Q′Z=QZ

{D(Q′‖PXZ)−D(Q′Z‖PZ)}

+
∑
x,z

Q(x, z) log
1

PZ(z)
. (131)

By the convexity of divergence the value of the minimization on the right-hand-side of (131) is non-negative, hence,

g?(Q) ≥
∑
x,z

Q(x, z) log
W (z|x)

PZ(z)
. (132)

Moreover, the minimization (on the right-hand-side of (131)) evaluates to 0 if we can pick Q′(x, z) = PX|Z(x|z)QZ(z).

Finally, (ii) follows as f(PXZ) = I(X;Z).

To simplify the presentation let V denote the set of all stochastic matrices V : X → Z such that PX × V �

PX ×W . V is a compact and convex set. Moreover if V ′ : X → Z is not in V , ω(V ′) = −∞, hence I(P, V ′)−

ω(V ′) = +∞. Consequently we can rewrite (24b) as

g(V ) = ω(V ) + min
V ′∈V:

PX◦V ′=PX◦V

{I(PX , V
′)− ω(V ′)}. (133)

Note that the minima in the above is well-defined as V is a compact set.

Lemma 8. The function g : V → R (as defined in (24b)) is convex and continuous in V .
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Proof: Since ω(V ) (as defined in (24c)) is linear in V and for V ∈ V is continuous the claim follows if we

show that the mapping

ψ : V 7→ min
V ′∈V :

PX◦V ′=PX◦V

{I(PX , V
′)− ω(V ′)} (134)

is convex and continuous on V .

We first prove the convexity. Pick two stochastic matrices V1 ∈ V and V2 ∈ V , λ ∈ [0, 1], and set V = λV1 +λV2

(where λ = 1− λ). Suppose the minimizer in (134) is V ?j for V = Vj , j = 1, 2. We have,

min
V ′∈V :

PX◦V ′=PX◦V

{I(PX , V
′)− ω(V ′)}

(a)
≤ I(PX , λV

?
1 + λV ?2 )− ω(λV ?1 + λV ?2 ) (135)

(b)
= I(PX , λV

?
1 + λV ?2 )− λω(V ?1 )− λω(V ?2 ) (136)

(c)
≤ λ

(
I(PX , V

?
1 )− ω(V ?1 )

)
+ λ
(
I(PX , V

?
2 )− ω(V ?2 )

)
. (137)

where (a) follows since PX ◦ (λV ?1 +λV ?2 ) = λPX ◦V ?1 +λPX ◦V ?2 = λPX ◦V1 +λPX ◦V2 = PX ◦V , (b) since

ω(V ) is linear in V , and (c) since I(PX , V ) is convex in V .

Convexity of ψ implies continuity in the interior of the set V . The only possibility for ψ for being discontinuous

is to ‘jump up’ at the boundaries. More precisely, to have a sequence {Vn ∈ V : n ∈ N} such that limn→∞ Vn = V

(for some V on the boundaries of the set V) but limn→∞ ψ(Vn) < ψ(V ). We shall show that this cannot happen.

Let V ?n be the minimizer in (134) for V = Vn, that is,

V ?n = arg min
V ′∈V :

PX◦V ′=PX◦Vn

{I(PX , V
′)− ω(V ′)}. (138)

Consequently,

lim
n→∞

ψ(Vn) = lim
n→∞

{I(PX , V
?
n )− ω(V ?n )}. (139)

The sequence {V ?n ∈ V : n ∈ N} must have a convergent subsequence and hence a limit point in V (as V

is compact). Let limn→∞ V ?n = Ṽ (by passing to the convergent subsequence if necessary). Since the mapping

V ′ 7→ I(PX , V
′)− ω(V ′) is continuous on V ,

lim
n→∞

{I(PX , V
?
n )− ω(V ?n )} = I(PX , Ṽ )− ω(Ṽ ). (140)

Furthermore, the projection V ′ 7→ PX ◦ V ′ is continuous, thus,

lim
n→∞

PX ◦ V ?n = PX ◦ Ṽ , (141)

and

lim
n→∞

PX ◦ Vn = PX ◦ V. (142)

Moreover,

PX ◦ Vn = PX ◦ V ?n , ∀n ∈ N, (143)
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by definition. Combining (141), (142), and (143) we have

PX ◦ Ṽ = PX ◦ V (144)

Consequently,

lim
n→∞

ψ(Vn) = I(PX , Ṽ )− ω(Ṽ ) (145)

≥ min
V ′∈V :

PX◦V ′=PX◦V

I(PX , V
′)− ω(V ′) (146)

= ψ(V ). (147)

This concludes the proof.

B. Alternative form of Ei.i.d.
s

Using the fact that max{a, 0} = max0≤λ≤1 λa,

min
Q

{
D(Q‖PXZ) + [R− f(Q)]+

}
= min

Q

{
D(Q‖PXZ) + max

0≤λ≤1
λ[R− f(Q)]

}
(148)

= min
Q

max
0≤λ≤1

{λR+D(Q‖PXZ)− λf(Q)} (149)

(a)
= max

0≤λ≤1
min
Q
{λR+D(Q‖PXZ)− λf(Q)} (150)

= max
0≤λ≤1

{
λR+ min

Q
{D(Q‖PXZ)− λf(Q)}

}
(151)

(b)
= max

0≤λ≤1
{λR− F0(PX ,W, λ)} (152)

where (a) follows since D(Q‖PXZ)− λf(Q) is convex in Q (recall that f(Q) is linear in Q) and (b) since

D(Q‖PXZ)− λf(Q)

=
∑
x,z

Q(x, z) log
Q(x, z)

PXZ(x, z)1+λPX(x)−λPZ(z)−λ
(153)

(∗)
≥ − log

∑
x,z

PXZ(x, z)1+λPX(x)−λPZ(z)−λ (154)

= F0(PX ,W, λ), (155)

with equality in (∗) iff Q(x, z) ∝ PXZ(x, z)1+λPX(x)−λPZ(z)−λ.

C. Strict Monotonicity of Ei.i.d.
s and Ec.c.

s in R

That Ei.i.d.
s is strictly increasing in R for R > I(X;Z) can be easily seen through the form of (25): Ei.i.d.

s is

the supremum of affine functions of R thus is convex in R. On the other side, since F0(PX ,W, λ) is a convex

function of λ passing through the origin with slope I(X;Z), Ei.i.d.
s (PX ,W,R) starts to increase above 0 once R

exceeds I(X;Z) which means it will be strictly increasing for R > I(X;Z).
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We only need to prove the claim for Ec.c.
s . (This proof may also be used to show Ei.i.d.

s is strictly increasing in

R, replacing g(V ) with f(Q).) Note that

Ec.c.
s (PX ,W,R) = min

{
min

V :g(V )≥R
D(V ‖W |PX),

min
V :g(V )≤R

{D(V ‖W |PX) +R− g(V )}
}
. (156)

We first show that for R > I(X;Z),

Ec.c.
s (PX ,W,R) = min

V :g(V )≤R
{D(V ‖W |PX) +R− g(V )} (157)

= R+ min
V :g(V )≤R

{D(V ‖W |PX)− g(V )} (158)

This follows since for R > I(X;Z),

min
V :g(V )≥R

D(V ‖W |PX) = min
V :g(V )=R

D(V ‖W |PX) (159)

Let us first prove (159): Suppose this is not the case, i.e., there exists V ? with g(V ?) > R such that D(V ?‖W |PX) ≤

D(V ‖W |PX) for every V with g(V ) ≥ R. We can safely assume that PX × V ? � PX × W (otherwise

D(V ‖W |PX) = +∞ for all V such that g(V ) ≥ R and (158) automatically follows). Let Vλ , λV ? + (1− λ)W ,

for λ ∈ [0, 1]. It is easy to check that ∀λ ∈ [0, 1] : PX × Vλ � PX × W , thus the mapping λ 7→ g(Vλ) is

convex and continuous by the convexity and continuity of g (see Lemma 8) on the interval [0, 1]. We know that

g(V1) = g(V?) > R and g(V0) = g(W ) = I(X;Z) < R. Therefore, there exists β ∈ (0, 1) for which g(Vβ) = R.

On the other side, the convexity of divergence implies

D(Vβ‖W |PX) ≤ βD(V ?‖W |PX) + (1− β)D(W‖W |PX) (160)

< D(V ?‖W |PX) (161)

since β < 1. This contradicts the optimality of V ?.

Now, we show that Ec.c.
s (PX ,W,R

′) > Ec.c.
s (PX ,W,R) for R′ > R > I(X;Z). Let

V ∗ = arg min
V :g(V )≤R′

{D(V ‖W |PX)− g(V )}. (162)

If g(V ∗) ≤ R, then

Ec.c.
s (PX ,W,R

′) = R′ +D(V ∗‖W |PX)− g(V ∗) (163)

= R′ + min
V :g(V )≤R

{D(V ‖W |PX)− g(V )} (164)

> R+ min
V :g(V )≤R

{D(V ‖W |PX)− g(V )} (165)

= Ec.c.
s (PX ,W,R) (166)

which proves the claim.

Otherwise, we have R < g(V ∗) ≤ R′. Consider once again the family of stochastic matrices defined as Vλ ,

λV ∗+ (1−λ)W . We know PX ×V ∗ � PX ×W (for if it is not, D(V ∗‖W |PX) = +∞ and g(V ∗) = −∞ which

means the exponent is infinity which is contradiction since Ec.c.
s (PX ,W,R

′) ≤ R′ − I(X;Z) by taking V = W
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in (158)). Using the same reasoning as above, since g(V1) > R and g(V0) = I(X;Z) < R one can find β ∈ (0, 1)

such that g(Vβ) = R and

D(Vβ‖W |PX) ≤ βD(V ?‖W |PX). (167)

Moreover, we know that

D(Vβ‖W |PX) = R+ [D(Vβ‖W |PX)− g(Vβ)] (168)

≥ R+ min
V :g(V )≤R

{D(V ‖W |PX)− g(V )} (169)

= Ec.c.
s (PX ,W,R). (170)

One the other side,

Ec.c.
s (PX ,W,R

′) = R′ +D(V ∗|W |PX)− g(V ∗) (171)

(a)
≥ D(V ∗‖W |PX) (172)

(b)
≥ 1

β
D(Vβ‖W |PX) (173)

(c)
≥ 1

β
Ec.c.

s (PX ,W,R) (174)

(∗)
> Ec.c.

s (PX ,W,R), (175)

where (a) follows since g(V ?) ≤ R′, (b) follows from (167) and (c) from (170) and finally (∗) holds since β < 1

and Ec.c.
s (PX ,W,R) > 0.

D. Proof of (27)

By Lemma 7 we have g(V ) ≤ I(PX , V ), thus,

R− g(V ) ≥ R− I(PX , V ). (176)

Therefore,

Ec.c.
s (PX ,W,R) = min

V

{
D(V ‖W |PX) + [R− g(V )]+

}
(177)

≥ min
V

{
D(V ‖W |PX) + [R− I(PX , V )]+

}
(178)

(a)
= min

V

{
D(V ‖W |PX) + max

0≤λ≤1
{λR− λI(PX , V )}

}
(179)

(b)
= max

0≤λ≤1

{
λR+ min

V
{D(V ‖W |PX)− λI(PX , V )}

}
(180)
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where (a) follows since [a]+ = max0≤λ≤1 λa and (b) by observing that D(V ‖W |PX) − λI(PX , V ) is convex in

V for λ ≤ 1 (and linear in λ). The latter holds since I(PX , V ) = minQZ∈P(Z)D(V ‖QZ |PX), therefore,

D(V ‖W |PX)− λI(PX , V )

= max
QZ∈P(Z)

{D(V ‖W |PX)− λD(V ‖QZ |PX)} (181)

= max
QZ

∑
x,z

PX(x)V (z|x) log
V (z|x)1−λ

W (z|x)QZ(z)−λ
(182)

=
1

t
max
QZ

∑
x,z

PX(x)V (z|x) log
V (z|x)

W (z|x)tQZ(z)1−t . (183)

where we have defined t , 1
1−λ in the last step. The objective function inside the max in (183) is convex in V and

since the supremum of convex functions is still convex, the convexity of D(V ‖W |PX)−λI(PX , V ) in V follows.

It can also be seen that the objective function is concave in QZ for λ > 0 (i.e. t > 1). Using this observation we

have

min
V
{D(V ‖W |PX)− λI(PX , V )}

=
1

t
min
V

max
QZ

∑
x,z

PX(x)V (z|x) log
V (z|x)

W (z|x)tQZ(z)1−t (184)

=
1

t
max
QZ

min
V

∑
x,z

PX(x)V (z|x) log
V (z|x)

W (z|x)tQZ(z)1−t (185)

(a)
= max

QZ

{
−1

t

∑
x

PX(x) log
∑
z

W (z|x)tQZ(z)1−t

}
(186)

(b)
≥ max

QZ

{
−1

t
log
∑
x

PX(x)
∑
z

W (z|x)tQZ(z)1−t

}
(187)

= −min
QZ

{
1

t
log
∑
z

QZ(z)1−t
∑
x

PX(x)W (z|x)t

}
(188)

where (a) and (b) follow by the concavity of logarithm. KKT conditions imply the solution to the minimization of

(188) is

QZ(z) = c

(∑
x

PX(x)W (z|x)t
)1/t

(189)

with c−1 =
∑
z (
∑
x PX(x)W (z|x)t)

1/t. Plugging this into the objective function of (188) and replacing t = 1
1−λ

we have

min
V
{D(V ‖W |PX)− λI(PX , V )}

= − log
∑
z

(∑
x

PX(x)W (z|x)
1

1−λ

)1−λ

(190)

= −E0(PX ,W, λ). (191)

Plugging (191) into (180) proves the claim.
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E. Proof of Lemma 4

Φn(zn) is the expectation of a non-negative random variable PCn(zn). Therefore, Φn(zn) = 0 implies PCn(zn) =

0 almost surely. This proves (i).

We have

Φn(zn) =
∑

xn∈Xn
PXn(xn)Wn(zn|xn) (192)

Let

ξ , min
x∈X

PX(x) (193)

and

ζ , min
z∈Z

min
x:W (z|x)>0

W (z|x) (194)

be two strictly positive and finite constants that depend only on PX and W . Φn(zn) > 0 implies there exists at

least one sequence xn0 ∈ supp(PXn) for which Wn(zn|xn0 ) > 0. Therefore, Wn(zn|xn0 ) > ζn. Thus (192) yields

Φn(zn) ≥ PXn(xn0 )ζn. (195)

Moreover, for both choices of PXn in (22) if xn ∈ supp(PXn), PXn(xn) ≥ PnX(xn) ≥ ξn. Using this observation

in (195) proves (ii) (with α = 1
ξζ ).

F. Proof of Lemma 6

Take U , A
E[A] so that E[U ] = 1. We shall prove that

c(θ) (var(U)− τθ(U)) ≤ E[U ln(U)] ≤ var(U). (196)

The claim then follows by noting that E[A ln(A/E[A])] = E[A] E[U ln(U)] and var(A) = var(U)/(E[A])2.

We firstly have

E[U ln(U)] = E[U ln(U)− (U − 1)] (197)

≤ E[(U − 1)2] = var(U), (198)

since u ln(u)− (u− 1) ≤ (u− 1)2. Moreover,

u ln(u)− (u− 1) ≥ c(θ)(u− 1)2
1{u ≤ θ + 1}. (199)

This follows by observing that u ln(u)−(u−1)
(u−1)2 is a decreasing function of u. Thus,

E[U ln(U)] ≥ c(θ)
∫ θ+1

0

(u− 1)2 dFU (u). (200)

where FU (u) is the cumulative distribution function of u.

Furthermore, ∫ θ+1

0

(u− 1)2 dFU (u) = var(U)−
∫ +∞

θ+1

(u− 1)2 dFU (u) (201)
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Let v , u− 1 for the sake of brevity and denote by F̄V (v) , Pr{V > v} = Pr{U > v+ 1} the complementary

distribution function of V . Then, ∫ +∞

θ+1

(u− 1)2 dFU (u) =

∫ +∞

θ

v2 dFV (v) (202)

=
[
−v2F̄V (v)

]+∞
θ

+ 2

∫ +∞

θ

vF̄V (v) d v (203)

(∗)
= θ2F̄V (θ) + 2

∫ +∞

θ

vF̄V (v) d v. (204)

The equality in (∗) follows since we assumed the variance of U exists. This proves (196).

G. Proof of (53)

We have

pQ =
∑

xn∈Xn
1{(xn, zn) ∈ T nQ }PXn(xn) (205)

=
PXn(T nQX )

|T nQX |
∑

xn∈Xn
1{(xn, zn) ∈ T nQ } (206)

since PXn(xn) only depends on the type of xn. On the other side, we have

|T nQ | =
∑

zn∈Zn

∑
xn∈Xn

1
{

(xn, zn) ∈ T nQ
}

(207)

The value of the inner sum in (207) only depends on the type of zn3 and, clearly, is zero if QZ 6= Q̂zn . Thus

|T nQ | = |T nQ̂zn |1{QZ = Q̂zn}
∑

xn∈Xn
1
{

(xn, zn) ∈ T nQ
}
. (208)

Plugging (208) into (206) yields (53).

H. Derivation of (63)

For both ensembles of interest we have

exp
(
−n[H(QX) +D(QX‖PX)]

)
≤
PXn

(
T nQX

)∣∣T nQX ∣∣
≤ (n+ 1)|X | exp

(
−n[H(QX) +D(QX‖PX)]

)
. (209)

Moreover,

(n+ 1)−|X||Z| exp
(
nH(Q)

)
≤
∣∣T nQ ∣∣ ≤ exp

(
nH(Q)

)
, (210)

and

exp
(
−nH(QZ)

)
≤ 1∣∣T nQZ ∣∣ ≤ (n+ 1)|Z| exp

(
−nH(QZ)

)
(211)

3for if zn 6= z̃n have the same type, by permuting the letters of z̃n we can obtain zn. Now, if we apply the same permutation to every

xn ∈ Xn to obtain x̃n, ∑
xn∈Xn

1
{
(xn, zn) ∈ T nQ

}
=

∑
x̃n∈Xn

1
{
(x̃n, z̃n) ∈ T nQ

}
.
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Multiplying the above, we have

(n+ 1)−|X||Z| exp
(
−n[I(Q) +D(QX‖PX)]

)
≤ pQ

≤ (n+ 1)|X ||Z| exp
(
−n[I(Q) +D(QX‖PX)]

)
(212)

Plugging the above in (52) and using the fact that |Qn[Q̂zn ]| ≤ (n+1)|X ||Z| we obtain Equation 213 at the bottom

of the next page which, in turn, yields (63).

I. Proof of (65)

We only prove (65b).

var(A) =
∑
Q∈A

1

M2
`(Q)2 var(NQ)

+
∑

(Q1,Q2)∈A2

Q1 6=Q2

1

M2
`(Q1)`(Q2) cov(NQ1 , NQ2) (214)

(?)
=

1

M

∑
Q∈A

`(Q)2pQ(1− pQ)

− 1

M

∑
(Q1,Q2)∈A2

Q1 6=Q2

`(Q1)`(Q2)pQ1
pQ2

, (215)

where (?) follows since var(NQ) = MpQ(1− pQ) and cov(NQ1 , NQ2) = −MpQ1pQ2 . Moreover,∑
(Q1,Q2)∈A2

Q1 6=Q2

`(Q1)`(Q2)pQ1
pQ2

=
∑
Q1∈A

`(Q1)pQ1

∑
Q2∈A\{Q1}

`(Q2)pQ2 (216)

=
∑
Q1∈A

`(Q1)pQ1

(
E[A]− pQ1`(Q1)

)
(217)

where the last equality follows from (65a). Using the above in (215) we get,

var(A)

=
1

M

∑
Q∈A

`(Q)pQ

[
(1− pQ)`(Q)−

(
E[A]− pQ`(Q)

)]
(218)

=
1

M

∑
Q∈A

`(Q)pQ
[
`(Q)− E[A]

]
(219)

(n+ 1)−|X||Z| exp
(
−n min

Q∈Qn[Q̂zn ]
{I(Q) +D(QX‖PX)− ω(Q)}

)
≤ Φn(zn)

≤ (n+ 1)2|X ||Z| exp
(
−n min

Q∈Qn[Q̂zn ]
{I(Q) +D(QX‖PX)− ω(Q)}

)
(213)
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=
1

M

∑
Q∈A

`(Q)2pQ −
1

M
E[A]2.

APPENDIX B

NUMERICAL EVALUATION OF THE SECRECY EXPONENTS

A. Computing Ei.i.d.
s and Ec.c.

s

Both Ei.i.d.
s and Ec.c.

s can be easily evaluated via the expressions (25) and (26) using the fact that both F0 and

E0 (defined in (25b) and (26b) respectively) are convex in λ, and pass through the origin with slope I(X;Z).

For instance to evaluate Ei.i.d.
s we know that

1) for R ≤ I(X;Z) = ∂
∂λF0(PX ,W, λ)

∣∣
λ=0

, Es(PX ,W,R) = 0;

2) for I(X;Z) < R < ∂
∂λF0(PX ,W, λ)

∣∣
λ=1

, the pairs R, Ei.i.d.
s are related parametrically as

R(λ) =
∂

∂λ
F0(PX ,W, λ) (220a)

Es(λ) = λR(λ)− F0(PX ,W, λ) (220b)

for the range of λ ∈ [0, 1];

3) finally, if R ≥ F ′0(1),

Es(PX ,W,R) = R− F0(PX ,W, 1). (221)

It is clear that to evaluate Ec.c.
s one has to precisely follow the same steps replacing F0 with E0.

B. Computing Ec.c.
s

To compute Ec.c.
s (defined in (24)) one has to solve two minimizations. Namely, that of (24a) and that of (24b)

(to compute g(V )). The latter turns out to be efficiently solvable using standard convex optimization tools.

Fix QZ ∈ P(Z) (to be set to PX ◦ V to compute g(V )). Also note that I(PX , V
′)− ω(V ′) = D(V ′‖W |PX) +

H(PX◦V ′), thus, the minimization problem of (24b) is equivalent to minimizing D(V ′‖W |PX) under the constraint

PX ◦ V ′ = QZ . We have:

min
V ′:PX◦V ′=Q

D(V ′‖W |PX) = min
V ′

{
D(V ′‖W |PX)

+ max
ρ∈R|Z|

∑
z

ρz [QZ(z)− (PX ◦ V ′)(z)]
}

(222)

= max
ρ∈R|Z|

{
min
V ′

{
D(V ′‖W |PX)−

∑
x,z

PX(x)V ′(z|x)ρz

}
+
∑
z

ρzQZ(z)
}
, (223)
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where ρ , (ρ1, . . . , ρ|Z|) and the last equality follows since D(V ‖W |PX) is convex in V and the second term is

linear in V . Moreover, the inner unconstrained minimization has the value

min
V ′

{
D(V ′‖W |PX)−

∑
x,z

PX(x)V ′(z|x)ρz

}
= min

V ′

∑
x,z

PX(x)V ′(z|x) log
V ′(z|x)

W (z|x) exp(ρz)
(224)

= −
∑
x

PX(x) log
∑
z

W (z|x) exp(ρz), (225)

by choosing V ′(z|x) ∝W (z|x) exp(ρz). Plugging this into (223) we get

min
V ′:PX◦V ′=Q

D(V ′‖W |PX) = max
ρ∈R|Z|

{∑
z

ρzQZ(z)

−
∑
x

PX(x) log
∑
z

W (z|x) exp(ρz)
}
. (226)

Remark. Using Hölder’s inequality, it can be checked that the objective function of (226) is concave in ρ thus can

be efficiently maximized using standard numerical methods.

Proof: Since the first sum in the objective function of (226) is linear in ρ it is sufficient to prove that the

function

ρ 7→
∑
x

PX(x) log (W (z|x) exp(ρz)) (227)

is convex in ρ. Fix t ∈ [0, 1] and ρ, ρ′ ∈ R|Z|. For every x ∈ X , Hölder’s inequality implies∑
z

W (z|x) exp(tρz + (1− t)ρ′z)

=
∑
z

W (z|x)t exp(tρz)×W (z|x)1−t exp((1− t)ρ′z) (228)

≤

(∑
z

W (z|x) exp(ρz)

)t
×

(∑
x

W (z|x) exp(ρ′z)

)1−t

(229)

Taking the logarithm of both sides, multiplying by PX(x), and finally summing over x proves the claim.

Finally, for small alphabet sizes that we have considered in Section IV-B we can solve the minimization of (24a)

via exhaustive search.
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