
On the Memory Requirements of XPath Evaluation over
XML Streams

Ziv Bar-Yossef
IBM Almaden

650 Harry Road
San Jose, CA 95120, USA.

ziv@almaden.ibm.com

Marcus Fontoura
IBM Almaden

650 Harry Road
San Jose, CA 95120, USA.

fontoura@us.ibm.com

Vanja Josifovski
IBM Almaden

650 Harry Road
San Jose, CA 95120, USA.

vanja@us.ibm.com

ABSTRACT
The important challenge of evaluating XPath queries over
XML streams has sparked much interest in the past two
years. A number of algorithms have been proposed, support-
ing wider fragments of the query language, and exhibiting
better performance and memory utilization. Nevertheless,
all the algorithms known to date use a prohibitively large
amount of memory for certain types of queries. A natural
question then is whether this memory bottleneck is inherent
or just an artifact of the proposed algorithms.

In this paper we initiate the first systematic and theoreti-
cal study of lower bounds on the amount of memory required
to evaluate XPath queries over XML streams. We present a
general lower bound technique, which given a query, specifies
the minimum amount of memory that any algorithm evalu-
ating the query on a stream would need to incur. The lower
bounds are stated in terms of new graph-theoretic properties
of queries. The proof is based on tools from communication
complexity.

We then exploit insights learned from the lower bounds
to obtain a new algorithm for XPath evaluation on streams.
The algorithm uses space close to the optimum. Our al-
gorithm deviates from the standard paradigm of using au-
tomata or transducers, thereby avoiding the need to store
large transition tables.

1. INTRODUCTION
XML [5] is quickly gaining dominance as a format for ex-

changing and storing semi-structured data. The most popu-
lar language for querying XML data is XPath [10], which is
part of both XSLT [9] and XQuery [4], the two WWW Con-
sortium language standards for querying and transforming
XML. XPath allows addressing portions of XML documents
based on their structure and data values.

Recently, several algorithms for evaluating XPath queries
over XML streams have been proposed [1, 3, 6, 11, 14, 15, 16,
17, 19, 20]. These algorithms evaluate the query using a one-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2004, June 14–16, 2004, Paris, France.
Copyright 2004 ACM 1-58113-858-X/04/06 . . . $5.00.

pass sequential scan of the XML document, while keeping
only small critical portions of the data in main memory for
later use. Streaming algorithms are the prime choice for
domains where the XML documents are transferred between
systems. Due to their predictable access pattern, they are
also efficient over pre-stored XML data.

While demonstrating a steady progress, both in terms
of the scope of the fragment of XPath supported and in
terms of the time and space complexity, even the state of
the art algorithms incur high memory costs on certain types
of queries. Anecdotal evidence of this phenomenon has been
recorded before [14, 20], however to date there has not been
any formal or systematic study of the source for the high
memory costs.

This paper lays the first theoretical foundations for lower
bounds on the amount of memory required to evaluate XPath
queries over XML streams. We introduce powerful lower
bound techniques, based on the theory of communication
complexity [23]. As opposed to previous results in the area
[14], our lower bounds hold for any algorithm, not for a
specific algorithm or for a restricted class of algorithms. Our
lower bounds are also not anecdotal - we are not providing
examples of queries that incur large memory costs. Instead,
we introduce a technique that can assert the memory needed
to evaluate any given query within a subset of the XPath
language described below.

The lower bounds hold even for the weaker task of filtering
a sequence of streaming XML documents based on whether
they match a given XPath query. In order to show that
the bounds are tight, we designed a new filtering algorithm,
which is particularly memory-efficient while not suffering a
significant loss in running time. To the best of our knowl-
edge, this algorithm has the best theoretical efficiency guar-
antees among all the known algorithms for filtering stream-
ing XML documents. We note that the algorithm could be
extended to provide also a full-fledged evaluation of XPath
queries [17].

Complexity measures Our lower bounds apply to a
very strong measure of complexity, which we call the in-
stance data complexity and explain in more detail next. Any
query language is associated with an evaluation function Φ
which maps query-database pairs (Q,D) into output values.
By fixing a query Q, we get an induced mapping ΦQ from
databases to output values. Similarly, by fixing a database
D, we obtain an induced mapping ΦD from queries to out-
put values. Vardi [22] defined three standard measures of
complexity for database query languages: the data complex-

ity (the complexity of ΦQ, for the worst-case choice of Q),
the expression complexity (the complexity of ΦD, for the
worst-case choice of D), and the combined complexity (the
complexity of Φ). These measures are typically given in
terms of the input size.

In this paper we prove lower bounds on stronger mea-
sures of complexity, which are reminiscent of the notion of
instance-optimality [12]. Rather than considering the stan-
dard data complexity, which is a worst-case measure, we
study the instance data complexity. Formally, we charac-
terize the complexity of each one of the mappings {ΦQ}Q.
Naturally, for different queries, the corresponding mappings
may have different complexities. Thus, the complexity of
ΦQ is given in terms of quantitative properties of Q as well
as in terms of parameters of the input database. For the
latter, we consider other parameters than the database size,
such as the document depth and the document recursion
depth.

Since characterizing the complexity of all the mappings
ΦQ is typically very hard, we usually have to restrict the
class of queries Q for which we can get such a characteri-
zation. Thus, each of our lower bound theorems is accom-
panied by a definition of a fragment F of the query lan-
guage. The theorem then bounds the complexity of ΦQ for
all Q ∈ F .

Our results We prove three memory lower bounds. The
main lower bound is stated in terms of a new graph-theoretic
property of queries, which we call the query frontier size.
When viewed as a rooted tree, the frontier of a query Q
at a node u ∈ Q is the collection of u’s siblings and of its
ancestors’ siblings. The frontier size of Q is the size of the
largest frontier, over all nodes u ∈ Q. We prove that for
any Q belonging to a large fragment of XPath, the query
frontier size of Q is a lower bound on the space complexity
of evaluating ΦQ on XML streams.

The query frontier size is always at most linear in the size
of the query. For “balanced” queries, it is even logarithmic
in the size of the query (proportional to the product of the
fan out and the depth of the tree). This lower bound is thus
very far from the worst-case exponential upper bounds of
many of the current algorithms for XPath streaming evalu-
ation [14, 15, 19, 20]. All of these algorithms are based on
finite state automata, and the exponential blowup in mem-
ory is largely due to the loss incurred by simulating non-
deterministic automata by deterministic ones. Our upper
bounds (discussed below) show that in fact this exponential
loss is not necessary and the truth lies much closer to the
lower bounds we present in this paper.

There are some restrictions on the queries to which this
lower bound is applicable. The most important of these is
that the query should be “subsumption-free” (see definition
in Section 4), which intuitively means that the query has
no redundancies. Usually, by rewriting the query into a
minimal form, one can get an equivalent subsumption-free
query, to which the lower bound applies. We note, however,
that such a rewrite may be NP-hard in the general case.

Our second lower bound is in terms of the document re-
cursion depth. A document is called recursive, if it contains
nodes that are nested within each other, and that match
the same query node. The recursion depth of the docu-
ment is the length of the longest sequence of such nodes.
We show that evaluating XPath queries on streaming XML
documents of recursion depth r requires Ω(r) space.

Our last lower bound is in terms of the document depth.
We show that Ω(log d) space is needed to evaluate XPath
queries on streaming XML documents of depth d. Note that
this lower bound is incomparable with the recursion depth
lower bound, because the recursion depth r can be anywhere
between 1 and d.

In the second part of the paper we present an XML fil-
tering algorithm (cf. [1]) that supports a large fragment of
the XPath language, including predicates, descendant axes,
and wildcard node tests. Given an XML document D and
an XPath query Q, it determines whether D matches Q
(i.e., the evaluation of Q on D is non-empty). We show
that the memory used by the algorithm matches the lower
bounds modulo logarithmic factors for many XPath queries.
The proposed algorithm builds on our recent XQuery evalua-
tion algorithm for XML streams [17], which avoids the finite
state automata paradigm used by the rest of the known al-
gorithms, and thereby is able to achieve significant savings
in space. The novelty in the current paper is a more sophis-
ticated manipulation of the global data structures, which re-
duces the memory consumption to close to the query frontier
size lower bound.

We note that our algorithm satisfies the very strong no-
tion of “instance-optimality” [12]—for every query instance
Q (belonging to an appropriate fragment of XPath), the al-
gorithm is doing better than any other algorithm. This is
much stronger than the standard worst-case optimality.

The rest of the paper is organized as follows. Section 2
overviews related work. In Section 3 we provide background
material on XML and XPath, streaming algorithms, and
communication complexity. Section 4 defines the various
XPath fragments used in the paper. In Section 5 we describe
and prove the three lower bounds. In Section 6 we outline
the new filtering algorithm. We conclude in Section 7 with
directions for future research.

2. RELATED WORK
As noted earlier, several streaming algorithms have been

proposed for varying fragments of XPath and XQuery [1,
3, 6, 11, 14, 15, 16, 17, 19, 20]. While some complexity
analysis is provided with most of these algorithms, none of
them presents a systematic study of lower bounds as we do.
Most of these algorithms are based on finite-state automata,
whose number of states is exponential in the query size in the
worst-case. Our algorithm, on the other hand, uses Õ(|Q|·r)

space and Õ(|Q| · |D| · r) time, where |Q| is the query size,
|D| is the document size, r is the document recursion depth,

and Õ suppresses logarithmic factors.
Gottlob, Koch, and Pichler [13] and Segoufin [21] studied

the complexity of evaluating XPath queries over (not nec-
essarily streaming) XML documents. They showed that a
large fragment of the XPath language, called Core-XPath, is
P-complete w.r.t. combined complexity, while smaller frag-
ments are LOGCFL-complete and NL-complete. They also
showed that XPath is L-hard under AC0-reductions w.r.t.
data complexity. The differences from our work are: (1) we
consider evaluation of XPath over XML streams, and thus
are able to derive stronger lower bounds for this special case;
and (2) we prove lower bounds on the instance data com-
plexity and not on the worst-case data or combined com-
plexities.

Choi, Mahoui, and Wood [7, 8] consider memory lower

Path := /Step | //Step | Path Path
Step := NodeTest | NodeTest ’[’ Expression ’]’
NodeTest := ElementTest | AttributeTest |

text(Constant) | *
PathOrConstant := Path | Constant
Expression := Path |

PathOrConstant Operator PathOrConstant|
Expression and Expression |
Expression or Expression |
not(Expression)

Operators can be any valid XPath operator. Constants are
string and numeric constants.

Figure 1: Grammar of XPath fragment considered

in this paper.

bounds for evaluating XPath queries over streams of indexed
XML data. Thus, in their setting the input is not a single
stream consisting of an XML document, but rather a col-
lection of streams (generated in a pre-processing step from
the XML data), each of which consists of all the XML ele-
ments that share a certain label. We prove lower bounds on
the direct evaluation of XPath queries on (non-processed)
streaming XML documents.

Arasu et al. [2] prove space lower bounds for the eval-
uation of continuous select-project-join queries over rela-
tional data streams. While our setting is completely dif-
ferent, some of the challenges encountered are similar. In
particular, both papers consider instance data complexity.
We note, however, that their goals were much more coarse-
grained: separating between queries Q for which ΦQ has
constant (”bounded”) space complexity and ones that have
unbounded space complexity. We give a finer estimation of
the space complexity of ΦQ, for all Q.

3. PRELIMINARIES

XML and XPath An XML [5] document is a rooted
labeled tree, in which the children of each node are ordered.
The label of a node x, denoted label(x), is a symbol from
an alphabet Σ. The label of the root is always the special
symbol $. Each node of the tree is additionally associated
with a value α taken from the domain of all finite-length
strings V. The string value of any node x, denoted text(x),
is defined recursively to be the concatenation of its own value
with the values of its children.

Figure 1 describes Forward XPath: the fragment of XPath
that consists of queries that have only child, attribute, or
descendant axes. All the XPath fragments considered in
this paper are subsets of Forward XPath (see Section 4).

We use the following combinatorial view of XPath queries
[17]: a query Q is a rooted labeled tree, whose nodes corre-
spond to the location steps of the query. Each node u ∈ Q
has the following “data members”: (1) a node test label, de-
noted ntest(u), which is either a symbol from Σ or the wild-
card ∗ (the node test of the root is always $); (2) a predicate
Pu; (3) at most one successor child and 0 or more predicate
children; (4) an axis, which is either “child”, “attribute”, or
“descendant” (for the rest of the paper, we ignore the at-
tribute axis, since it can be handled in the same way as the

child axis). Figure 2 shows an example query tree. The suc-
cessor child is the following “step” in the XPath expression,
and is marked in Figure 2 by a dashed line. For example,
the successor child for a is the left-hand-side b, since it is
the node in the next step (after the predicate for a). Each
node is annotated with an XPath axis. In Figure 2 we use
’/’ to indicate child axis and ’//’ for descendant axis.

The predicate is an expression tree, whose output is al-
ways Boolean. Internal nodes of the tree are labeled either
by Boolean connectors (and,or,not) or by operators (such
as <,>,≤,≥,=). Leaves are labeled either by constant val-
ues from the domain V or by pointers to the predicate chil-
dren of u.

$

/a

/b /c

and

>

5
//e

/band

/f

Figure 2: Query tree for /a[c[.//e and f] and b >

5]/b

Throughout, we will use the letters x, y, z to denote doc-
ument nodes and the letters u, v, w to denote query nodes.

Query evaluation We next follow the XPath specifica-
tion [10] in defining how one evaluates an XPath query Q
on an XML document D.

For a query node u ∈ Q, we define the regular path ex-
pression corresponding to u, φu, by induction. If u is the
root, then φu = $. Otherwise, let v be the parent of u and
let a be its node test. If u has a child axis and if a 6= ∗,
then φu = φva. If a = ∗, then φu = φv�, where � is a wild-
card that can be matched by any symbol in Σ. If u has a
descendant axis and a 6= ∗, then φu = φv �

∗ a. If a = ∗, then
φu = φv�

+.
We will denote by paths(u) the language accepted by this

regular expression. For a document node x, we denote by
lpath(x) the sequence of labels on the path from the root
to x. We say that x structurally matches u, if lpath(x) ∈
paths(u).

Let x be a document node that structurally matches a
query node u. For every child v of u, smatchu=x(v) denotes
the set of document nodes y that: (1) structurally match
v; and (2) are children of x, if v has a child axis, or are
descendants of x, if v has a descendant axis.

The evaluation of u on x, denoted eval(u, x), is a sub-
set of V, and is defined recursively. Let r be the root of
the predicate tree Pu. If x does not structurally match
u or if peval(r, x) = ∅ (see a definition of peval(·, ·) be-
low), then eval(u, x) = ∅. Otherwise, if u has a succes-
sor v, then eval(u, x) =

⋃
y∈smatchu=x(v) eval(v, y). Else,

eval(u, x) = {text(x)}. We say that x fully matches (or
simply matches) u, if eval(u, x) 6= ∅.

The evaluation of a node s ∈ Pu on x, denoted peval(s, x),
is also a subset of V and is defined as follows. (1) If s is
labeled by a constant t, then peval(s, x) = {t}. (2) If s

is labeled by a pointer to a predicate child v of u, then
peval(s, x) =

⋃
y∈smatchu=x(v) eval(v, y). (3) If s is la-

beled by an operator R of arity k, and if the children of
s are r1, . . . , rk, then peval(s, x) = {R(t1, . . . , tk) | ti ∈
peval(ri, x), i = 1, . . . , k}. (4) If s is labeled by a Boolean
connector (i.e., and,or,not) C of arity k, and if r1, . . . , rk
are the children of s, then

peval(s, x) = C(peval(r1, x), . . . , peval(rk, x)).

The arguments to C are treated as true if and only if they
represent non-empty sets.

The evaluation of a query Q on a document D, denoted
Φ(Q,D), equals to eval(rQ, rD), where rQ is the root of
Q and rD is the root of D. We say that D matches Q, if
Φ(Q,D) 6= ∅.

XML streams An XML document can be viewed as an
event stream of the following types: (1) startDocument()

(also denoted 〈$〉), (2) endDocument() (also denoted 〈/$〉),
(3) startElement(a) (also denoted 〈a〉), (4) endElement(a)
(also denoted 〈/a〉), and (5) text(α). a belongs to Σ and α
belongs to V.

Although the streaming algorithm can only access the
document sequentially, there are no restrictions on the ac-
cess to the query.

Communication complexity In the communication
complexity model [23, 18] two players, Alice and Bob, jointly
compute a function f : A × B → Z ∪ {⊥}. Alice is given
α ∈ A and Bob is given β ∈ B, and they exchange messages
according to a protocol. If f(α, β) 6= ⊥, then (α, β) is called
a “well-formed” input, and then the last message sent in
the protocol should be the value f(α, β). Otherwise, the
last message can be arbitrary. The cost of the protocol is the
maximum number of bits (over all (α, β)) Alice and Bob send
to each other. The communication complexity of f , denoted
CC(f), is the minimum cost of a protocol that computes f .

Lemma 1 below shows that for any function g : X ∗ →
Z ∪ {⊥}, CC(g′) is a lower bound on the space complexity
of g in the streaming model, where g′ is a two-argument
function obtained from g.

For any integer k ≥ 2, we define gk to be a two-argument
function induced by g. Inputs of gk are obtained by all the
possible partitions of inputs of g into k consecutive segments
(of possibly varying lengths). Given an input x of g and a
partition of x into k segments, we denote by α1, . . . , αp the
odd segments and by β1, . . . , βq the even segments (p =
dk/2e and q = bk/2c). α = (α1, . . . , αp) is the first input
argument of gk and β = (β1, . . . , βq) is its second input
argument.

Lemma 1 (Reduction lemma). For any function g :
X ∗ → Z ∪ {⊥} and for any integer k ≥ 2, any streaming
algorithm computing g requires at least CC(gk)/(k − 1) bits
of memory.

The proof is rather standard (cf. [18]), but is provided below
for completeness.

Proof. Let M be any streaming algorithm computing g,
and let S be the space used by M . We will show how to use
M to construct a protocol that computes gk with (k− 1) ·S
bits of communication. It would then immediately follow
that S ≥ CC(gk)/(k − 1).

Recall that g has two input arguments: α and β, where
α = (α1, . . . , αp) and β = (β1, . . . , βq), and by interleaving

the entries of these two vectors one obtains an input stream
x ∈ X ∗ for the function g, so that g(x) = gk(α, β).

The protocol for gk works as follows. Alice starts by run-
ning the streaming algorithm M on α1. When she gets to
the end of α1 she sends to Bob the current state of the al-
gorithm M . Note that the description of this state requires
at most S bits. Bob can now continue the execution of M
on β1. When he gets to the end of β1, he sends the reached
state of M back to Alice, who continues the execution on
α2. Alice and Bob keep on in this manner, until one of them
(say, Alice) gets to the end of the execution of M . Alice then
sends whatever M outputs.

It is rather obvious that this protocol indeed computes gk

correctly. The number of messages exchanged between Alice
and Bob is exactly p+ q− 1 = k− 1, and the length of each
message is at most S bits. Thus the total communication of
the protocol is S · (k − 1).

Lemma 1 thus reduces the task of proving space lower
bounds for streaming algorithms to the task of proving com-
munication complexity lower bounds. For the latter a rich
set of techniques is available. We will mainly capitalize on
the fooling set technique, which we describe next.

Definition 1. Let f : A× B → Z ∪ {⊥} be a function. A
fooling set for f is a subset S of the inputs, which satisfies:
(1) all the inputs in S are well-formed and share the same
output value z; and (2) for any two distinct inputs (α, β) and
(α′, β′) in S, either (α, β′) is well-formed and f(α, β′) 6= z
or (α′, β) is well-formed and f(α′, β) 6= z.

Theorem 1 (Fooling set technique). Let S be any
fooling set for f . Then, CC(f) ≥ log |S|.

The proof appears in Chapter 1 of [18], but we provide it
here for completeness:

Proof. Let Π be any protocol that computes f . Let πα,β
be the transcript of messages exchanged between Alice and
Bob when they execute Π and are given the inputs α and β,
respectively. We will show that for any two distinct inputs
(α, β) and (α′, β′) in S, πα,β and πα′,β′ must be different.
It would then follow that Π has at least |S| different tran-
scripts, and thus the length of at least one of them has to
be at least log |S|.

Assume, to the contradiction, that there are inputs (α, β)
and (α′, β′) in S so that πα,β = πα′,β′ = π. Since both
inputs are well formed and share the same output value z,
the last message in π must be z.

Consider now the inputs (α, β′) and (α′, β). It is not hard
to prove, by induction on the number of messages in π, that
π must be also the transcript on these inputs. It follows that
Π outputs the value z on both inputs. However, we know
that at least one of them is a well-formed input whose output
value should be different from z. Thus, Π makes an error on
this input, which is a contradiction to its correctness.

4. XPATH FRAGMENTS
In the following we define the principal fragments of For-

ward XPath considered in this paper. Figure 3 illustrates
the connections among these fragments.

Symmetric XPath A predicate Pu is called symmet-
ric if its evaluation on any document node x is independent
of the order of x’s children. For example, the predicates

Forward
XPath

Symmetric UnivariateConjunctive
XPathXPath XPath XPathXPathXPath

Figure 3: XPath fragments used in the paper

in a[b], a[b > 5], and a[b > c] are symmetric, while the
predicates in a/b[1] and a/b[last()] are not. Typically, if
a predicate consists of “positional” function operators (such
as position() and last()), then it is not symmetric. Sym-
metric XPath is the fragment of Forward XPath consisting
of the queries all of whose predicates are symmetric.

Univariate XPath An atomic predicate is a maxi-
mal subexpression of a predicate that does not consist of
Boolean connectors. Any predicate can be described as a
Boolean formula over atomic predicates. An atomic predi-
cate is called univariate, if it depends on the value of at most
one node in the query tree. For example, a > 5 and b are
univariate atomic predicates, while a > b is not. Univariate
XPath is the fragment of Forward XPath consisting of the
queries all of whose atomic predicates are univariate.

Subsumption-free XPath The subset of queries of
Univariate XPath that are in addition subsumption-free (see
definition below) is called Subsumption-free XPath (not shown
in Figure 3).

Let u be any node in a query that belongs to Univariate
XPath. If u is used by a univariate atomic predicate, we
denote by sat(u) the set of satisfying values for u—these are
the values that make the atomic predicate true. Otherwise,
sat(u) = V. For example, the set of satisfying values for a
node labeled a in the atomic predicate a > 5 is (5,∞).

The set of full matches for u, denoted matches(u), is the
product set paths(u)× sat(u). u is said to structurally sub-
sume another node v, if paths(u) ⊆ paths(v). u is said to
fully subsume v, if matches(u) ⊆ matches(v). In the ex-
ample query (Figure 2) the two nodes labeled b structurally
subsume each other; however, the right-hand-side b node
fully subsumes the left-hand-side one, but not vice versa.

Definition 2. Let L be the set of leaf nodes in a query
Q. Q is called subsumption-free, if for all nodes u ∈ Q,
matches(u) is not a subset of

⋃
v∈L,v 6=umatches(v).

Subsumption-free queries are intuitively queries that do not
contain “redundancies”. Some queries can be rewritten to
be subsumption-free, by eliminating redundant portions. In
general, however, we do not know whether every query has
an equivalent subsumption-free query. Furthermore, even
given a query that has a subsumption-free form, it may be
NP-hard to find this form.

The query /a[(b > 3) and (b > 5)] is not subsumption-
free, because the right-hand-side b subsumes the left-hand-
side one. It can be easily made subsumption-free by remov-
ing the left-hand-side b, resulting in the query /a[b > 5].
An example of a query which is not subsumption-free but
also cannot be made subsumption-free simply by removing

one of its nodes is depicted in Figure 4. In this query the set
of full matches of the middle leaf is contained in the union
of the matches of the left and right leaves.

$

a

* b

//c

//b

//c

*

*

and

Figure 4: Query tree for /a[*/*/* and b//c and

.//b/c]

Structural Subsumption-free XPath The set of
queries in Subsumption-free XPath that satisfy the stronger
requirement that no two of their nodes structurally subsume
each other is called Structural Subsumption-free XPath (not
shown in Figure 3).

Conjunctive XPath Conjunctive XPath is a subset
of the mutual intersection of Symmetric XPath, Univari-
ate XPath, and Subsumption-free XPath, which consists of
queries that satisfy the two following additional restrictions:

1. All predicates are conjunctions of atomic predicates.

2. None of their wildcard nodes and none of the children
of their wildcard nodes have a descendant axis.

5. SPACE LOWER BOUNDS
In this section we prove the space lower bounds on the in-

stance data complexity of XPath evaluation on XML streams.
The bounds are stated in terms of three quantitative prop-
erties of queries and documents: the query frontier size, the
document recursion depth, and the document depth.

The framework for the presentation of each of the lower
bounds is as follows. We start with a definition of the XPath
fragment F to which the lower bound is applicable. We then
define the quantitative properties of queries and/or docu-
ments that are used in the statement of the lower bound.
Eventually, we fix an arbitrary query Q ∈ F and prove a
lower bound on the data complexity of ΦQ. The bounds
are proven w.r.t. streaming algorithms that decide whether
a given well-formed XML document matches Q or not. The
output of these algorithms on malformed documents can be
arbitrary. It follows that the lower bounds hold for stronger
types of algorithms as well, including: (1) algorithms that
fully evaluate the query on the document and not only de-
cide whether there is a match; (2) algorithms that are de-
signed to evaluate any XPath query (not just Q) on any
XML document; and (3) algorithms that evaluate the query
on well-formed documents and output an error message on
malformed documents.

5.1 Query frontier size
Throughout the section, we denote by Dx the subtree of

a document D rooted at a node x ∈ D.

We begin with an intuitive overview. Consider any al-
gorithm that evaluates Q on a document D, and suppose
x ∈ D is the node whose start element is currently read
from the stream. Let u be a node in Q that x structurally
matches. Whether x will turn into a full match of u or not
(i.e., whether eval(u, x) 6= ∅) depends on whether nodes in
the subtree Dx (all of which are to appear in later portions
of the stream) match the children of u or not. Thus, the
algorithm has to allocate space for recording which of the
children of u are being matched by nodes in Dx. Moreover,
the fate of all the ancestors of u has not be determined yet
at the time x is read from the stream. Therefore, the algo-
rithm has to allocate space for recording the status of their
children as well. The query frontier of Q at u is the set of u’s
children and of its ancestors’ children. The above discussion
implies that the size of the query frontier should be a lower
bound on the amount of memory used by the algorithm.

Definition 3. A node y in a rooted tree T is called a super-
sibling of a node x, if y is either a sibling of x or a sibling
of one of its ancestors. The frontier at x, denoted F(x),
consists of x and of all of its super-siblings. The frontier
size of T is FS(T) = maxx |F(x)|.

In our running example (Figure 2) the two nodes labeled b
and the nodes labeled e and f constitute the frontier at the
node labeled e. Since this node is the one with the largest
frontier, the size of the frontier of this query is 4.

Before describing the main result of this section, we in-
troduce an intermediate lower bound, on which we build in
the proof of the main theorem. This technique allows one
to derive memory lower bounds for evaluating a query Q
by exhibiting an appropriate “critical” document for Q and
considering the frontier size of this document.

The lower bound is applicable to queries in the Symmetric
XPath fragment (see Section 4). We first define the notion
of critical documents and then state the lower bound:

Definition 4. A document D is called critical for a query
Q, if D matches Q but if we remove from D any of its
subtrees, then the resulting document no longer matches Q.

The document 〈a〉〈b〉6〈/b〉〈c〉〈e〉〈/e〉〈f〉〈/f〉〈/c〉〈/a〉 is crit-
ical for our example query (Figure 2).

Theorem 2. Let Q be any query in Symmetric XPath
and let D be any critical document for Q. Then, the space
complexity of ΦQ on XML streams is Ω(FS(D)).

Proof. We create from the function ΦQ a two-argument
function Φ2

Q as described in Section 3: the first argument
is a prefix of an XML stream and the second argument is a
suffix of an XML stream.

We use the fooling set technique (see Section 3) to prove

the lower bound for Φ2
Q. We construct a set S of 2FS(D)

pairs of the form (α, β), where α and β are, respectively, a
prefix and a suffix of an XML stream representing a docu-
ment that matches Q. In fact, we will choose the pairs such
that the documents they form are all identical to the critical
document D, except for the order of children in each node.

Let x be the node in D with the largest frontier. We
associate with each subset T of F(x) a pair (αT , βT) in S.

Thus, |S| = 2|F(x)| = 2FS(D), as desired.
For each T , αT and βT are SAX event sequences defined

as follows. Let x1, . . . , x` be the path from the root of D

to x (that is, x1 is the root and x` = x). Note that F(x)
consists of x` and of all the siblings of x2, . . . , x`. αT and βT
are formed by concatenating `− 1 sequences of SAX events:
αT = αT,1 ◦ · · · ◦ αT,`−1 and βT = βT,`−1 ◦ · · · ◦ βT,1.
αT,i and βT,i are defined as follows. Let ai = label(xi),

let y1, . . . , yk be the children of xi that belong to T , and let
z1, . . . , zm the children of xi that belong to F(x) but not to
T . Then, αT,i is defined as: 〈ai〉◦Dy1 ◦ · · · ◦Dyk

, where Dyj

is the SAX sequence representing the subtree of D rooted
at yj . Similarly, βT,i = Dz1 ◦ · · · ◦Dzm ◦ 〈/ai〉.

For the critical document example above the largest fron-
tier consists of the nodes labeled by b, e, f . Consider the set
T = {b, f}. Then,

αT = 〈a〉〈b〉6〈/b〉〈c〉〈f〉〈/f〉

and

βT = 〈e〉〈/e〉〈/c〉〈/a〉.

It is easy to verify that DT
def
= αT ◦ βT is identical to D,

except that the children of each node xi on the path from the
root to x are ordered as follows: first all the children that
belong to T , then xi+1, and then the rest of the children
(those that belong to F(x) \ T). Since all the predicates in
Q are symmetric, ΦQ(DT) = ΦQ(D). Therefore, also DT
matches Q.

Consider now two different subsets T 6= T ′ of F(x). We

show that either DT,T ′

def
= αT ◦βT ′ or DT ′ ,T

def
= αT ′ ◦βT is a

well-formed document that does not match Q. This would
imply that S is indeed a fooling set.

It is easy to see that bothDT,T ′ andDT ′ ,T are well-formed
documents, since the proper nesting of elements is main-
tained in both. Since T 6= T ′, then either T \ T ′ 6= ∅ or
T ′ \ T 6= ∅. Suppose, e.g., that the latter holds. It follows
that there is a node y in F(x), which neither belongs to T
nor to F(x) \T ′. Let xi be the parent of y. It is easy to ver-
ify from our definition of αT,i and βT ′,i that neither of them
contains a copy of Dy. This means that Dy is not contained
at all in DT,T ′ . By reordering children of x1, . . . , x`−1 in
DT,T ′ , we get an identical copy of D, with the subtree Dy

omitted. This document does not match Q, since D is a
critical document for Q. It follows that also DT,T ′ does not
match Q (again, using the symmetry of predicates in Q).

We conclude that S is indeed a proper fooling set. The
memory lower bound now follows from an application of the
fooling set technique (Theorem 1) to the function Φ2

Q and
by the reduction lemma (Lemma 1).

The lower bound given by the above theorem may seem
non-constructive, because it is not clear how to find a crit-
ical document for a given query Q. We address this point
in the rest of this section, by showing that for queries in
the Conjunctive XPath fragment there exists a critical doc-
ument whose frontier size is the same as the frontier size
of the queries themselves. It then follows that the query
frontier size is a lower bound on the memory required to
evaluate these queries.

For technical reasons, we assume that all the non-empty
atomic predicates in Q cannot be satisfied by string values
that start with the special symbol ’@’.

Theorem 3 (Main Theorem). Let Q be any query in
Conjunctive XPath and suppose the alphabet Σ is sufficiently

large. Then, the space complexity of ΦQ on XML streams is
Ω(FS(Q)).

Proof. We will construct a critical document D for Q
whose frontier size is FS(Q). The lower bound would then
follow from Theorem 2.

The function createCriticalDocument constructs the crit-
ical document D from any query Q in Conjunctive XPath.
getNewSymbol() is a function that returns a new symbol
from Σ, which has not been returned in previous invocations
of the function, and which does not occur as a node test in
Q. We assume that Σ is large enough to accommodate all
the calls to getNewSymbol() we make.

Let h denote the length of the longest chain of wildcards
in Q; i.e., h is the length of the longest path segment all of
whose nodes have the wildcard node test. For example, the
longest wildcard chain in the query depicted at Figure 4 is
of length 3.

We create two types of nodes in D: “native” and “arti-
ficial”. For every node u ∈ Q, we create a native node x
in D. u is called the “base” of x. If ntest(u) 6= ∗, then
label(x) = ntest(u). If ntest(u) = ∗, then label(x) =
getNewSymbol() (lines 5-8). Let v be the parent of u, and
let y be the native node whose base is v. If u has a child
axis, then x is set to be a child of y. If u has a descen-
dant axis, then x is set to be a descendant of y, following a
chain of h + 1 new artificial nodes z1, . . . , zh+1 (lines 1-4).
z1, . . . , zh+1 are assigned labels from getNewSymbol(). u is
the base of both x and of z1, . . . , zh+1.

We are left to describe how string values are assigned to
the nodes of D. For the given node u, let u1, . . . , uk be
the leaf nodes that u structurally subsumes. By our as-
sumption that Q is subsumption-free, sat(u), the set of sat-
isfying values for u, contains a value α that does not be-
long to

⋃k

i=1 sat(ui). In particular this implies that all the
leaves u1, . . . , uk have non-empty atomic predicates associ-
ated with them. If u is a leaf itself, then we set the value of
the corresponding node x to be α. In the pseudo-code we call
the function that finds such a value α getUniqueValue(u)

(lines 9-11). If u is not a leaf, then we set the value of x to
be the special symbol ’@’ (lines 12-13). Using our assump-
tion about non-empty atomic predicates in Q, this implies
that the value of x, which is the concatenation of its own
value with the values of its descendants, cannot belong to⋃k

i=1 sat(ui). Hence, in both cases we are guaranteed that
x cannot fully match any of the nodes u1, . . . , uk.

Note that the tree representing D is identical to the tree of
Q, except that nodes with a descendant axis are expanded to
paths of length h+2 inD. These paths do not have any effect
on the frontier size, since the artificial nodes constituting
them do not have any siblings. Hence, the frontier size of D
is exactly the same as the frontier size of Q, i.e., FS(Q). To
finish the lower bound proof we are left to prove that D is
critical for Q.

Lemma 2. D is a critical document for Q.

Proof. A crucial ingredient of our proof will be the fol-
lowing property of the document D, whose proof is provided
below.

Lemma 3. Let u be any node in Q and let x be the na-
tive node in D whose base is u. Then, x matches u (i.e.,
eval(u, x) 6= ∅); however, no other node y ∈ D can match
u.

Function createCriticalDocument(Q)
1: processNode(root(Q))

Function processNode(u)
1: if (axis(u) = descendant) then
2: for i := 1 to h + 1 do
3: t[i] := getNewSymbol()
4: print ’〈’ t[i] ’〉’
5: a := ntest(u)
6: if (a = ’*’)
7: a := getNewSymbol()
8: print ’〈’ a ’〉’
9: if (u is a leaf) then
10: α := getUniqueValue(u)
11: print α
12: else
13: print ’@’
14: for c in children(u) do
15: processNode(c)
16: print ’〈/’ a ’〉’
17: if (axis(u) = descendant) then
18: for i := 1 to h + 1 do
19: print ’〈/’ t[i] ’〉’

It follows from Lemma 3 that in particular the root of
D matches the root of Q, and therefore D matches Q. We
next show how to use Lemma 3 to prove that for any node
x ∈ D, the document D−x (D with the subtree rooted at
x removed) does not match x. We will assume it does, and
reach a contradiction. We will use the following claim:

Claim 1. Let u ∈ Q be any query node and let E be any
document. If a node x ∈ E matches u, then for each child
u′ of u there must be a descendant x′ of x that matches u′.

Proof. Throughout this proof we use the notation S as
a shorthand for smatchu=x(u

′).
The predicate associated with u must be satisfied by x,

because otherwise eval(u, x) = ∅. If u′ is the successor
child of u, then eval(u, x) =

⋃
x′∈S eval(u′, x′). There-

fore, in order for eval(u, x) to be non-empty, there must
be some x′ ∈ S (and thus x′ is a descendant of x) so that
eval(u′, x′) 6= ∅. Suppose then that u′ is a predicate child
of u. If eval(u′, x′) = ∅ for all x′ ∈ S, then the atomic
predicate that uses the value of u′ evaluates to the empty
set (= false) on x. Since the predicate associated with u
is a conjunction of its atomic predicates, also this predicate
will evaluate to false on x. This is a contradiction to the
fact eval(u, x) 6= ∅.

Since we assumed the document D−x to match Q, then its
root matches the root of Q. Let u be the base node of x. By
Claim 1 there must be a node y ∈ D−x that matches u. Since
all the predicates in Q are monotone (i.e., do not consist
of Boolean negations) and symmetric, adding nodes to the
document D−x cannot stop y from matching u. This implies
that y must match u also in the document D. However, u is
the base of x, not of y, and therefore by Lemma 3, y cannot
match u in D. We reached a contradiction, and therefore
D−x cannot match Q, implying D is a critical document.

Proof of Lemma 3. Proving that x matches its base
node u is straightforward from the definition of the docu-
ment D, and we omit the details from this extended ab-
stract. We next prove that no other node y can match u.
To this end, we will need the following lemma, whose proof
is provided below.

Lemma 4. If a native node y ∈ D matches a node u ∈ Q,
then the base v of y must structurally subsume u.

We first show how to use Lemma 4 to prove Lemma 3. We
prove that y cannot match u by induction on the maximum
height of u from leaves of the query tree. The induction base
corresponds to nodes u that are leaves themselves. Note that
by our construction of the document D only native nodes
can match leaves of Q. So assume y is a native node that
matches u. By Lemma 4 above, the base of y, v, structurally
subsumes u. By our method of assigning values to nodes
of D, y is assigned a value which does not belong to any
of the sets of satisfying values of leaves that v structurally
subsumes. In particular the value of y does not belong to
sat(u). This implies that y cannot match u.

Assume now that no node y other than x can match a
node u of maximum height d. Consider now a node u of
maximum height d + 1. Thus, u has at least one child u′

of maximum height d. If y matches u, then by Claim 1, y
must have a descendant y′ that matches u′. Similarly, since
x matches u then x has a descendant x′ that matches u′. u′

is the base node for x′. If x′ 6= y′, then by the induction
hypothesis y′ cannot match u′, implying that y does not
match u as well. So in order for y to match u, it must be
the case that x′ = y′. This can happen only if u′ has a
descendant axis, and if either x is an ancestor of y or vice
versa.

We first prove that y has to be a native node. If y is
an artificial node, then by our method of assigning labels to
nodes in D, the only way it can match u is that for u to have
a wildcard node test. Recall that u′ has a descendant axis
and is a child of u. This is impossible because Q belongs to
Conjunctive XPath, which forbids wildcard nodes that have
children with a descendant axis. We conclude that y cannot
be an artificial node. Let v denote the base of y.

Assume, initially, that x is an ancestor of y. Since x′ is
a descendant of both x and y and y is a descendant of x,
then x, y, x′ must lie on the same root-to-leaf path in this or-
der. Since all three are native nodes, then the corresponding
bases u, v, u′ also should lie on the same root-to-leaf path in
Q in this order. But this implies that u′ is not a child of u,
as assumed above. So x cannot be an ancestor of y.

Consider then the case that y is an ancestor of x. By
Lemma 4, since y matches u, then v must structurally sub-
sume u. Note, however, that since y is an ancestor of x then
v is an ancestor of u. Let k be the depth of v and let k′ be
the depth of u. The language accepted by paths(v) consists
of some strings of length k. However, the language accepted
by paths(u) consists only of strings of length at least k′ > k.
Therefore, it cannot be that v structurally subsumes u, im-
plying y cannot be an ancestor of x. We conclude that y
cannot match u, as desired.

Proof of Lemma 4. Let u1, . . . , uk be the path from the
root of Q to u = uk and let v1, . . . , v` be the path from the
root of Q to v = v`. The following proposition, whose proof
is omitted, gives necessary and sufficient conditions for v to
subsume u:

Proposition 1. v structurally subsumes u if and only if
there exists a mapping ψ : {1, . . . , k} → {1, . . . , `}, which
satisfies the following conditions:

1. ψ(1) = 1.

2. ψ(1) < ψ(2) < · · · < ψ(k).

3. For all 1 ≤ i ≤ k, if ntest(ui) 6= ∗, then ntest(vψ(i)) =
ntest(ui).

4. For all 1 ≤ i ≤ k, if ui has a child axis, then vψ(i)

should also have a child axis.

For example, a node v whose path is a/b//c/d subsumes a
node u whose path is a//c/*, because there is a mapping
ψ that maps location steps of u to location steps of v as
follows: ψ(1) = 1, ψ(2) = 3, ψ(3) = 4. Note that all the
above four properties are maintained.

It would thus suffice to find such a mapping ψ, in order to
prove the lemma. Let y1, . . . , yt be the path from the root
of D−x to y = yt. The following proposition, whose proof
is omitted, gives necessary and sufficient conditions for y to
structurally match u:

Proposition 2. y structurally matches u if and only if
there exists a mapping φ : {1, . . . , k} → {1, . . . , t}, which
satisfies the following conditions:

1. φ(1) = 1.

2. φ(1) < φ(2) < · · · < φ(k).

3. For all 1 ≤ i ≤ k, if ntest(ui) 6= ∗, then label(yφ(i)) =
ntest(ui).

4. For all 1 ≤ i ≤ k, if ui has a child axis, then φ(i) =
φ(i− 1) + 1.

For example, a document node y whose path is a/b/c/d

structurally matches a query node u whose path is a//c/*,
because there is a mapping φ that maps location steps of u
to labels along the path of y as follows: φ(1) = 1, φ(2) =
3, φ(3) = 4. Note that all the above four properties are
maintained.

Since y structurally matches u, there exists such a map-
ping φ. We next argue that it is impossible for an artificial
node to be in the image of φ:

Proposition 3. For all 1 ≤ i ≤ k, yφ(i) cannot be an
artificial node.

Proof. Suppose there exists some i, for which yj , for
j = φ(i), is an artificial node. Since the label of yj was
generated from getNewSymbol(), the node test of ui must
be a wildcard. We now prove that if yj has adjacent ar-
tificial nodes they also must belong to the image of φ and
correspond to wildcard nodes in Q.

Suppose yj+1 is an artificial node. If φ(i+1) > j+1, then
ui+1 has to have a descendant axis. However, we assumed
that no child of a wildcard node in Q can have a descendant
axis. Therefore, φ(i+1) = j+1. As before, this means that
ui+1 has a wildcard node test.

Suppose now yj−1 is an artificial node. If φ(i − 1) <
j − 1, then ui has a descendant axis, in contradiction to our
assumption that no wildcard node in Q has a descendant
axis. Therefore, φ(i − 1) = j − 1, and as before ui−1 has a
wildcard node test.

By our construction, any artificial node belongs to a chain
of h + 1 artificial nodes. The argument above implies that
if one of these nodes is in the image of φ, then all of them
must be in the image of φ, and they all correspond to nodes
whose node test is the wildcard. This means that Q has a
chain of wildcards of length h+ 1. This contradicts the fact
h is the maximum length of a chain of wildcards in Q.

We conclude that no artificial node can be in the image
of φ.

Let π : {1, . . . , t} → {1, . . . , `} be the mapping that maps
each node on the path leading to y to its base node in Q. We

define the mapping ψ as the composition π ◦ φ, and prove
that it satisfies the four properties specified in Proposition
1.

The first element on the path to v is the root of Q. This
root is the base of the root of D, which is the first element
on the path to y. Thus, π(1) = 1. Using the first property
of φ, we have: ψ(1) = π(φ(1)) = π(1) = 1.

Next we prove ψ is monotone increasing. That is, for each
i = 1, . . . , k − 1, ψ(i) < ψ(i + 1). Since φ is monotone in-
creasing and π is monotone non-decreasing, we know that
ψ(i) ≤ ψ(i + 1). Thus, we just need to exclude the possi-
bility that ψ(i) = ψ(i + 1). Suppose ψ(i) = ψ(i + 1); thus,
π(φ(i)) = π(φ(i + 1)), even though φ(i) < φ(i + 1). The
only way two nodes have the same base is that the first of
them is artificial. Thus, yφ(i) has to be an artificial node.
However, by Proposition 3, no artificial node can be in the
image of φ. Therefore, we must have ψ(i) < ψ(i+ 1).

For the third property, let 1 ≤ i ≤ k be s.t. ntest(ui) 6=
∗. By the third property of φ, the label of yφ(i) equals
ntest(ui). This label is a node test that occurs in Q;
hence, the label of yφ(i) could not have been generated from
getNewSymbol(). Therefore, the node test of vψ(i), the base
node of yφ(i), cannot be a wildcard. We have now from our
construction, ntest(vψ(i)) = label(yφ(i)) = ntest(ui).

Finally, for the fourth property, let 1 ≤ i ≤ k be such
that ui has a child axis. By the fourth property of φ, φ(i−
1) = φ(i) − 1. By Proposition 3 both yφ(i) and yφ(i−1)

cannot be artificial nodes. Let vψ(i) and vψ(i−1) be their
corresponding base nodes. If vψ(i) had a descendant axis,
then yφ(i) would have been separated from yφ(i−1) by a chain
of h + 1 artificial nodes. However, we know that yφ(i) and
yφ(i−1) are adjacent. Therefore, vψ(i) mush have a child axis.

We conclude that ψ satisfies the four properties of Propo-
sition 1, and therefore v indeed structurally subsumes u.

5.2 Recursion depth
The recursion depth of a document D with respect to a

node v in a query Q is the length of the longest sequence
of nodes x1, . . . , xr ∈ D, such that: (1) all of them lie
on the same root-to-leaf path; and (2) all of them struc-
turally match v. For example, if Q is //a[b and c] and D
is 〈a〉〈a〉〈b〉〈/b〉〈c〉〈/c〉〈/a〉〈/a〉, then the recursion depth of
D w.r.t. the node labeled a is 2.

We next show that for queries Q that include the expres-
sion //a[b and c], the document recursion depth is a lower
bound on the space complexity of ΦQ in the data stream
model. In order to make the argument precise, we need to
make sure this expression is a “vital” part of the query Q.
To this end, as in the previous lower bound, we need to re-
strict Q to the Conjunctive XPath fragment (see Section 4).
Thus, the queries Q to which the lower bound below applies
are those in Conjunctive XPath that have at least one node
v that satisfies the following requirements: (1) Either v or
an ancestor of v have a descendant axis. (2) v has at least
two children with a child axis. We denote by F the fragment
of Conjunctive XPath that satisfies the above requirement.

Theorem 4. Let Q be any query in F. Let v be the node
of Q, as defined above. Then, the space complexity of ΦQ
on XML streams is Ω(r), where r is the recursion depth of
the document w.r.t. v.

Proof. We use a reduction from the set disjointness prob-
lem in communication complexity. In set disjointness, disj,

Alice and Bob get Boolean vectors s, t ∈ {0, 1}r, respec-
tively. s and t are viewed as characteristic vectors of two
sets S, T ⊆ {1, . . . , r} (that is, si = 1 if and only if i ∈ S,
and similarly for t and T). disj(s, t) = 1 if and only if
S ∩ T 6= ∅. The communication complexity of disj is Ω(r)
(cf. [18]).

We will prove that given a streaming algorithm for eval-
uating Q on documents of recursion depth r w.r.t. v using
space S, we can design a protocol that solves the set dis-
jointness problem with S bits of communication. It would
then immediately follow that S has to be at least Ω(r).

Let u be the lowest ancestor of v that has a descendant
axis (if v itself has a descendant axis, then u = v). Let w,w′

be two children of v that have a child axis.
In the reduction we use the same construction of a critical

document D for Q as the one used in the proof of Theorem
3. Recall that in that construction each node q of Q has
a corresponding “native” node d in D, and q is called the
base of d. Let then x be the native node whose base is u, y
the native node whose base is v, and z, z′ the native nodes
whose bases are w,w′. Let a, b, c, c′ be the labels of x, y, z, z′,
respectively. Consider the stream representation of D, and
split it into 9 segments as follows:

φ1〈a〉φ2〈b〉φ3〈c〉φ4〈/c〉φ5〈c
′〉φ6〈/c

′〉φ7〈/b〉φ8〈/a〉φ9.

That is, the segments that come before, after, and inside
each of the nodes x, y, z, z′.

We are now ready to describe the protocol for set dis-
jointness. Given her input s, Alice prepares a prefix of an
XML stream α that starts with φ1 and continues with r con-
secutive segments α1, . . . , αr. αi = 〈a〉φ2〈b〉φ3〈c〉φ4〈/c〉φ5,
if si = 1, and αi = 〈a〉φ2〈b〉φ3φ5, if si = 0. That is, αi
includes a copy of the node z, only if si = 1. Similarly,
given his input t, Bob prepares a suffix of an XML stream
β that starts with r consecutive segments βr, . . . , β1, and
ends with φ9. βi = 〈c′〉φ6〈/c

′〉φ7〈/b〉φ8〈/a〉, if ti = 1, and
βi = φ7〈/b〉φ8〈/a〉, if ti = 0. That is, βi includes a copy of
the node z′, only if ti = 1.

The documentDα,β represented by the concatenation α◦β
is well formed, because nesting of elements is properly main-
tained. The document has recursion depth r w.r.t. v, be-
cause it contains r instances of the node y nested within
each other and all of them structurally match v. The fol-
lowing lemma, whose proof is omitted from this extended
abstract, gives us a necessary and sufficient condition for
Dα,β to match Q:

Lemma 5. Dα,β matches Q if and only if there exists
some index 1 ≤ i ≤ r, s.t. si = ti = 1.

The protocol for set disjointness proceeds as follows. Alice
runs the given streaming algorithm (that evaluates Q) on
the XML stream prefix α. When she is done, she sends the
state of the algorithm (which consists of at most S bits) to
Bob. Bob can continue the execution of the algorithm on
the suffix β. At the end of the execution, if the algorithm
decides that there is a match, Bob declares the sets S and
T to be intersecting. Otherwise, he declares them to be
disjoint.

First, it is obvious that this protocol indeed uses only S
bits of communication. We next prove that it computes the
function disj correctly. Suppose, initially, that S ∩ T 6= ∅.
Therefore, there exists some index 1 ≤ i ≤ r, such that
both si and ti are 1. By Lemma 5, this means that the

document Dα,β matches Q, and therefore the algorithm will
find a match. Hence, the protocol will indeed declare s and
t as intersecting. The analysis of the case S ∩ T = ∅ is
similar.

5.3 Document depth
The depth of a document is the length of the longest root-

to-leaf path in the tree representing the document. We prove
the following lower bound in terms of the document depth:

Theorem 5. Let Q be any query in Conjunctive XPath
that has at least one node u s.t. (1) u has a child axis; (2)
ntest(u) 6= ∗. Then, the space complexity of ΦQ on XML
streams is Ω(log d), where d is the document depth.

Proof. We create from ΦQ a two-argument function Φ3
Q

(recall our notations from Section 3): its first argument is
pair (α, γ), where α is a prefix of an XML stream and γ
is a suffix of an XML stream; its second argument β is the
middle part of an XML stream.

We use the fooling set technique from Section 3. We thus
need to create a set S of t = O(d) documents D1, . . . , Dt of
depth at most d that match Q. We then split each document
Di into three parts: αi, βi, and γi, and show that for all
i 6= j, one of the documents αi ◦ βj ◦ γi, αj ◦ βi ◦ γj is
well-formed but does not match Q.

Let D be a critical document for Q produced according to
the construction described in the proof of Theorem 3, and
let x be the node in D whose base is u. Let g be some
symbol in the alphabet that does not occur as a label in D.
We set t = d − s, where s is the depth of the document D.
D1, . . . , Dt will be all created from D as follows. Di is the
same as D, except that we attach to it two paths of length
i, all of whose nodes are labeled by the symbol g. The first
node of each of these two paths is attached as a sibling of x:
the first node of the first path is attached just before x, and
the first node of the second path is attached just after x.

We split the SAX sequence representingDi into three non-
overlapping parts: αi consists of all the events until after
the start-element event corresponding to the last node on
the first new path we attached; βi consists of all the events
until after the start-element event corresponding to the last
node on the second new path we attached; γi consists of
the remainder of the sequence. For example, if the query Q
is a/b, then αi = 〈a〉〈g〉i, βi = 〈/g〉i〈b〉〈/b〉〈g〉i, and γi =
〈/g〉i〈/a〉.

First, since all the predicates in Q are monotone, then
whether D matches Q or not does cannot change by addition
of new siblings to x. Therefore, D1, . . . , Dt all match Q. We

next prove that for i > j, Di,j
def
= αi ◦βj ◦γi is a well-formed

document that does not match Q.
The easiest way to see what happens in the document

Di,j is to consider the example a/b. For this query, Di,j =
〈a〉〈g〉i〈/g〉j〈b〉〈/b〉〈g〉j〈/g〉i〈/a〉. That is, the node x (la-
beled in this example by the symbol b) becomes the child
of the (i − j)-th node on the first new path we inserted.
Note that the proper nesting of elements is maintained, and
therefore Di,j is a well-formed document. Also in the general
case Di,j is a well-formed document. The following lemma,
whose proof is omitted from this extended abstract, uses the
special properties of the critical document D to show that
Di,j cannot match Q:

Lemma 6. Di,j does not match Q.

We conclude that S is indeed a fooling set of size t = d−s.
Applying Theorem 1 to the function Φ3

Q and Lemma 1 give
us a space lower bound of log(d− s)/2 = Ω(log d).

6. UPPER BOUNDS
In this section we describe an XPath filtering algorithm,

whose space is close to the lower bounds described in the
previous section. The algorithm handles any query in Uni-
variate XPath. An example of its use is provided in Sec-
tion 6.1.

We have six global data structures: (1) pointer array: ar-
ray of query nodes used to identify the currently “matched”
query nodes, i.e., the query nodes that we are currently pro-
cessing; (2) validation array: Boolean array used for check-
ing if a given query node has already been satisfied; (3) level
array: integer array used to identify the document level for
each matched node; (4) recursion level array: integer array
that keeps track of the recursion level for each query node;
(5) next index: integer variable that holds the index of the
next entry to be added to the pointer, validation, and level
arrays; (6) current level: integer that holds the level of the
currently processed document node.

The algorithm works by processing the startElement and
endElement events of the SAX interface. In addition, it uses
two auxiliary functions: initialize and evalPred. Func-
tion initialize is executed only once, at the beginning of
processing. It initializes the global variables. In particular,
it sets the pointer array to match the query “root” (line 1),
the validation array for the root to false (line 2), indicat-
ing that the root is not satisfied yet, and the level array for
the root to 0 (line 3), indicating that a match for the root
should happen at level 0. The pointer, validation, and level
arrays always have the same size and are initialized at run-
time as they are incremented. The recursion level array has
one entry per query node, and it is initialized to 0 (lines 4-
5), since during initialization no recursive matches have yet
happened. Finally, the current level and next index vari-
ables are initialized to indicate that the current document
level is 0 and that there exists one node in the pointer array,
which is the root (lines 6-7).

Function startElement is called once for every open el-
ement event in the document stream. It first checks if the
document node opened matches one of the query nodes we
are currently processing (lines 2-6). A match occurs if the
document node label matches the query node test name or
if the query node is * (line 4). In addition, if the query
node has a child axis the levels must be same. The level is
ignored for query nodes with descendant axis (lines 5-6). In
the case of a match, we first check if the current node has
already been satisfied by checking its validation array entry.
startElement only processes nodes that have not been sat-
isfied yet (line 7). This enforces the existential semantics of
XPath. The children of nodes that still need to be processed
are added to the pointer and level arrays, since we are now
trying to match these nodes (lines 8-17). If the node being
added to the arrays is the first child of u and if there are no
other instances of that node in the array (i.e. recursion level
for u is 0) it “reuses” u’s position in the arrays (lines 9-12).
All the other children of u are added to the end of the array
(lines 13-17). Finally, the recursion level for the node u and
the current document level are incremented (lines 18-19).

Function endElement is called once for every close element
event in the document stream. It starts by decrementing the

Function initialize()
1: pointerArray[0] := $
2: validationArray[0] := false
3: levelArray[0] := 0
4: for i:= 0 to (|Q| - 1)
5: recursionArray[i] = 0
6: currentLevel := 0
7: nextIndex := 1

Function startElement(x)
1: maxIndex := nextIndex - 1
2: for i := 0 to maxIndex do
3: u := pointerArray[i]
4: if ((ntest(u) = label(x)) or (ntest(u) = *)) then
5: if ((axis(u) = descendant) or
6: (levelArray[i] = currentLevel)) then
7: if (not validationArray[i]) then
8: for c in children(u) do
9: if ((c = firstSibling(c)) and
10: (recursionArray[u] = 0)) then
11: pointerArray[i] := c
12: levelArray[i] := currentLevel + 1
13: else
14: pointerArray[nextIndex] := c
15: levelArray[nextIndex] := currentLevel + 1
16: validationArray[nextIndex] := 0
17: nextIndex := nextIndex + 1
18: recursionArray[u] := recursionArray[u] + 1
19: currentLevel := currentLevel + 1

current level (line 1). It then checks if there are nodes in
the pointer array that need to be removed since their par-
ent is the node being closed (lines 2-10). If the node being
removed from the arrays is the first child of its parent and
if the recursion level for the parent is 0, the parent node is
added back to the array (lines 5-8). On the other hand, if
the node is removed from the end of the arrays, nextIndex
is updated (lines 9-10). endElement then updates the vali-
dation array entries for the nodes being closed (lines 12-22).
If the node being closed is a leaf, the validation array is set
by evaluating the predicate on that node only (lines 17-18).
In the case of intermediate nodes the predicate is evaluated
by checking the validation array entries of all their children
(lines 20-21). Function evalPred simply evaluates the pred-
icate tree anchored at the matched query node and returns
true if the predicate is valid and false otherwise. In the ab-
sence of predicates evalPred returns true for all leaf nodes
and returns an AND over the validation array entries of the
children of intermediate nodes. (We omit a procedural def-
inition of evalPred due to lack of space.) After updating
the validation array entry for the matched node, endElement
checks if that node is the “root”. In that case we have the
response for the query, which is the value of its validation
array entry (lines 23-24).

Remark: Since in this paper we concentrate on the eval-
uation of queries in Univariate XPath, buffering is not re-
quired for evaluating predicates. In [17] we provide an in-
depth discussion of predicate evaluation in Forward XPath
that may require buffering.

Theorem 6. For queries in Univariate XPath, the space
complexity of the above algorithm is O(|Q| · r · (log |Q| +
log d+log r)), where |Q| is the query size, r is the document
recursion depth, and d is the document depth. For queries in
Structural Subsumption-free XPath and non-recursive docu-
ments, the space complexity is O(FS ·(log |Q|+log d)), where
FS is the query frontier size.

Proof. A query node u is inserted into the pointer array,
only if its parent v is structurally matched by some node in

Function endElement(x)
1: currentLevel := currentLevel - 1
2: i := nextIndex - 1
3: while (levelArray[i] > currentLevel) do
4: u := pointerArray[i]
5: if ((u = firstSibling(u) and
6: (recursionArray[parent(u)] = 0)) then
7: pointerArray[i] := parent(u)
8: levelArray[i] := currentLevel
9: else
10: nextIndex := nextIndex - 1
11: i := i - 1
12: for i := 0 to (nextIndex - 1) do
13: u := pointerArray[i]
14: if ((ntest(u) = label(x)) or (ntest(u) = *)) then
15: if ((axis(u) = descendant) or
16: (levelArray[i] = currentLevel)) then
17: if (isLeaf(u)) then
18: validationArray[i] := evalPred(u)
19: else
20: c := validationArray bits for children(u)
21: if (evalPred(c)) then validationArray[i] := true
22: recursionArray[u] := recursionArray[u] - 1
23: if (u = $) then
24: queryResponse := validationArray[i]

the document. The pointer array (and therefore also the val-
idation and level arrays) can have multiple copies of u simul-
taneously, only if several document nodes structurally match
v and all of them are nested within each other. Therefore,
the maximum number of entries in these arrays for queries in
Univariate XPath is |Q| ·r. The recursion level array has the
fixed size of |Q|, since it has one entry per query node. Thus,
the space complexity is O(|Q|·r ·(log |Q|+log d+log r)). For
queries in Structural Subsumption-free XPath our algorithm
guarantees that, at any given moment, the set of nodes con-
tained in the pointer array form a frontier. Therefore, for
this type of queries and for non-recursive documents, the
space complexity goes down to O(FS ·(log |Q|+log d)). This
matches the lower bound, modulo logarithmic factors.

Theorem 7. For queries in Univariate XPath, the time
complexity of the above algorithm is O(|D|·|Q|·r), where |D|
is the document size. For queries in Structural Subsumption-
free XPath and for non-recursive documents, the time com-
plexity is O(|D| · FS).

Proof. The query nodes accessed in the startElement

and endElement functions are those that are currently con-
tained in the pointer array and possibly their children. The
number of such nodes is at most |Q| · r for queries in Uni-
variate XPath and FS for queries in Structural Subsump-
tion free XPath and for non-recursive documents. Since the
above two functions are called for each document node, the
total running time is at most O(|D| · |Q| · r) for queries
in Univariate XPath and O(|D| · FS) for queries in Struc-
tural Subsumption-free XPath and for non-recursive docu-
ments.

6.1 Example run
In Figure 5 we present an example of how the algorithm

processes the query a[c[.//e and f] and b], which is a
simplified version of our running example. We show a sam-
ple document and a snapshot of the state of the main data
structures after each event. We use tuples to represent the
values for the validation, pointer, and level arrays for each
array entry. Since the document is not recursive, we omit
the recursion level array. Each event is represented by the
tag name and the level it happened. Index 0, 1, and 2 rep-
resent indices into the arrays. The first interesting event is

the open d (event 4). Since d is not matched we increase
the level by one but keep the arrays intact. The other in-
teresting event is the second open c (event 11). Since c
is already matched at that point, instead of processing it
again we simply increment the level variable. This makes
sure the existential semantics of XPath is preserved. Note
that the second c would not match the query and its evalu-
ation would incorrectly set the second bit of the validation
array to 0 (false). At the end of processing we simply check
index 0 of the validation array, which is 1 (true) meaning
that the document matched the query.

$

c b

f

a

e

c

Sample document

d

1) $,0 <0,a,1>
2) a,1 <0,c,2> <0,b,2>
3) c,2 <0,e,3> <0,b,2> <0,f,3>
4) d,3 <0,e,3> <0,b,2> <0,f,3>
5) e,4 <0,e,3> <0,b,2> <0,f,3>
6) /e,4 <1,e,3> <0,b,2> <0,f,3>
7) /d,3 <1,e,3> <0,b,2> <0,f,3>
8) f,3 <1,e,3> <0,b,2> <0,f,3>
9) /f,3 <1,e,3> <0,b,2> <1,f,3>
10)/c,2 <1,c,2> <0,b,2>
11) c,2 <1,c,2> <0,b,2>
12)/c,2 <1,c,2> <0,b,2>
13) b,2 <1,c,2> <0,b,2>
14)/b,2 <1,c,2> <1,b,2>
15)/a,1 <1,a,1>
15)/$,0 <1,$,0>

Event Index 0 Index 1 Index 2

Figure 5: Example run for /a[c[.//e and f] and b]

7. CONCLUSIONS
In this paper we present the first systematic and theoret-

ical study of memory lower bounds for XPath queries over
XML streams. We presented the minimum amount of mem-
ory that any algorithm evaluating the query on a stream
would need to incur. We also presented a new XPath filter-
ing algorithm that uses space close to the optimum. To the
best of our knowledge this algorithm has the best theoretical
efficiency guarantees among all known streaming algorithms
for XPath filtering, both in terms of memory consumption
and running time. Our future research directions include ex-
tending our results to larger classes of queries, such as ones
with multi-variable predicates that require buffering.

Acknowledgments
We would like to thank Ron Fagin, Moshe Vardi, and the
anonymous referees for helpful comments.

8. REFERENCES
[1] M. Altinel and M. J. Franklin. Efficient filtering of

XML documents for selective dissemination of
information. In Proc. 26th VLDB, pages 53–64, 2000.

[2] A. Arasu, B. Babcock, S. Babu, J. McAlister, and
J. Widom. Characterizing memory requirements for
queries over continuous data streams. In Proc. 21st
PODS, pages 221–232, 2002.

[3] I. Avila-Campillo, T. J. Green, A. Gupta, M. Onizuka,
D. Raven, and D. Suciu. XMLTK: An XML toolkit for
scalable XML stream processing. In Proc. 1st
Workshop on Programming Languages for XML
(PLAN-X), 2002.

[4] S. Boag, D. Chamberlin, M. F. Fernández,
D. Florescu, J. Robie, and J. Siméosn. XQuery 1.0:
An XML Query Language. W3C,
http://www.w3.org/TR/xquery, 2003.

[5] T. Bray, J. Paoli, and C. M. Sperbeg-McQueen.
Extensible Markup Language (XML) 1.0. W3C,
http://www.w3.org/TR/1998/REC-xml-19980210,
1998.

[6] C. Y. Chan, P. Felber, M. N. Garofalakis, and
R. Rastogi. Efficient filtering of XML documents with
XPath expressions. In Proc. 18th ICDE, pages
235–244, 2002.

[7] B. Choi, M. Mahoui, and D. Wood. On the optimality
of holistic algorithms for twig queries. In Proc. 14th
DEXA, pages 28–37, 2003.

[8] B. Choi, M. Mahoui, and D. Wood. The optimality of
holistic algorithms for XPath.
http://www.cis.upenn.edu/~kkchoi/xpath.pdf,
2003.

[9] J. Clark. XSL Transformations (XSLT) Version 1.0.
W3C, http://www.w3.org/TR/xslt, 1999.

[10] J. Clark and S. DeRose. XML Path Language
(XPath), Version 1.0. W3C,
http://www.w3.org/TR/xpath, 1999.

[11] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To.
YFilter: Efficient and scalable filtering of XML
documents. In Proc. 18th ICDE, pages 341–342, 2002.

[12] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. Journal of
Computer and System Sciences, 66(4):614–656, 2003.

[13] G. Gottlob, C. Koch, and R. Pichler. The complexity
of XPath query evaluation. In Proc. 22nd PODS,
pages 179–190, 2003.

[14] T. Green, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML streams with deterministic automata.
In Processing of the 9th ICDT, pages 173–189, 2003.

[15] A. K. Gupta and D. Suciu. Stream processing of
XPath queries with predicates. In Proc. 22nd
SIGMOD, pages 419–430, 2003.

[16] Z. Ives, A. Levy, and D. Weld. Efficient evaluation of
regular path expressions on streaming XML data.
Technical report, University of Washington, 2000.

[17] V. Josifovski, M. Fontoura, and A. Barta. Querying
XML streams. The VLDB Journal, 2004. to appear.

[18] E. Kushilevitz and N. Nisan. Communication
Complexity. Cambridge University Press, 1997.

[19] D. Olteanu, T. Kiesling, and F. Bry. An evaluation of
regular path expressions with qualifiers against XML
streams. In Proc. 19th ICDE, pages 702–704, 2003.

[20] F. Peng and S. S. Chawathe. XPath queries on
streaming data. In Proc. 22nd SIGMOD, pages
431–442, 2003.

[21] L. Segoufin. Typing and querying XML documents:
Some complexity bounds. In Proc. 22nd PODS, pages
167–178, 2003.

[22] M. Y. Vardi. The complexity of relational query
languages. In Proc. 14th STOC, pages 137–146, 1982.

[23] A. C.-C. Yao. Some complexity questions related to
distributive computing. In Proc. 11th STOC, pages
209–213, 1979.

