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Abstract

The important challenge of evaluating XPath queries over XML streams has sparked
much interest in the past few years. A number of algorithms have been proposed, sup-
porting wider fragments of the query language, and exhibiting better performance and
memory utilization. Nevertheless, all the algorithms known to date use a prohibitively
large amount of memory for certain types of queries. A natural question then is whether
this memory bottleneck is inherent or just an artifact of the proposed algorithms.

In this paper we initiate the first systematic and theoretical study of lower bounds
on the amount of memory required to evaluate XPath queries over XML streams. We
present a general lower bound technique, which given a query, specifies the minimum
amount of memory that any algorithm evaluating the query on a stream would need
to incur. The lower bounds are stated in terms of new graph-theoretic properties of
queries. The proofs are based on tools from communication complexity.

We then exploit insights learned from the lower bounds to obtain a new algorithm
for XPath evaluation on streams. The algorithm uses space close to the optimum.
Our algorithm deviates from the standard paradigm of using automata or transducers,
thereby avoiding the need to store large transition tables.

1 Introduction

XML [8] is quickly gaining dominance as a format for exchanging and storing semi-structured

data. The most popular language for querying XML data is XPath [13, 6], which is part of

both XSLT [12] and XQuery [7], the two WWW Consortium language standards for querying
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and transforming XML. XPath allows addressing portions of XML documents based on their

structure and data values.

Recently, several algorithms for evaluating XPath queries over XML streams have been

proposed [1, 3, 10, 14, 18, 20, 21, 22, 25, 26]. These algorithms evaluate the query using a one-

pass sequential scan of the XML document, while keeping only small critical portions of the

data in main memory for later use. Streaming algorithms are the prime choice for domains

where the XML documents are transferred between systems. Due to their predictable access

pattern, they are also efficient over pre-stored XML data.

While demonstrating a steady progress, both in terms of the scope of the fragment of

XPath supported and in terms of the time and space complexity, even the state of the art

algorithms incur high memory costs on certain types of queries. Anecdotal evidence of this

phenomenon has been recorded before [18, 26], however to date there has not been any formal

or systematic study of the source for the high memory costs.

This paper lays the first theoretical foundations for lower bounds on the amount of mem-

ory required to evaluate XPath queries over XML streams. We introduce powerful lower

bound techniques, based on the theory of communication complexity [29]. As opposed to

previous results in the area [18], our lower bounds hold for any algorithm, not for a specific

algorithm or for a restricted class of algorithms. Our lower bounds are also not anecdotal -

we are not providing examples of queries that incur large memory costs. Instead, we intro-

duce a technique that can assert the memory needed to evaluate any given query within a

subset of the XPath language.

The lower bounds hold even for the weaker task of filtering a sequence of streaming

XML documents based on whether they match a given XPath query. In order to show that

the bounds are tight, we designed a new filtering algorithm, which is particularly memory-

efficient while not suffering a significant loss in running time. To the best of our knowledge,

this algorithm has the best theoretical efficiency guarantees among all the known algorithms

for filtering streaming XML documents. We note that the algorithm could be extended to

provide also a full-fledged evaluation of XPath queries [22].

Complexity measures Our lower bounds apply to a very strong measure of complexity,

which we call the instance data complexity and explain in more detail next. Any query lan-

guage is associated with an evaluation function fulleval which maps query-database pairs

(Q,D) into output values. By fixing a query Q, we get an induced mapping fullevalQ

from databases to output values. Similarly, by fixing a database D, we obtain an induced

mapping fullevalD from queries to output values. Vardi [28] defined three standard mea-

sures of complexity for database query languages: the data complexity (the complexity of

2



fullevalQ, for the worst-case choice of Q), the expression complexity (the complexity of

fullevalD, for the worst-case choice of D), and the combined complexity (the complexity

of fulleval). These measures are typically given in terms of the input size.

In this paper we prove lower bounds on stronger measures of complexity, which are rem-

iniscent of the notion of instance-optimality [15]. Rather than considering the standard data

complexity, which is a worst-case measure, we study the instance data complexity. Formally,

we characterize the complexity of each one of the mappings {fullevalQ}Q∈F , where F is

a large fragment of the query language. Naturally, for different queries, the corresponding

mappings may have different complexities. Thus, the complexity of fullevalQ is given in

terms of quantitative properties of Q as well as in terms of parameters of the input database.

For the latter, we consider other parameters than the database size, such as the document

depth and the document recursion depth.

Since characterizing the complexity of the mappings fullevalQ, for all the queries Q

in the query language is typically very hard, we usually have to restrict the class of queries

Q for which we can get such a characterization. Thus, each of our lower bound theorems

is accompanied by a definition of a fragment F of the query language. The theorem then

bounds the complexity of fullevalQ for all Q ∈ F .

Our results Empirically, the bulk of memory used by algorithms that evaluate XPath

queries over XML streams is dedicated to two tasks: (1) storage of large transition tables; and

(2) buffering of document fragments. The former emanates from the standard methodology of

evaluating queries by simulating finite-state automata. The latter is a result of the limitations

of the data stream model. In this paper we prove three memory lower bounds that address

both sources of memory consumption.

Our first lower bound is stated in terms of a new graph-theoretic property of queries,

which we call the query frontier size. When viewed as a rooted tree, the frontier of a query

Q at a node u ∈ Q is the collection of u’s siblings and of its ancestors’ siblings. The frontier

size of Q is the size of the largest frontier, over all nodes u ∈ Q. We prove that for any Q

belonging to a large fragment of XPath, the query frontier size of Q is a lower bound on the

space complexity of evaluating fullevalQ on XML streams.

The query frontier size is always at most linear in the size of the query. For “balanced”

queries, it is even logarithmic in the size of the query (proportional to the product of the

fan out and the depth of the tree). This lower bound is thus very far from the worst-case

exponential upper bounds of many of the current algorithms for XPath streaming evaluation

[18, 20, 25, 26]. All of these algorithms are based on finite state automata, and the expo-

nential blowup in memory is largely due to the loss incurred by simulating non-deterministic
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automata by deterministic ones.1 Our upper bounds (discussed below) show that in fact

this exponential loss is not necessary and the truth lies much closer to the lower bounds we

present in this paper. The lower bound is not applicable to arbitrary queries, but rather

only to a large fragment of XPath that we define. This fragment, called “Redundancy-free

XPath”, consists of queries that satisfy certain restrictions. The most important of these is

that queries should not have redundant parts that can be eliminated without changing the

semantics of the queries.

Our two other lower bounds relate to the use of memory for buffering (representations

of) document fragments. Our second lower bound is in terms of the document recursion

depth. A document is called recursive, if it contains nodes that are nested within each other

and that match the same query node. The recursion depth of the document is the length

of the longest sequence of such nodes. We show that evaluating queries in a large subset of

Redundancy-free XPath on streaming XML documents of recursion depth r requires Ω(r)

space.

Our last lower bound is in terms of the document depth. We show that Ω(log d) space is

needed to evaluate queries in a large subset of Redundancy-free XPath on streaming XML

documents of depth d. Note that this lower bound is incomparable with the recursion depth

lower bound, because the recursion depth r can be anywhere between 1 and d.

In the second part of the paper we present an XML filtering algorithm (cf. [1]) that

supports a large fragment of the XPath language, including predicates, descendant axes,

and wildcard node tests. Given an XML document D and an XPath query Q, it determines

whether D matches Q (i.e., the evaluation of Q on D is non-empty). We show that the

memory used by the algorithm is Õ(|Q| · r · log d), where |Q| is the query size, r is the

document’s recursion depth, d is the document depth, and Õ suppresses logarithmic factors.

Thus, the algorithm separately (almost) matches the recursion depth and document depth

lower bounds. For a certain class of queries, when applied to non-recursive documents, the

algorithm uses Õ(FS(Q) · log d) bits of space, where FS(Q) is the frontier size of Q. Thus,

for these queries the algorithm almost matches also the query frontier size lower bound.

The proposed algorithm builds on our recent XQuery evaluation algorithm for XML

streams [22], which avoids the finite state automata paradigm used by the rest of the known

algorithms, and thereby is able to achieve significant savings in space. The novelty in the

current paper is a more sophisticated manipulation of the global data structures, which

reduces the memory consumption to closer to the query frontier size lower bound.

The rest of the paper is organized as follows. Section 2 overviews related work. In

1Although queries are usually assumed to be small relative to the database size, exponential space in the
size of the query may be prohibitive, even for queries that consist of as few as 30 nodes.
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Section 3 we provide background material on XML and XPath, streaming algorithms, and

communication complexity. In Section 4 we prove our three lower bound for three specific,

carefully chosen, queries. The goal is to give the reader a gentle introduction to the proof

techniques, before delving into the intricacies of Redundancy-free XPath. Section 5 defines

Redundancy-free XPath. Section 6 provides some of the technical machinery used throughout

our proofs to argue about matchings of documents with queries. In Section 7 we describe

and prove the three lower bounds in their most general form. In Section 8 we outline the

new filtering algorithm. We conclude in Section 9 with directions for future research.

2 Related work

As noted earlier, several streaming algorithms have been proposed for varying fragments of

XPath and XQuery [1, 3, 10, 14, 18, 20, 21, 22, 25, 26]. While some complexity analysis is

provided with most of these algorithms, none of them presents a systematic study of lower

bounds as we do. Most of these algorithms are based on finite-state automata, whose number

of states is exponential in the query size in the worst-case. Our algorithm, on the other hand,

uses Õ(|Q| · r · log d) space and Õ(|Q| · |D| · r) time.

Gottlob, Koch, and Pichler [17] and Segoufin [27] studied the complexity of evaluat-

ing XPath queries over (not necessarily streaming) XML documents. They showed that a

large fragment of the XPath language, called Core-XPath, is P-complete w.r.t. combined

complexity, while smaller fragments are LOGCFL-complete and NL-complete. They also

showed that XPath is L-hard under AC0-reductions w.r.t. data complexity. The differences

from our work are: (1) we consider evaluation of XPath over XML streams, and thus are

able to derive stronger lower bounds for this special case; and (2) we prove lower bounds on

the instance data complexity and not on the worst-case data or combined complexities.

Choi, Mahoui, and Wood [11] consider memory lower bounds for evaluating XPath queries

over streams of indexed XML data. Thus, in their setting the input is not a single stream

consisting of an XML document, but rather a collection of streams (generated in a pre-

processing step from the XML data), each of which consists of all the XML elements that

share a certain label. We prove lower bounds on the direct evaluation of XPath queries on

(non-processed) streaming XML documents.

Arasu et al. [2] prove space lower bounds for the evaluation of continuous select-project-

join queries over relational data streams. While our setting is completely different, some of

the challenges encountered are similar. In particular, both papers consider instance data

complexity. We note, however, that their goals were much more coarse-grained: separat-

ing between queries Q for which fullevalQ has constant (“bounded”) space complexity
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and ones that have unbounded space complexity. We give a finer estimation of the space

complexity of fullevalQ, for all Q.

Grohe, Koch, and Schweikardt [19] consider streaming algorithms that allow multiple

sequential scans of the data. They show tradeoffs between the space and the number of

scans needed for evaluation of certain XPath queries. While the model they consider is more

general than ours, they prove lower bounds on the worst-case data complexity, while our

bounds hold for the instance data complexity.

In subsequent work [5], we extended the methodology of this paper to address other

sources of buffering. In particular, we showed that full-fledged evaluation of queries (as op-

posed to just filtering) and evaluation of queries with multi-variable predicates (as opposed

to single-variable predicates) require large buffers. We also prove that together with recur-

sion, which is discussed in this paper, these exhaust the factors that necessitate buffering in

XPath evaluation over XML streams.

3 Preliminaries

Notations Queries and documents are modeled as rooted trees. We will use the letters

u, v, w to denote query nodes and the letters x, y, z to denote document nodes. For a tree

T , we will denote its root by root(T ). For a node x ∈ T , we denote by Tx the subtree of T

rooted at x. For two nodes x, y ∈ T , where x is an ancestor of y, we denote by path(x..y)

the sequence of nodes along the path from x to y (inclusive). path(x) is simply the sequence

path(root(T )..x).

N is the set of all legal XML node names, S is the set of all finite-length strings of UCS

characters, and V is the set of atomic data values (numbers, strings, booleans, etc.) that

XML supports.

For two strings or sequences, α and β, α ◦ β denotes the string/sequence obtained by

concatenating α and β.

3.1 XPath

Data model We use the XPath 2.0 and XQuery 1.0 Data Model [16]. An XML document

is a rooted tree. Every node x has the following properties:

1. kind(x), which in this paper can be either root, element, attribute, or text. The

root and only the root is of kind root. text and attribute nodes are always leaves

and are associated with text contents, which are strings from S.

2. name(x), which is a value from N . root and text nodes are unnamed.
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3. strval(x), which is a string from S. strval(x) is the concatenation of the text con-

tents of the text node descendants of x in “document order” (i.e., pre-order traversal).

4. dataval(x), which is a data value from V. dataval(x) is derived from strval(x),

using the document’s XML schema.

XPath Figure 1 describes Forward XPath—a fragment of XPath 2.0 [6], which supports

only the forward axes. The main XPath fragment considered in this paper is a subset of

Forward XPath (see Section 5).

Path := Step | Path Step

RelPath := RelStep | RelPath Step

Step := Axis NodeTest (’[’ Predicate ’]’)?

RelStep := RelAxis NodeTest (’[’ Predicate ’]’)?

Axis := ’/’ | ’//’ | ’@’

RelAxis := ’.//’ | ’@’

NodeTest := name | ’*’

Predicate := Expression |

Expression compop Expression |

Predicate ’and’ Predicate |

Predicate ’or’ Predicate |

’not(’ Predicate ’)’

Expression := const | RelPath |

Expression arithop Expression | ’-’ Expression

funcop ’(’ Expression? (’,’ Expression)* ’)’

name is any string from N.

const is any string from S.
compop ∈ { =, !=, <, <=, >, >= }.
arithop ∈ { +, -, *, div, idiv, mod }.
funcop is any basic XPath function or operator on atomic arguments as specified in [24],
excluding the functions position() and last().

Figure 1: Grammar of Forward XPath.

An XPath query is a rooted tree. Each node u has the following properties:

1. axis(u), which in this paper can be either child, attribute, or descendant.2 The

root does not have an axis. (For the remainder of the paper, we omit explicit treatment

of the attribute axis, because it can be handled as a special case of the child axis.)

2Our results can be extended to also handle the self and descendant-or-self axes. We chose not to
do that, in order to keep the presentation more clean and clear.
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2. ntest(u), which is either a name from N or the wildcard *. The root does not have

a node test.

3. successor(u), which is either empty or one of the children of u.

4. predicate(u), which is either empty or an expression tree, as described below.

predicate(u) is an expression tree whose internal nodes are labeled by logical, compari-

son, arithmetic, or functional operators, and whose leaves are labeled by constants from V or

by pointers to children of u. The XPath semantics requires that all the children of u, except

for the successor, are pointed to by leaves of the predicate. They are called the predicate

children of u. No two leaves of the predicate can point to the same child of u.

The arguments and the output of every operator are associated with types. These types

can be either atomic (e.g., numbers, strings, booleans) or sequences (sequences of atomic

values).

The successor-less node reached by repeatedly following successors from a given node u

is called the succession leaf of u, and is denoted by leaf(u). The succession leaf of the root

is called the query output node, and is denoted by out(Q). Nodes that are not successors of

their parents are called succession roots. A node is a succession root, if it is either the root

of the query or a predicate child of its parent.

Example. Figure 2 shows an example query tree. The successor of a node is marked by a

dashed box. For example, the successor of the root node is the node named “a” and, in turn,

the successor of the node named “a” is the second node (going from left to right) named

“b”. Each node is annotated by an XPath axis. We use / to indicate child axis and // for

descendant axis. The root is annotated with the “$” sign. The predicate of a given node is

represented by a “predicate tree” pointed to by that node. In this example the nodes named

“a” and “c” have predicates. In Figure 2, the node named “c” and the first node named “b”

are predicate children of the node named “a”, and the nodes named “e”,“f” are predicate

children of the node named “c”.

Query evaluation For the rest of the section, fix Q and D to be some arbitrary Forward

XPath query and XML document, respectively. The evaluation ofQ onD specifies a sequence

of nodes that Q “selects” from D, in document order. A formal definition of this function

appears below.

Definition 3.1 (Node test passage). A name n ∈ N is said to pass a node test N , if

either N = n or N = *.
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Figure 2: Query tree for /a[c[.//e and f] and b > 5]/b

Definition 3.2 (Axis-specified tree-relationship). Let x, y be two nodes in a rooted

tree T , and let A be an axis. y is said to relate to x according to the axis A, if one of the

following holds:

1. A = child and y is a child of x.

2. A = descendant and y is a descendant of x.

Definition 3.3 (Predicate satisfaction). Let u be any query node and let predicate(u)

be the predicate of u. A document node x is said to satisfy the predicate predicate(u), if

one of the following holds:

1. predicate(u) is empty.

2. predicate(u) is not empty, and EBV(peval(ru, x)) = true, where ru is the root

of predicate(u), peval(·, ·) is the predicate evaluation function defined below, and

EBV(·) is the Effective Boolean Value function discussed below.

Definition 3.4 (Node selection). Let v be any query node, which is not the root. Let u

be any node in path(v), and let x be any document node of kind root or element. The

node sequence selected by the node v under the context u = x, denoted select(v|u = x), is

defined inductively as follows.

• If u = v, then select(u|u = x) = {x}.

• If u = parent(v), then select(v|parent(v) = x) consists of the sequence of docu-

ment nodes y that satisfy the three following conditions, in document order:
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1. name(y) passes ntest(v).

2. y relates to x according to axis(v).

3. y satisfies predicate(v).

• If u 6= parent(v), then u is an ancestor of parent(v). By induction, let (z1, . . . , zn)

the sequence selected by parent(v) under the context u = x. We now define:

select(v|u = x) = select(v|parent(v) = z1) ◦ · · · ◦ select(v|parent(v) = zn).

Definition 3.5 (Predicate evaluation). Let u be a query node, let predicate(u) be the

predicate of u, and let x be a document node. The evaluation of a node s ∈ predicate(u)

on x, denoted peval(s, x), is either an atomic value or a sequence and is defined recursively

as follows.

1. If s is labeled by a constant c ∈ V, then peval(s, x) = c.

2. If s is labeled by a pointer to a child v of u, let leaf(v) be the succession leaf of v. Then,

peval(s, x) is the sequence of data values of the nodes in select(leaf(v)|u = x).

3. If s is labeled by a function or operator f whose arguments are boolean (e.g., the

logical operators and,or,not) and the children of s are t1, . . . , tk, then

peval(s, x) = f(peval(t1, x), . . . , peval(tk, x)),

where the arguments to f are first cast to boolean by the EBV function (see below).

4. If s is labeled by an operator or a function f whose output is boolean but whose argu-

ments are non-boolean (e.g., comparison operators) and the children of s are t1, . . . , tk,

then

peval(s, x) = true ⇐⇒ ∃α1 ∈ P1, . . . , ∃αk ∈ Pk s.t. f(α1, . . . , αk) = true.

Here, for each i = 1, . . . , k, Pi is a sequence defined as follows. If peval(ti, x) is an

atomic value, then Pi is a length 1 sequence, consisting of this value, after proper

conversion to the type required by f . If peval(ti, x) is a sequence, then Pi is the same

sequence, after proper conversion of each element to the type required by f .

5. If s is labeled by an operator or a function f whose arguments are non-boolean and

whose output is non-boolean (e.g., arithmetic operators) and the children of s are

t1, . . . , tk, then

peval(s, x) = (f(α1, . . . , αk) : α1 ∈ P1, . . . , αk ∈ Pk).
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Here, P1, . . . , Pk are sequences defined as above. The sequence peval(s, x) is formed

by going over all α1 ∈ P1, . . . , αk ∈ Pk in lexicographical order.

In the above evaluations standard conversions among the various XPath types are applied.

The most important conversion rule, is defined by the Effective Boolean Value (EBV) function.

This function converts a data value of any type into a boolean value. EBV is used to cast

the output of the predicate’s root into a boolean, as well as to cast the operands of boolean

operators (e.g., and,or,not) into boolean. When the operand of EBV is a sequence, it returns

true if the sequence is not empty, giving most XPath expressions an existential semantics.

Remark. Definition 3.5 slightly deviates from the standard specifications of XPath [6]. The

existential evaluation rule (part 4) applies in the standard specification only to comparison

operators (i.e., =, !=, <, <=, >, >=), and not to every function whose output is boolean.

Furthermore, if a node s is labeled by an operator or a function f on non-boolean arguments

(excluding the comparison operators), then peval(s, x) is an atomic value f(α1, . . . , αk), and

not a sequence (as defined in part 5). The atomic values α1, . . . , αk are defined as follows.

For each i = 1, . . . , k, if peval(ti, x) is an atomic value, then αi is this value, after proper

conversion. If peval(ti, x) is a sequence, then αi is the first element in this sequence, after

proper conversion. For example, if the query is Q = /a[b + 2 = 5] and the document is

D = 〈a〉〈b〉0〈/b〉〈b〉3〈/b〉〈/a〉, then according to the standard specification, the predicate

evaluates to false, because the first “b” child of the “a” node does not satisfy the predicate.

Under our definition, however, the predicate will evaluate to true, because the second “b”

child of the “a” node satisfies the predicate. Our results can be modified to work also for

the standard specification of XPath, yet with an extra layer of technical details. In order to

keep our presentation more clean, we chose to use the above definition.

The evaluation of a query on a document is defined as follows:

Definition 3.6 (Query evaluation). The evaluation of a query Q on a document D, de-

noted fulleval(Q,D), is defined to be select(out(Q)|root(Q) = root(D)), if root(D)

satisfies the predicate of root(Q), and the empty sequence otherwise. We say that D

matches Q, if fulleval(Q,D) 6= ∅. We denote by booleval the boolean version of

fulleval: booleval(Q,D) = true if and only if D matches Q. As mentioned in the in-

troduction, for any fixed query Q, fullevalQ and boolevalQ are functions on documents,

defined as: fullevalQ(D) = fulleval(Q,D) and boolevalQ(D) = booleval(Q,D).

XML streams A streaming algorithm for evaluating XPath on XML documents accepts

its input document as a stream of SAX events. The algorithm can read the events only in the

order they come, and cannot go backwards on the stream. Thus, the only way to remember
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previously seen events is to store them in memory. The algorithm has random access to the

query.

There are five types of SAX events:

1. startDocument() (also denoted 〈$〉).

2. endDocument() (also denoted 〈/$〉).

3. startElement(n), where n ∈ N (also denoted 〈n〉).

4. endElement(n) (also denoted 〈/n〉).

5. text(α), where α ∈ S (also denoted α).

If an element is empty, we will use the notation 〈n/〉 as a shorthand for 〈n〉〈/n〉.

3.2 Communication complexity

In the communication complexity model [29, 23] two players, Alice and Bob, jointly compute

a function f : A × B → Z ∪ {⊥}. Alice is given α ∈ A and Bob is given β ∈ B, and they

exchange messages according to a protocol. If f(α, β) 6= ⊥, then (α, β) is called a “well-

formed” input, and then the last message sent in the protocol should be the value f(α, β).

Otherwise, the last message can be arbitrary. The cost of the protocol is the maximum

number of bits (over all (α, β)) Alice and Bob send to each other. The communication

complexity of f , denoted CC(f), is the minimum cost of a protocol that computes f .

Let X and Z be some arbitrary finite sets. Lemma 3.7 below shows that for any function

g : X ∗ → Z ∪ {⊥}, CC(g′) is a lower bound on the space complexity of g in the streaming

model, where g′ is a two-argument function obtained from g.

For any integer k ≥ 2, we define gk to be a two-argument function induced by g. Inputs

of gk are obtained by all the possible partitions of inputs of g into k consecutive segments

(of possibly varying lengths). Given an input x of g and a partition of x into k segments,

we denote by α1, . . . , αp the odd segments and by β1, . . . , βq the even segments (p = ⌈k/2⌉

and q = ⌊k/2⌋). α = (α1, . . . , αp) is the first input argument of gk and β = (β1, . . . , βq) is

its second input argument.

Lemma 3.7 (Reduction lemma). For any function g : X ∗ → Z∪{⊥} and for any integer

k ≥ 2, any streaming algorithm computing g requires at least (CC(gk)− log |Z|)/(k− 1) bits

of memory.

The proof is rather standard (cf. [23]), but is provided below for completeness.
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Proof. Let M be any streaming algorithm computing g, and let S be the space used by M .

We will show how to use M to construct a protocol that computes gk with (k−1) ·S+log |Z|

bits of communication. It would then immediately follow that S ≥ (CC(gk)−log |Z|)/(k−1).

Recall that g has two input arguments: α and β, where α = (α1, . . . , αp) and β =

(β1, . . . , βq), and by interleaving the entries of these two vectors one obtains an input stream

x ∈ X ∗ for the function g, so that g(x) = gk(α, β).

The protocol for gk works as follows. Alice starts by running the streaming algorithm M

on α1. When she gets to the end of α1 she sends to Bob the current state of the algorithm

M . Note that the description of this state requires at most S bits. Bob can now continue the

execution of M on β1. When he gets to the end of β1, he sends the reached state of M back

to Alice, who continues the execution on α2. Alice and Bob keep on in this manner, until

one of them (say, Alice) gets to the end of the execution of M . Alice then sends whatever

M outputs.

It is rather obvious that this protocol indeed computes gk correctly. Alice and Bob

exchange exactly p + q − 1 = k − 1 messages of length S and the last message is of length

log |Z|. Thus the total communication of the protocol is S · (k − 1) + log |Z|.

Lemma 3.7 thus reduces the task of proving space lower bounds for streaming algorithms

to the task of proving communication complexity lower bounds. For the latter a rich set

of techniques is available. We will mainly capitalize on the fooling set technique, which we

describe next.

Definition 3.8 (Fooling set). Let f : A×B → Z ∪{⊥} be a function. A fooling set for f

is a subset S of the inputs, which satisfies: (1) all the inputs in S are well-formed and share

the same output value z; and (2) for any two distinct inputs (α, β) and (α′, β ′) in S, either

(α, β ′) is well-formed and f(α, β ′) 6= z or (α′, β) is well-formed and f(α′, β) 6= z.

Theorem 3.9 (Fooling set technique). Let S be any fooling set for f . Then, CC(f) ≥

log |S|.

The proof appears in Chapter 1 of [23], but we provide it here for completeness:

Proof. Let Π be any protocol that computes f . Let πα,β be the transcript of messages

exchanged between Alice and Bob when they execute Π and are given the inputs α and β,

respectively. We will show that for any two distinct inputs (α, β) and (α′, β ′) in S, πα,β and

πα′,β′ must be different. It would then follow that Π has at least |S| different transcripts,

and thus the length of at least one of them has to be at least log |S|.

Assume, to the contradiction, that there are inputs (α, β) and (α′, β ′) in S so that πα,β =

πα′,β′ = π. Since both inputs are well formed and share the same output value z, the last

message in π must be z.
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Consider now the inputs (α, β ′) and (α′, β). It is not hard to prove, by induction on the

number of messages in π, that π must be also the transcript on these inputs. It follows that

Π outputs the value z on both inputs. However, we know that at least one of them is a

well-formed input whose output value should be different from z. Thus, Π makes an error

on this input, which is a contradiction to its correctness.

4 Space lower bounds: simplified version

Our lower bounds are proven with respect to a broad class of XPath queries, the “redundancy-

free” queries. Yet, defining Redundancy-free XPath is by itself a major effort, and the

definition may seem somewhat contrived at first. In order to give the reader a flavor of

the lower bound proofs right away, before we delve into the intricacies of Redundancy-free

XPath, we start with a restricted version of the lower bounds. In this section we provide

proofs of the three bounds not with respect to arbitrary redundancy-free queries, but rather

with respect to three carefully chosen specific queries. The proofs are simpler than the proofs

of the general bounds, which appear in Section 7, yet consist of most of the core ideas.

4.1 Query frontier size

We begin with an intuitive overview. Consider any algorithm that evaluates a query Q on

a document D, and suppose x ∈ D is the node whose startElement event is currently read

from the stream. Let u be a node in Q that x can potentially “match”. Whether x will turn

into a match of u or not depends on whether nodes in the subtree Dx (all of which are to

appear in later portions of the stream) match the children of u or not. Thus, the algorithm

has to allocate space for recording which of the children of u are being matched by nodes

in Dx. Moreover, the fate of all the ancestors of u has not been yet determined at the time

x is read from the stream. Therefore, the algorithm has to allocate space for recording the

status of their children as well. The query frontier of Q at u is the set of u’s children and

of its ancestors’ children. The above discussion implies that the size of the query frontier

should be a lower bound on the amount of memory used by the algorithm.

Definition 4.1 (Frontier size). A node y in a rooted tree T is called a super-sibling of

a node x, if y is either a sibling of x or a sibling of one of its ancestors. The frontier at

x, denoted F(x), consists of x and of all of its super-siblings. The frontier size of T is

FS(T ) = maxx |F(x)|.

Remark. When we discuss frontiers of document trees, we ignore text nodes.
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Example. Consider the query Q = /a[c[.//e and f] and b > 5] (see Figure 3). The

nodes named “b”,”e”, and “f” constitute the frontier at the node named “e”. Since this

node is the one with the largest frontier, the size of the frontier of this query is 3.

$

/a

/c and

>

5
//e

/band

/f

Frontier of node �e�

Figure 3: Largest frontier of the query /a[c[.//e and f] and b > 5]

We will prove the following lower bound w.r.t. to evaluation of the above example query

Q on XML document streams. In Section 7.1, we generalize the lower bound to arbitrary

redundancy-free queries.

Theorem 4.2. Let Q =/a[c[.//e and f] and b > 5]. Then, for every streaming al-

gorithm that computes boolevalQ, there is at least one document on which the algorithm

requires at least FS(Q) = 3 bits of space.

Proof. We create from the function boolevalQ a two-argument function booleval
2
Q as

described in Section 3.2: the first argument is a prefix of an XML stream and the second

argument is a suffix of an XML stream. We will describe a family of documents w.r.t. which

there is a FS(Q) lower bound on the communication complexity of booleval
2
Q. It would

follow (Lemma 3.7) that any streaming algorithm evaluating boolevalQ needs to use at

least FS(Q) bits of space on at least one of the documents in the family.

Let D be the following document (see also Figure 4(a)).

D = 〈a〉 〈c〉〈e/〉〈f/〉〈/c〉 〈b〉6〈/b〉 〈/a〉.

Let xa, xb, xc, xe, xf be the nodes named “a”,”b”,”c”,“e”, and ”f”, respectively. Note that

this document matches Q. Furthermore, its largest frontier, at xe, consists of the nodes

{xe, xf , xb}. Thus, FS(D) = FS(Q).
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(a) The document D
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(b) The document DT
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(c) The document DT,T ′

Figure 4: Documents used in the proof of Theorem 4.2

We use the fooling set technique (see Section 3.2) to prove the lower bound for booleval
2
Q.

We construct a set S of 2FS(D) pairs of the form (α, β), where α and β are, respectively, a

prefix and a suffix of an XML stream representing a document that matches Q. In fact, we

will choose the pairs such that the documents they form are all “similar” to the document

D.

We associate with each subset T of F(xe) (the frontier at xe) a pair (αT , βT ) in S. Thus,

|S| = 2|F(xe)| = 2FS(D), as desired.

Recall that F(xe) = {xe, xf , xb}. For each T ⊆ F(xe), we define a document DT , which is

the same as D, except that we reorder the children of each node in D, so that in the stream

representation of DT the nodes in T appear before the nodes in F(xe) \ T . For example, if

T = {xb, xf}, then DT is the following document (see also Figure 4(b)).

DT = 〈a〉 〈b〉6〈/b〉 〈c〉〈f/〉〈e/〉〈/c〉 〈/a〉.

αT is the prefix of the stream representation of DT that ends after the endElement of the

last node in T , and βT is the complementing suffix of the stream. In the above example:

αT = 〈a〉 〈b〉6〈/b〉 〈c〉〈f/〉 βT = 〈e/〉〈/c〉 〈/a〉.

For every two subsets T, T ′ ⊆ F(xe), we let DT,T ′ be the document whose stream repre-

sentation is αT ◦ βT ′ . It is easy to check that DT,T ′ is well-formed, since the proper nesting

of elements is maintained. For example, if T = {xb, xf} and T ′ = {xb, xe}, then DT,T ′ is the

following document (see also Figure 4(c)):

DT,T ′ = 〈a〉 〈b〉6〈/b〉 〈c〉〈f/〉 〈f/〉〈/c〉 〈/a〉.

The two following claims establish that S is indeed a fooling set, completing the proof of

the theorem.
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Claim 4.3. For every T , DT matches Q.

Proof. The query Q is indifferent to how children of nodes in a document are ordered. Hence,

since D matches Q, also DT matches Q.

Claim 4.4. For every T 6= T ′, at least one of DT,T ′, DT ′,T does not match Q.

Proof. Since T 6= T ′, then either T \ T ′ 6= ∅ or T ′ \ T 6= ∅. Suppose, e.g., that the latter

holds. It follows that T ∪ (F(xe) \ T ′) is a proper subset of F(xe). Hence, there is a node

z ∈ F(xe), which does not belong to T ∪ (F(xe) \ T
′).

Note that DT,T ′ includes a node whose name is “b” if and only if xb ∈ T ∪ (F(xe) \

T ′). Similarly, it includes nodes named “e”,“f” if and only if xe,xf , respectively, belong

to T ∪ (F(xe) \ T ′). Now, since there is a node z ∈ {xb, xe, xf}, which does not belong

to T ∪ (F(xe) \ T ′), then at least one of the names “b”,”e”,”f” is absent from DT,T ′. Any

document that matches Q must have at least one node named “b”, one node named “e”,

and one node named “f”. We conclude that DT,T ′ cannot match Q.

We conclude that S is indeed a proper fooling set. The memory lower bound now follows

from an application of the fooling set technique (Theorem 3.9) to the function booleval
2
Q

and by the reduction lemma (Lemma 3.7).

Extending the above proof to arbitrary queries is not possible. For example, if we slightly

modify Q as follows: Q′ = /a[c[.//* and f] and b > 5], then the query frontier size is

no longer a correct lower bound. FS(Q′) is still 3, but since any node that matches the node

named “f” also matches the wildcard node, then only 2 bits of space are sufficient to evaluate

the query. Redundancy-free queries do not allow the same document node to match multiple

query nodes simultaneously, and thus we can prove that the query frontier size lower bound

holds for them.

4.2 Recursion depth

The recursion depth of a document D with respect to a node v in a query Q is the length

of the longest sequence of nodes x1, . . . , xr ∈ D, such that: (1) all of them lie on the same

root-to-leaf path; and (2) all of them match v. For example, if Q is //a[b and c] and D is

〈a〉〈a〉〈b/〉〈c/〉〈/a〉〈/a〉, then the recursion depth of D w.r.t. the node named a is 2.

In this section we prove that for the query Q =//a[b and c], the document recursion

depth is a lower bound on the space complexity of boolevalQ in the data stream model.

In Section 7.2 we extend this proof to arbitrary redundancy-free queries that contain queries

like Q as a “sub-query”.
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Theorem 4.5. Let Q =//a[b and c], and let v be the node named “a” in Q. Then, for

any streaming algorithm that computes boolevalQ, and for any integer r ≥ 1, there is at

least one document of recursion depth at most r w.r.t. v, on which the algorithm requires

Ω(r) bits of space.

Proof. We use a reduction from the set disjointness problem in communication complexity.

In set disjointness, disj, Alice and Bob get boolean vectors s, t ∈ {0, 1}r, respectively. s and

t are viewed as characteristic vectors of two sets S, T ⊆ {1, . . . , r} (that is, si = 1 if and only

if i ∈ S, and similarly ti = 1 if and only if i ∈ T ). disj(s, t) = 1 if and only if S ∩ T 6= ∅.

The communication complexity of disj is Ω(r) (cf. [23]).

We will prove that given a streaming algorithm that computes boolevalQ, and given

any integer r ≥ 1, if the algorithm uses at most C bits of space on any document of recursion

depth at most r w.r.t. v, then we can design a communication protocol that solves the set

disjointness problem with C bits of communication. It would then immediately follow that

C has to be at least Ω(r).

To this end we associate with each input pair (s, t) of disj a document Ds,t as follows.

Ds,t has r nodes named “a” nested within each other. Each of these “a” nodes may have

a left “b” child (i.e., a child named “b” that appears before the nested “a” child) and/or a

right “c” child (i.e., a child named “c” that appears after the nested “a” child). The i-th

“a” node has a left “b” child if and only if si = 1 and it has a right “c” child if and only if

ti = 1. For example, if r = 3, s = 110, and t = 010, then Ds,t is defined as follows (see also

Figure 5):

Ds,t = 〈a〉〈b/〉〈a〉〈b/〉〈a〉〈/a〉〈c/〉〈/a〉〈/a〉.

It is easy to check that Ds,t matches Q if and only if at least one of the “a” nodes in Ds,t

has both a “b” child and a “c” child. This in turn happens if and only if there is some

i ∈ {1, . . . , r} s.t. si = ti = 1. In other words, Ds,t matches Q iff disj(s, t) = 1.

For each document Ds,t, let αs,t be the prefix of the stream representation of Ds,t ending

after the startElement event of the last nested “a” node. Let βs,t be the complementing

suffix of the stream. In the example above:

αs,t = 〈a〉〈b/〉〈a〉〈b/〉〈a〉 βs,t = 〈/a〉〈c/〉〈/a〉〈/a〉.

Note that αs,t depends only on s, while βs,t depends only on t.

The protocol for set disjointness proceeds as follows. Alice runs the given streaming

algorithm (that evaluates Q) on the XML stream prefix αs,t (which she can construct, since

this prefix depends only on her input s). When she is done, she sends the state of the

algorithm to Bob. Bob can continue the execution of the algorithm on the suffix βs,t (again,
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b ca

Figure 5: The document D110,010

he can construct this suffix, since the suffix depends only on his input t). At the end of the

execution, if the algorithm decides that there is a match, Bob declares the sets S and T to

be intersecting. Otherwise, he declares them to be disjoint.

Since the document Ds,t is of recursion depth at most r w.r.t. v, the state of the algo-

rithm requires at most C bits to describe, and hence the protocol uses at most C bits of

communication. By what we have shown above this protocol correctly computes the function

disj. Hence, we obtain C = Ω(r) from the lower bound for disj.

This relatively simple proof becomes very intricate when we wish to extend it to arbitrary

redundancy-free queries that contain queries like Q as a sub-query. The details are provided

in Section 7.2.

4.3 Document depth

The depth of a document is the length of the longest root-to-leaf path in the tree representing

the document. In this section we show that even for evaluating the simple query Q =/a/b,

any streaming algorithm needs to use space proportional to the logarithm of the document

depth (basically meaning that the algorithm has to record the “level” of the elements it

scans from the input document). In Section 7.3 we extend the lower bound for evaluation of

arbitrary redundancy-free queries that contain queries like Q as a sub-query.

Theorem 4.6. Let Q =/a/b. Then, for any streaming algorithm that evaluates boolevalQ,

and for any integer d ≥ 2, there is at least one document of depth at most d, on which the

algorithm requires Ω(log d) bits of space.

Proof. We create from boolevalQ a two-argument function booleval
3
Q (recall our nota-

tions from Section 3.2): its first argument is a pair (α, γ), where α is a prefix of an XML
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stream and γ is a suffix of an XML stream; its second argument β is the middle part of an

XML stream.

We use the fooling set technique from Section 3.2. We thus need to create a set S of d

documents D0, . . . , Dd−1 of depth at most d that match Q. We then split each document Di

into three parts: αi, βi, and γi, and show that for all i 6= j, one of the documents αi ◦ βj ◦ γi,

αj ◦ βi ◦ γj is well-formed but does not match Q.

For each i = 0, . . . , d− 1, let Di be the following document (see also Figure 6(a)):

Di = 〈a〉 〈Z〉〈Z〉 . . . 〈Z〉
︸ ︷︷ ︸

i times

〈/Z〉〈/Z〉 . . . 〈/Z〉
︸ ︷︷ ︸

i times

〈b〉〈/b〉 〈Z〉〈Z〉 . . . 〈Z〉
︸ ︷︷ ︸

i times

〈/Z〉〈/Z〉 . . . 〈/Z〉
︸ ︷︷ ︸

i times

〈/a〉.

Note that for all i, the node named “b” in Di is a child of the node named “a”, and thus Di

matches Q. Furthermore, Di is of depth max{i+ 1, 2} ≤ d.

$

b

a

Z

Z

i times

Z

Z

Z

Z

Z

Z

(a) The document Di

$

b

a

Z

Z

i times

j times

Z

Z

Z

Z

(b) The document Di,j

Figure 6: Documents used in the proof of Theorem 4.6

We split the event stream representing Di into three parts:

1. αi = 〈a〉 〈Z〉〈Z〉 . . . 〈Z〉
︸ ︷︷ ︸

i times

.

2. βi = 〈/Z〉〈/Z〉 . . . 〈/Z〉
︸ ︷︷ ︸

i times

〈b〉〈/b〉 〈Z〉〈Z〉 . . . 〈Z〉
︸ ︷︷ ︸

i times

.

3. γi = 〈/Z〉〈/Z〉 . . . 〈/Z〉
︸ ︷︷ ︸

i times

〈/a〉.
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For each i > j, let Di,j
def
= αi ◦ βj ◦ γi. That is Di,j looks as follows (see also Figure 6(b)):

Di,j = 〈a〉 〈Z〉〈Z〉 . . . 〈Z〉
︸ ︷︷ ︸

i times

〈/Z〉〈/Z〉 . . . 〈/Z〉
︸ ︷︷ ︸

j times

〈b〉〈/b〉 〈Z〉〈Z〉 . . . 〈Z〉
︸ ︷︷ ︸

j times

〈/Z〉〈/Z〉 . . . 〈/Z〉
︸ ︷︷ ︸

i times

〈/a〉.

Note that the node named “b” becomes the child of the (i − j)-th node on the path of Z

nodes. The proper nesting of elements is maintained, and therefore Di,j is a well-formed

document. Since the “b” node is no longer a child of the “a” node, Di,j does not match Q.

We conclude that S is indeed a fooling set of size d. Applying Theorem 3.9 to the function

booleval
3
Q and Lemma 3.7 give us a space lower bound of (log d)/2 = Ω(log d).

As before, extending the above proof to hold for arbitrary redundancy-free queries that

contain a query like /a/b as a sub-query is quite intricate. The details are provided in

Section 7.3.

5 Redundancy-free XPath

Our general lower bounds deal with generic queries rather than specific queries. This makes

arguments much more complicated. Since we don’t know much about the query, it is hard

to construct generic documents that are guaranteed to match or not to match the query.

As shown in the simplified versions of the lower bounds, constructing such documents is an

essential part of the proofs.

To address these difficulties, we restrict to queries taken from a fragment of XPath, which

we call Redundancy-free XPath. The particular properties of queries in Redundancy-free

XPath allow us to associate with each query in this fragment a generic “canonical document”

(see Section 6.4). A canonical document is guaranteed to match its corresponding query,

and furthermore there is a unique way to construct this matching. Canonical documents

play a crucial role in all our proofs and are used as a basis for constructing the documents

that match/don’t match the given generic query.

One of the central qualities of queries in Redundancy-free XPath is “minimality”: these

queries do not consist of redundant parts that can be eliminated without changing the

semantics of the queries. For example, the query /a[b > 5 and b > 6]) is not redundancy-

free, because the atomic predicate “b > 5” is redundant.

Redundancy-free XPath has other restrictions: queries cannot consist of disjunctions

or negations, their atomic predicates can point to only a single variable (e.g., a predicate

“[a > b]” is not allowed), they cannot mix wildcard node tests with descendant axis (e.g.,

expressions like “[a//*]” are disallowed), and they do not allow predicates that restrict

values of internal nodes (e.g., predicates like “[a[b] > 5]” are not allowed). All these
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restrictions are required for the construction of proper canonical documents, as described

in Section 6.4. Yet, we do not try to argue that all of these requirements are necessary for

the correctness of the lower bounds. It may be possible that via other techniques one could

extend the lower bounds to hold for a larger fragment of XPath.

A possible criticism of Redundancy-free XPath is that some of its restrictions are artificial

and non-intuitive. Indeed, Redundancy-free XPath was defined the way it is to allow for the

construction of canonical documents. Even so, Redundancy-free XPath is an extensive sub-

class of XPath, consisting of many natural queries that come up in reality. In fact majority of

the queries in the XQuery Use Cases document [9] are composed of Redundancy-free XPath

expressions. This is due to the fact that most of the restrictions would not appear very

often in human written queries since the users usually write queries as short as possible over

known schemas. Examples of restrictions that rarely conflict with queries in the XQuery Use

Cases document are redundant predicates, a “*” with a descendant axis, and predicates over

internal nodes. Regarding the same set of queries it seems like the most severe restriction

of Redundancy-free XPath are the limitations to conjunctive queries and to a lesser extent

univariate predicates and this should be the focus of future investigation in this field. Beyond

these queries, Redundancy-free XPath might not suffice for tool generated queries. Currently

we do not have a large set of such queries available, so we postpone analysis of such cases

until XQuery and XPath become more prevalent in query generation tools.

Redundancy-free XPath is defined as follows:

Definition 5.1 (Redundancy-free queries). A Forward XPath query is called redundancy-

free, if it is: (1) star-restricted; (2) conjunctive; (3) univariate; (4) leaf-only-value-restricted;

and (5) strongly subsumption-free.

Remark. In the preliminary version of the paper [4] this fragment of XPath is referred to as

“Conjunctive XPath”.

In the following we formally define these restrictions and state useful properties they

have. The interested reader can find full proofs in Appendix A.

5.1 Star-restricted queries

Definition 5.2 (Star-restricted query). A query Q is called star-restricted, if none of the

nodes in Q that have a wildcard node test are: (1) leaves; (2) have a descendant axis; or (3)

have a child with a descendant axis.

That is, in star-restricted queries path expressions, such as a/*, a//*/b, and a/*//b, are

disallowed.
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5.2 Conjunctive queries

In order to define conjunctive XPath queries, we need to define “atomic predicates”:

Definition 5.3 (Atomic predicate). A predicate subexpression is called an atomic pred-

icate, if it satisfies the two following conditions:

1. None of its nodes is labeled by a function or operator on boolean arguments (such as

the logical operators and,or,not).

2. None of its nodes, except for the root, is labeled by a function or operator whose output

is boolean.

Example. In the predicate [b > 5 and c + d = 7], the subexpressions “b > 5” and “c

+ d = 7” are atomic predicates.

Definition 5.4 (Conjunctive query). A predicate is called conjunctive if it is either an

atomic predicate or a conjunction of atomic predicates. A query is called conjunctive, if all

its predicates are conjunctive.

That is, the only function on boolean arguments allowed in conjunctive queries is the log-

ical and. Furthermore, expressions in which nodes labeled by functions with boolean output

are children of nodes labeled by functions on non-boolean arguments (thereby necessitating

casting of boolean to non-boolean) are disallowed. An example of such an expression is 1 -

(a > 5).

5.3 Univariate queries

Definition 5.5 (Univariate query). A variable in an atomic predicate is a reference

to a query node. An atomic predicate is called univariate, if it consists of at most one

variable. A conjunctive predicate is called univariate, if all its constituent atomic predicates

are univariate. A conjunctive query is called univariate, if all its predicates are univariate.

Example. In the conjunctive predicate [b > 5 and c + d = 7], the first atomic predicate

“b > 5” is univariate, while the second “c + d = 7” is not.

Note that by the definition of predicates, successor nodes can never be pointed by pred-

icates. It follows that a predicate of the form [a//b] is univariate, although it refers to two

query nodes. Only the “a” node is a real variable, because the “b” node is a successor.

A special property of univariate queries is that their nodes can be associated with “truth

sets”, as defined below.
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Definition 5.6 (Truth set). Let P be a univariate atomic predicate. Since P has a variable,

its value (true or false) is undetermined. A value α ∈ V is said to satisfy P , if replacement

of the variable of P by α results in a tautology (i.e., the predicate evaluates to true). The

truth set of P , denoted truth(P ), is the set of all string values in S, which, after proper

casting to the required type, satisfy P .

For a node u in a univariate query Q, let v be the succession root of u. The truth set of

u, denoted truth(u), is defined as follows:

1. If u is a succession leaf and v is a variable in an atomic predicate P , then truth(u) =

truth(P ).

2. If u is a succession leaf and v is not a variable in any predicate (i.e., v = root(Q)),

then truth(u) = S.

3. If u is not a succession leaf, then truth(u) = S.

Example. In the query /a[b/c > 5 and d], the truth set of the nodes named “a”, “b”

and “d” is S, while the truth set of the node named “c” is the set of strings representing

numbers in the interval (5,∞).

5.4 Leaf-only-value-restricted queries

Definition 5.7 (Leaf-only-value-restricted queries). Let Q be a univariate query. A

node u ∈ Q is called value-restricted, if truth(u) is a proper subset of S (i.e., truth(u) (

S). Q is called leaf-only-value-restricted, if none of its internal nodes is value-restricted.

Example. The query /a[b[c] > 5] is not leaf-only-value-restricted, because the node

named “b” is internal but value-restricted. On the other hand, the query /a[b[c > 5]]

is leaf-only-value-restricted.

5.5 Subsumption-free queries

Loosely speaking, subsumption-free queries are ones that do not have any “redundancies”

(i.e., removal of any part of a subsumption-free query results in a query which is not

equivalent to the original query). For our proofs, we will need a rather strong notion of

subsumption-freeness, which we gradually develop below. To this end, we define subsumption-

freeness only w.r.t. queries that are: (1) star-restricted; (2) conjunctive; (3) univariate; and

(4) leaf-only-value-restricted.

Our most powerful tool for proving whether a document matches a query or not is

the notion of matchings defined below. Matchings will be also useful for formally defining

subsumption-free queries.
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Definition 5.8 (Matching). Let Q be a univariate query, and let D be any document. A

matching of a node x ∈ D with a node u ∈ Q is a mapping φ from the node set of Qu to the

node set of Dx (recall our conventional notation), which has the following properties:

1. Root match: φ(u) = x.

2. Axis match: For all nodes v ∈ Qu, v 6= u, φ(v) relates to φ(parent(v)) according

to axis(v).

3. Node test match: For all nodes v ∈ Qu, name(φ(v)) passes ntest(v).

4. Value match: For all nodes v ∈ Qu, strval(φ(v)) ∈ truth(v).

If a mapping φ satisfies only the first three requirements, we call it a structural matching.

A matching (resp., structural matching) of the document D and the query Q is a matching

(resp., structural matching) of root(D) with root(Q).

Example. Figure 7 shows two example matchings of a document with a query. In this case

the “b” node in the query can be matched with any of the two “b” nodes in the document

whose string value belongs to its truth set.
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DocumentQuery
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Figure 7: Two matchings of a document with the query /a[b > 5]

The following definition and lemma show that matchings characterize the set of nodes

selected by a query node.

Definition 5.9 (Matching relative to a context). Let Q be a univariate query and let

D be a document. Let u ∈ Q, x ∈ D be any nodes, and let v ∈ Qu, y ∈ Dx. y is said

to match (resp., structurally match) v relative to the context u = x, if there is a matching

(resp., structural matching) φ of x with u, so that φ(v) = y.
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Remark. For the rest of the paper, when we say that a document node x matches a query

node u, without specifying a context, we refer to the context root(Q) = root(D).

Lemma 5.10. A document D matches a query Q if and only if there exists a matching of

D and Q.

Definition 5.11 (Set of matches). The set of matches (resp., structural matches) for a

node u ∈ Q, denoted matches(u) (resp., smatches(u)), is the set of all pairs 〈D, x〉, where

D is a document, x ∈ D is a node in this document, and x matches (resp., structurally

matches) u relative to the context root(Q) = root(D).

Definition 5.12 (Subsumption). A node u ∈ Q is said to subsume (resp., structurally sub-

sume) a node v ∈ Q, if matches(u) ⊆ matches(v) (resp., smatches(u) ⊆ smatches(v)).

Example. In the query /a[b and .//b], the left node named “b” subsumes the right one,

because any document node that would match the left “b” node will also match the right

one. On the other hand, in the query /a[b = 5 and .//b = 3], the left node named “b”

structurally subsumes the right one, but does not subsume it.

The following is an extension of the notion of subsumption:

Definition 5.13 (Subsumption of sets). A node u ∈ Q is said to subsume a set of nodes

v1, . . . , vk ∈ Q, if matches(u) ⊆
⋃k

i=1 matches(vi).

Example. In the query /a[fn:matches(b,’’^A.*B$’’) and fn:matches(b,’’AB’’) and

fn:matches(b,’’A.+B’’)], the three nodes named “b” structurally subsume each other.

The truth set of the first node consists of all the strings that start with “A” and end with

“B”; the truth set of the second node consists of all the strings that contain “AB” as a

substring; the truth set of the third node consists of all the strings that contains substrings

of length at least 3 that start with “A” and end with “B”. It follows that none of the three

nodes individually subsumes each other, but the first node subsumes the set consisting of

the second and the third nodes.

We can now define subsumption-free queries:

Definition 5.14 (Subsumption-free query). Q is subsumption-free, if no node u ∈ Q

subsumes any set S ⊆ Q \ {u}.

In order to define the stronger notion of subsumption-freeness we need for our proofs, we

present two properties of queries. To this end, we will use the following notion:
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Definition 5.15 (Domination set). The domination set (resp., structural domination set)

of a node u ∈ Q, denoted dom(u) (resp., sdom(u)) is the set of all nodes v ∈ Q that u

subsumes (resp., structurally subsumes).

In the two following definitions, for each node u, we denote by Lu the set of leaf nodes

in its structural domination set.

Definition 5.16 (Sunflower property). Q is said to have the sunflower property, if every

leaf node u ∈ Q satisfies the following:

truth(u) 6⊆
⋃

v∈Lu

truth(v).

For a string α, we denote by prefix(α) the set of all prefixes of α. For a set of strings

T , we denote by prefix(T ) the set of all prefixes of all strings α ∈ T .

Definition 5.17 (Prefix sunflower property). Q is said to have the prefix sunflower

property, if every internal node u ∈ Q satisfies the following:

prefix(truth(u)) 6⊆
⋃

v∈Lu

prefix(truth(v)).

We can now define strongly subsumption-free queries:

Definition 5.18 (Strongly subsumption-free queries). Let Q be a star-restricted, leaf-

only-value-restricted, univariate, conjunctive query. Q is called strongly subsumption-free if

it has the sunflower property and the prefix sunflower property.

The following shows that strongly subsumption-free queries are indeed subsumption-free:

Lemma 5.19. If Q is strongly subsumption-free, then it is also subsumption-free.

The following example shows that strong subsumption-freeness is a strictly stronger no-

tion than subsumption-freeness.

Example. Consider the query /a[b[c = ‘‘A’’] and fn:ends-with(b,’’B’’)]. The first

“b” node does not subsume the second “b” node, because not every document node that

matches the first “b” node must have a string value that ends with the character “B”. The

second “b” node does not subsume the first “b” node, because not every document node

that matches the second “b” node must have a child named “c”. Therefore, this query is

subsumption-free. However, the query is not strongly subsumption-free: the only node to

structurally subsume other nodes is the first “b” node that structurally subsumes the second

“b” node. The first “b” node is internal. However, since the truth set of the second “b” node

consists of all the strings that end with the character “B”, then all strings in S are prefixes

of some string in this truth set. Thus, the query does not have the prefix sunflower property,

and therefore is also not strongly subsumption-free.
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6 Technical machinery

Our lower bound proofs are based on relatively simple reductions from the model of com-

munication complexity. Yet, proving that the document instances that come out of these

reductions match/don’t match the given query requires somewhat involved and lengthy ar-

guments.

In order to minimize the amount of details in the lower bound proofs themselves, we

collected in this section most of the technical machinery used to argue about matching

of documents to queries. We include in this section only non-trivial proofs. The more

straightforward (yet laborious) proofs are deferred to the appendix.

6.1 Document homomorphisms

Document homomorphisms are analogous to reductions in algorithms and complexity. Sup-

pose we have a document D that we already know to match a query Q and let D′ be another

document we wish to prove matches Q. If we show a homomorphism from D to D′, then we

can immediately deduce that D′ also matches Q.

Loosely speaking, a homomorphism from D to D′ is a mapping from the nodes of D

to the nodes of D′ that preserves parent-child relationships, node names, and string values.

Formally, homomorphisms are defined w.r.t. subtrees of documents:

Definition 6.1 (Document homomorphism). Let D,D′ be two documents (possibly,

D = D′), and let x ∈ D and x′ ∈ D′ be two nodes in these documents. The subtree Dx is

said to be homomorphic to the subtree D′
x′, if there is a mapping ξ (called a homomorphism)

from the node set of Dx to the node set of D′
x′ that satisfies the following:

1. Root preservation: ξ(x) = x′.

2. Tree-relationship preservation: For each node y ∈ Dx, y 6= x, ξ(parent(y)) =

parent(ξ(y)).

3. Name preservation: For each node y ∈ Dx, name(ξ(y)) = name(y).

4. Value preservation: For every node y ∈ Dx, strval(ξ(y)) = strval(y).

If ξ satisfies only the first three of the above properties, then we call it a structural homo-

morphism and we say that Dx is structurally homomorphic to D′
x′.

If ξ satisfies the value preservation property only for leaf nodes y, we call it a weak

homomorphism and we say that Dx is weakly homomorphic to D′
x′.
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A document D is said to be homomorphic (resp., structurally homomorphic, weakly ho-

momorphic) to the document D′, if Droot(D) is homomorphic (resp., structurally homo-

morphic, weakly homomorphic) to D′
root(D′).

Example. Let

D′ = 〈a〉 〈b〉 hello 〈/b〉 〈c〉 world 〈/c〉 〈/a〉

and

D = 〈a〉 〈c〉 world 〈/c〉 〈c〉 world 〈/c〉 〈b〉 hello 〈/b〉 〈/a〉.

A weak homomorphism from D to D′ is one that maps the node named “a” in D to the

node named “a” in D′, the node named “b” in D to the node named “b” in D′, and the two

nodes named “c” in D to the node named “c” in D′. This is not a homomorphism, because

the string value of the “a” node is not preserved.

The following lemma shows that if D matches Q and is homomorphic to D′, then also

D′ matches Q.

Lemma 6.2. Let D,D′ be two documents, let x ∈ D and x′ ∈ D′ be two nodes in these

documents, and assume there is a homomorphism (resp., structural homomorphism) ξ from

Dx to D′
x′. Let Q be a redundancy-free query, and suppose there is a matching (resp.,

structural matching) φ of x with a node u ∈ Q. Then, the mapping η
def
= ξ ◦ φ is a matching

(resp., structural matching) of x′ with u.

The same lemma holds for weak homomorphisms, if we restrict the matching φ to the

following class of matchings:

Definition 6.3 (Leaf-preserving matchings). Let Q be a univariate query, and let D be

any document. A matching φ of a node x ∈ D with a node u ∈ Q is called leaf-preserving,

if for every leaf v ∈ Qu, φ(v) is a leaf.

Now, we have:

Lemma 6.4. Let D,D′ be two documents, let x ∈ D and x′ ∈ D′ be two nodes in these

documents, and assume there is a weak homomorphism ξ from Dx to D′
x′. Let Q be a

redundancy-free query, and suppose there is a leaf-preserving matching φ of x with a node

u ∈ Q. Then, the mapping η
def
= ξ ◦ φ is a matching of x′ with u.

The proofs of both lemmas appear in Appendix C.

Definition 6.5 (Isomorphism). A homomorphism ξ from D to D′ is called an isomor-

phism, if it is injective and onto.

Remark. It is immediate that if ξ is an isomorphism, then so is ξ−1.
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6.2 Hybrid matchings

Hybrid matchings enable the pasting together of two “partial” matchings into a “full” match-

ing. Let Q be a univariate query and let D be some document. Let u ∈ Q be a node, which

is not the root, and suppose there is a matching φ of a node x ∈ D with u.

Let Q−u denote the query Q after removing the subtree rooted at u. Formally speaking,

Q−u need not be a legal query by itself, because the predicate of parent(u) may point to

u. Yet, we can still talk about matchings of documents with Q−u. A mapping η from the

nodes of Q−u to the nodes of a document D is called a matching (relative to the context

root(Q) = root(D)), if it satisfies the four properties of a matching.

We can now define hybrid mappings:

Definition 6.6 (Hybrid mappings). Let Q,D, u, x be as above. Suppose φ is a matching

of x with u and η is a matching of D with Q−u. The hybrid mapping induced by φ and η is

a mapping µ from Q to D defined as follows for every v ∈ Q:

µ(v) =

{
φ(v) if v ∈ Qu

η(v) if v ∈ Q−u
.

The following lemma, whose proof appears in Appendix B, gives a sufficient condition

for the hybrid mapping to indeed be a matching:

Lemma 6.7. Let Q be a univariate query, let D be a document, let φ be a matching of a

node x ∈ D with a node u ∈ Q, and let η be a matching of D with Q−u. If x relates to

η(parent(u)) according to axis(u), then the hybrid mapping µ induced by φ and η is a

matching of D with Q.

6.3 Query automorphisms

Structural query automorphisms are a tool for characterizing which nodes of a query struc-

turally subsume other nodes.

Definition 6.8 (Structural query automorphism). A mapping ψ from the node set of

Q to itself is called a structural query automorphism, if it has the following properties:

1. Root preservation: ψ(root(Q)) = root(Q).

2. Axis preservation: For all u ∈ Q, u 6= root(Q), if axis(u) = child (resp.,

axis(u) = descendant), then ψ(u) is a child (resp., descendant) of ψ(parent(u)),

and axis(ψ(u)) = child (resp., axis(ψ(u)) ∈ {child, descendant}).
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3. Node test preservation: For all u ∈ Q, if ntest(u) 6= *, then ntest(ψ(u)) =

ntest(u).

Such an automorphism is called non-trivial, if it is not the identity.

Example. In the query /a[b and .//b], a non-trivial structural query automorphism is

one that maps the node named “a” to itself, and the two nodes named “b” to the left node

named “b”.

The following lemma shows that structural query automorphisms characterize the nodes

that structurally subsume other nodes. The proof appears in Appendix D.

Lemma 6.9. A node u ∈ Q structurally subsumes a node v ∈ Q if and only if there exists

a structural query automorphism ψ on Q, such that ψ(v) = u.

Let depth(u) = |path(u)| be the number of nodes along the path from the root to u.

The following is a property of structural query automorphisms: (The proof is in Appendix

D.)

Proposition 6.10. Let ψ be any structural query automorphism on Q. Then, for all u ∈ Q,

depth(u) ≤ depth(ψ(u)).

6.4 Canonical documents

In this section we introduce the notion of canonical documents. Canonical documents will be

one of our primary tools for proving the memory lower bounds. For every redundancy-free

query Q, we define a corresponding “canonical document” Dc. This document has certain

properties, which will become very handy in our proofs.

The construction Loosely speaking, the canonical document corresponding to a query

is identical to the query, except for the following differences: (1) node tests are turned into

node names; (2) nodes with descendant axis, are made strict descendants of their parents,

by inserting a long chain of “artificial nodes” between them and their parents; (3) nodes are

assigned string values, which “uniquely” belong to their truth sets.

The function createCanonicalDocument(Q) (see Figure 8) describes how to construct a

canonical document Dc from a query Q. getAuxiliaryName(Q) is a function that returns a

name from N , which does not occur as a node test in Q. We assume that N is large enough

so such a name always exists.

Let h denote the length of the longest chain of wildcards in Q; i.e., h is the length of the

longest path segment all of whose nodes have the wildcard node test.

31



We create two types of nodes in Dc: “shadow nodes” and “artificial nodes”. For every

node u ∈ Q, we create a single shadow node shadow(u) in Dc inductively as follows. First,

shadow(root(Q)) = root(Dc). Assume, then, that we defined shadow(u), and let v be

a child of u. If axis(v) = child, then shadow(v) is set to be a child of shadow(u). If

axis(v) = descendant, then shadow(v) is set to be a descendant of shadow(u), following

a chain of h+ 1 new artificial nodes z1, . . . , zh+1 (lines 2-6,17-21). The names of z1, . . . , zh+1

are assigned the auxiliary name returned by getAuxiliaryName(Q). If ntest(v) 6= ∗, then

the name of shadow(v) is set to be ntest(v). Otherwise, it is assigned a name returned

by getAuxiliaryName(Q) (lines 7-9,16).

The document constructed thus far (i.e., the one created by createCanonicalDocument,

excluding line 10) has no text nodes. We call such a document a “structurally canonical

document”.

We next show how to add text nodes to Dc. Only shadow nodes are assigned text

node children. Let u be any node in Q. Let Lu be the set of leaf nodes in the structural

domination set of u (recall definition from Section 5.5). If u is a leaf, then by the sunflower

property of Q, there exists a value α ∈ truth(u), which does not belong to truth(v), for

all v ∈ Lu. We add a text node child to shadow(u), whose text content is α. If u is an

internal node, then by the prefix sunflower property of Q, there exists a value α ∈ S, which

is not a prefix of any value in
⋃

v∈Lu
truth(v). We add a text node child to shadow(u),

preceding all its other children, whose text content is α. The function getUniqueValue(u)

(line 10) is the one that returns the “unique value” α, as specified above.

Example. Consider the following redundancy-free query:

Q = /a[*/b > 5 and c/b//d > 12 and .//d < 30].

Note that the second “b” node in this query structurally subsumes the first “b” node (which

is a leaf) and the first “d” node structurally subsumes the second “d” node (which is also a

leaf). The maximum length of a wildcard chain in this query is 1 and “Z” is an “auxiliary

name”. Therefore, the following is a canonical document corresponding to Q:

〈a〉 〈Z〉〈b〉6〈/b〉〈/Z〉 〈c〉〈b〉hello〈Z〉〈Z〉〈d〉31〈/d〉〈/Z〉〈/Z〉〈/b〉〈/c〉 〈Z〉〈Z〉〈d〉29〈/d〉〈/Z〉〈/Z〉 〈/a〉.

Figure 9 shows the tree representation of the query and the canonical document. The

first node named “Z” in the canonical document is the shadow of the wildcard node in Q.

The rest of the “Z” nodes are artificial nodes. The shadow of the first “b” node in Q was

assigned the value “6”, which belongs to the truth set of this node. The shadow of the

second “b” node in Q was assigned the string “hello” as a prefix, because no value in the

truth set of the first “b” node has “hello” as a prefix. The shadow of the first “d” node

32



Function createCanonicalDocument(Q)
1: processNode(root(Q))

Function processNode(u)
1: if (u != root(Q)) then

2: if (axis(u) = descendant) then
3: for i := 1 to h + 1 do
4: print ’〈’ getAuxiliaryName(Q) ’〉’
5: end for
6: end if

7: a := ntest(u)
8: if (a = ’*’) a := getAuxiliaryName(Q)
9: print ’〈’ a ’〉’

10: print getUniqueValue(u)

11: end if

12: for c in children(u) do
13: processNode(c)
14: end for

15: if (u != root(Q)) then

16: print ’〈/’ a ’〉’

17: if (axis(u) = descendant) then
18: for i := 1 to h + 1 do
19: print ’〈/’ getAuxiliaryName(Q) ’〉’
20: end for
21: end if

22: end if

Figure 8: Pseudo-code of the procedure that creates a canonical document for a given query.

was assigned the value “31”, because it belongs to the truth set of this “d” node, but does

not belong to the truth set of the second “d” node. Finally, the shadow of the second “d”

node was assigned the value “29”, which belongs to the truth set of this node.

Canonical matching We present a “canonical matching” of Dc and Q, and prove it is

unique. To this end, fix Q to be an arbitrary redundancy-free query, and let Dc be the

corresponding canonical document. The canonical matching φc is defined as follows:

For every node u ∈ Q, φc(u)
def
= shadow(u).

Lemma 6.11. φc is a matching of Dc and Q.

Proof. We need to prove φc satisfies the four properties of a matching (see Definition 5.8).

1. Root match: By definition, shadow(root(Q)) = root(Dc).
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Figure 9: Canonical document for /a[*/b > 5 and c/b//d > 12 and .//d < 30]

2. Axis match: Let u be any node in Q which is not the root. If axis(u) = child,

then by the construction of Dc, shadow(u) is a child of shadow(parent(u)). If

axis(u) = descendant, then by the construction of Dc, shadow(u) is a descendant

of shadow(parent(u)).

3. Node test match: For any node u ∈ Q, if ntest(u) 6= *, then the name of

shadow(u) is the same as ntest(u).

4. Value match: Let u be any node inQ. If u is a leaf, then shadow(u) has a single text

node child whose text content belongs to truth(u). Therefore, strval(shadow(u)) ∈

truth(u). If u is an internal node, then sinceQ is leaf-only-value-restricted, truth(u) =

S. That is, every string, strval(shadow(u)) in particular, belongs to truth(u).

We next show that in any structural matching of Dc with Q, no node of Q can be mapped

to an artificial node in Dc:

Lemma 6.12. Let φ be any structural matching of Dc and Q. Then, for every node u ∈ Q,

φ(u) is not an artificial node.

We first prove the following claim:

Claim 6.13. Let u ∈ Q be any node so that φ(u) is an artificial node. Then, ntest(u) = *.
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Proof. Since φ(u) is artificial, its name is the auxiliary name returned by the function

getAuxiliaryName(Q). Hence, this name does not occur as a node test of any node in Q,

and in particular it cannot be the node test of u. Since the name of φ(u) passes ntest(u),

it must be the case that ntest(u) = *.

Proof of Lemma 6.12. Suppose, to the contradiction, there exists some node u ∈ Q so that

φ(u) is an artificial node. By the above claim, u has a wildcard node test. Since Q is star-

restricted (recall definition in Section 5.1), this implies that u must have a child axis and

must have a child v with a child axis.

By our construction of the document Dc, since φ(u) is an artificial node, it belongs to a

chain of h + 1 artificial nodes, where h is the length of the longest chain of wildcard nodes

in Q. Let i ∈ {1, . . . , h+ 1} be the position of φ(u) in this chain.

Since u has a child axis, then φ(u) must be a child of φ(parent(u)). If i > 1, this

means that also φ(parent(u)) is an artificial node, and thus also ntest(parent(u)) = *.

Inductively, this argument implies that the first i−1 ancestors of u (starting from its parent

and upwards) must have a wildcard node test.

Since u has a child v with a child axis, φ(v) must be a child of φ(u). If i < h+ 1, then

φ(v) is also an artificial node, and thus ntest(v) = *. Inductively, this argument implies

that there must be a sequence of h+ 1− i nodes in Q, starting with v, each is a child of the

previous one, and all have a wildcard node test.

We conclude from the above two paragraphs, that u must belong to a chain of h + 1

nodes, all of which have a wildcard node test. This contradicts the fact h is the maximum

length of a chain of nodes with a wildcard node test in Q.

The next lemma shows that any structural matching ofDc withQ induces a corresponding

structural query automorphism:

Lemma 6.14. Let φ be any structural matching of Dc and Q. Then, ψ(u)
def
= shadow

−1(φ(u))

is a structural query automorphism on Q.

Note that by Lemma 6.12, for every u ∈ Q, φ(u) = shadow(v), for some v ∈ Q. Note

also that shadow(·) is a 1-1 mapping. Therefore, the mapping ψ is well-defined.

Proof. We show that ψ has the three required properties:

1. Root preservation: By the root match property of φ, φ(root(Q)) = root(Dc).

root(Dc) = shadow(root(Q)), by the construction of Dc, and therefore ψ(root(Q)) =

root(Q).

2. Axis preservation: Let u ∈ Q, u 6= root(Q), and let v = ψ(u) = shadow
−1(φ(u))

and w = ψ(parent(u)) = shadow
−1(φ(parent(u))).
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If axis(u) = child, then by the axis match property of φ, φ(u) must be a child of

φ(parent(u)). By the construction of Dc, a shadow node shadow(v′) is a child of another

shadow node shadow(w′), only if v′ is a child of w′ and axis(v′) = child. Therefore,

v = ψ(u) must be a child of w = ψ(parent(u)) and have a child axis.

If axis(u) = descendant, then by the axis match property of φ, φ(u) must be a de-

scendant of φ(parent(u)). By the construction of Dc, a shadow node shadow(v′) is a

descendant of another shadow node shadow(w′), only if v′ is a descendant of w′. Therefore,

v = ψ(u) must be a descendant of w = ψ(parent(u)).

3. Node test preservation: Let u ∈ Q, and let v = ψ(u) = shadow
−1(φ(u)). Sup-

pose ntest(u) 6= *. Therefore, by the node test match property of φ, name(φ(u)) =

ntest(u). In particular, the name of φ(u) is not the auxiliary name returned by the func-

tion getAuxiliaryName(Q), implying that v does not have the wildcard node test. By the

construction of Dc, since φ(u) = shadow(v), the name of φ(u) must equal ntest(v). We

conclude that ntest(ψ(u)) = ntest(v) = name(φ(u)) = ntest(u).

We can now prove that the canonical matching is unique:

Lemma 6.15. φc is the only matching of Dc and Q.

Proof. Suppose, to reach a contradiction, there exists a matching φ of Dc and Q, and φ 6= φc.

Therefore, there is some node v ∈ Q, so that φ(v) 6= shadow(v). Any matching is also a

structural matching. So, from Lemma 6.12, we know that φ(v) = shadow(u) for some node

u ∈ Q, u 6= v.

Let ψ(w) = shadow
−1(φ(w)) be the structural query automorphism induced by φ

(Lemma 6.14). We have: ψ(v) = u.

We first note that, without loss of generality, v is a leaf. Suppose not. Let v′ be any

child of v. We claim that also φ(v′) 6= shadow(v′). If not, then ψ(v′) = v′. By the axis

preservation property of ψ, ψ(v′) = v′ is a descendant of ψ(v) = u. We thus have: v′ is a

child of v and a descendant of u, and v 6= u. That must mean that v is a descendant of u.

In particular, depth(v) > depth(u). This contradicts Proposition 6.10, because u = ψ(v).

Therefore, φ(v′) 6= shadow(v′). Continuing this way inductively, we will reach a leaf v′′ in

the subtree Qv, for which φ(v′′) 6= shadow(v′′). So from now on we assume v itself was a

leaf to begin with.

We conclude that ψ(v) = u and v is a leaf. By Lemma 6.9, this means that v is a leaf in

the structural domination set of u. We finish off the proof by a case analysis:

Case 1: u is a leaf. By the construction of the document Dc, shadow(u) has a single

text node child, whose text content is a value α, which belongs to truth(u) but does not
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belong to truth(w), for any leaf w in the structural domination set of u. In particular,

α 6∈ truth(v). We conclude that strval(φ(v)) = strval(shadow(u)) = α 6∈ truth(v).

This contradicts the value match property of φ.

Case 2: u is an internal node. By the construction of the document Dc, shadow(u) has

a text node child, preceding all its other children, whose text content α is not a prefix of any

string in truth(w), for all leaf nodes w in the structural domination set of u. In particular,

α is not a prefix of any value in truth(v). Note that α is a prefix of strval(shadow(u)),

and therefore strval(shadow(u)) 6∈ truth(v). Again, this contradicts the value match

property of φ.

We conclude that φ cannot be a valid matching, and thus φc is the only matching of Dc

and Q.

The following is a useful property of canonical documents (proof in Appendix E).

Proposition 6.16. For any node u ∈ Q, no descendant of shadow(u) has a matching with

u.

Canonical documents and homomorphisms We show below how to translate the

matching of the canonical document and the query into matchings of related documents and

the query via the notion of homomorphisms discussed in Section 6.1.

Proposition 6.17. Let ξ be a weak homomorphism from the canonical document Dc to a

document D. Then, ξ ◦ φc is a matching of D and Q.

Proof. Follows immediately from Lemma 6.4 and the observation that the canonical matching

is leaf-preserving.

For the purpose of the next lemma, we need to introduce a class of homomorphisms:

Definition 6.18 (Internal node preserving homomorphism). A weak homomorphism

ξ from a subtree Dx to a subtree D′
x′ is called internal node preserving, if for every internal

node y ∈ Dx, the following hold: (1) ξ(y) is an internal node; (2) if y has a text node child

preceding its other children, then so does ξ(y), and the text contents of the two text nodes

are the same; and (3) if y does not have a text node child preceding its other children, then

also ξ(y) does not have one.

Lemma 6.19. Let ξ be an internal node preserving weak homomorphism from a document

D to Dc, and let φ be a matching of D and Q. Then, the mapping η
def
= ξ ◦ φ is a matching

of Dc and Q (and thus equals the canonical matching φc).

Note that this lemma does not follow directly from Lemma 6.4, because the matching φ

is not guaranteed to be leaf-preserving. The proof appears in Appendix E.
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7 Space lower bounds: full version

In this section we prove the space lower bounds on the instance data complexity of XPath

evaluation on XML streams. The bounds are stated in terms of three quantitative properties

of queries and documents: the query frontier size, the document recursion depth, and the

document depth.

The framework for each of the lower bounds is as follows. Each lower bound is associated

with a fragment F of XPath, to which it applies. In all three cases, this fragment is a subset

of Redundancy-free XPath (see Section 5). We fix an arbitrary query Q ∈ F , and prove

a lower bound on the data complexity of boolevalQ (recall definition from Section 3.1).

The bounds are proven w.r.t. streaming algorithms that decide whether a given well-formed

XML document matches Q or not. The output of these algorithms on malformed documents

can be arbitrary. It follows that the lower bounds hold for stronger types of algorithms as

well, including: (1) algorithms that fully evaluate the query on the document and not only

decide whether there is a match; (2) algorithms that are designed to evaluate any XPath

query (not just Q) on any XML document; and (3) algorithms that evaluate the query on

well-formed documents and output an error message on malformed documents.

7.1 Query frontier size

In this section we extend the query frontier size lower bound (Theorem 4.2) to arbitrary

redundancy-free queries.

Theorem 7.1. Let Q be a redundancy-free query. Then, for every streaming algorithm that

computes boolevalQ, there is at least one document on which the algorithm requires at least

FS(Q) bits of space.

Proof. We create from the function boolevalQ a two-argument function booleval
2
Q as

described in Section 3.2: the first argument is a prefix of an XML stream and the second

argument is a suffix of an XML stream. We will describe a family of documents w.r.t. which

there is a FS(Q) lower bound on the communication complexity of booleval
2
Q. It would

follow (Lemma 3.7) that any streaming algorithm evaluating boolevalQ needs to use at

least FS(Q) bits of space on at least one of the documents in the family.

Let D = Dc be the canonical document corresponding to Q (see Section 6.4). Note that

the tree representing D is identical to the tree of Q, except that nodes with a descendant

axis are expanded to paths of length h+ 2 in D. These paths do not have any effect on the

frontier size, since the artificial nodes constituting them do not have any siblings. Hence,

the frontier size of D is exactly the same as the frontier size of Q, i.e., FS(Q). It thus suffices

to show a FS(D) lower bound on the communication complexity of booleval
2
Q.
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We use the fooling set technique (see Section 3.2) to prove the lower bound for booleval
2
Q.

We construct a set S of 2FS(D) pairs of the form (α, β), where α and β are, respectively, a

prefix and a suffix of an XML stream representing a document that matches Q. In fact, we

will choose the pairs such that the documents they form are all weakly homomorphic to the

canonical document D.

Let x be the node in D with the largest frontier. Without loss of generality, x is a

shadow node (because any artificial node has a descendant which is a shadow node and

whose frontier is at least as large). We associate with each subset T of F(x) (the frontier at

x) a pair (αT , βT ) in S. Thus, |S| = 2|F(x)| = 2FS(D), as desired.

For each T , αT and βT are XML stream segments defined as follows. Let x1, . . . , xℓ be

the nodes in path(x) (that is, x1 = root(D) and xℓ = x). Recall that F(x) consists of xℓ

and of all the siblings of x2, . . . , xℓ. αT and βT are formed by concatenating ℓ− 1 segments:

αT = αT,1 ◦ · · · ◦ αT,ℓ−1 and βT = βT,ℓ−1 ◦ · · · ◦ βT,1.

αT,i and βT,i are defined as follows. Let ai = name(xi), let y1, . . . , yk be the children of

xi that belong to T , and let z1, . . . , zm the children of xi that belong to F(x) \ T . Then, αT,i

is defined as: 〈ai〉 ◦Dy1
◦ · · · ◦Dyk

, where Dyj
is the XML stream segment representing the

subtree of D rooted at yj. Similarly, βT,i = Dz1
◦ · · · ◦Dzm

◦ 〈/ai〉.

Example. Consider the query Q = /a[c[.//e and f] and b > 5]. The corresponding

canonical document is the following:

D = 〈a〉 〈c〉 〈Z〉〈e/〉〈/Z〉 〈f/〉 〈/c〉 〈b〉6〈/b〉 〈/a〉.

The largest frontier of this document is the frontier at the “e” node, which consists of the

nodes { e, f, b}. Consider the subset of the frontier T = {b, f}. Then, the values of αT and

βT in this case are the following:

αT = 〈a〉 〈b〉6〈/b〉 〈c〉〈f/〉〈Z〉 βT = 〈e/〉〈/Z〉 〈/c〉 〈/a〉.

Let DT be the XML document represented by the stream αT ◦ βT . For two different

subsets T 6= T ′ of F(x), let DT,T ′ be the document represented by the stream αT ◦ βT ′, and

let DT ′,T be the document represented by the stream αT ′ ◦ βT . The two following claims

establish that S is indeed a fooling set, completing the proof of the theorem.

Claim 7.2. For every T , DT is a well-formed document and matches Q.

Proof. It is easy to verify that DT is identical to D, except that the children of each node

xi ∈ path(x) are ordered as follows: first all the children that belong to T , then xi+1, and

then the children that belong to F(x) \ T . It is thus immediate to see that the mapping ξ

that maps each node of D to its “copy” in DT is a weak homomorphism. The claim now

follows from Proposition 6.17.
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Claim 7.3. For every two distinct subsets T, T ′, at least one of DT,T ′, DT ′,T is well-formed

and does not match Q.

Proof. Since T 6= T ′, then either T \ T ′ 6= ∅ or T ′ \ T 6= ∅. Suppose, e.g., that the latter

holds. It follows that T ∪ (F(x) \ T ′) is a proper subset of F(x). Hence, there is a node

z ∈ F(x), which does not belong to T ∪ (F(x) \T ′). Note that z cannot be an artificial node,

because no artificial node belongs to the frontier of a shadow node.

It is easy to see that DT,T ′ and DT ′,T are well-formed documents, since the proper nesting

of elements is maintained in both. DT,T ′ is identical to D, except for the following differences:

for each i = 1, . . . , ℓ, the children of xi that have copies in DT,T ′ are xi+1 (if i < ℓ) and the

children that belong to the set T ∪ (F(x) \ T ′). The internal order among these children

is not preserved in DT,T ′. Furthermore, if some child y of xi (y 6= xi+1) belongs both to T

and to F(x) \ T ′, then it has two copies in DT,T ′. Nevertheless, since every node of DT,T ′

originates from a node of D, there is a natural mapping ξ that maps each node DT,T ′ to its

“origin” in D. It is easy to verify that ξ is an internal node preserving weak homomorphism

(recall Definition 6.18).

Suppose, to reach a contradiction, there exists a matching φ of DT,T ′ with Q. By Lemma

6.19, the map η
def
= ξ ◦ φ is a matching of Dc with Q and therefore equals the canonical

matching φc. Every shadow node has a pre-image under φc. Therefore, every shadow node

has to have a pre-image under ξ as well. However, z is a shadow node and is not in the

image of ξ (because z has no “copy” in DT,T ′). We reached a contradiction.

We conclude that S is indeed a proper fooling set. The memory lower bound now follows

from an application of the fooling set technique (Theorem 3.9) to the function booleval
2
Q

and by the reduction lemma (Lemma 3.7).

7.2 Recursion depth

In this section we extend the recursion depth lower bound (Theorem 4.5) to arbitrary

redundancy-free queries that contain the query //a[b and c] as a sub-query. Thus, the

queries Q to which the lower bound below applies are ones in the following fragment of

XPath:

Recursive XPath Recursive XPath is a subset of Redundancy-free XPath that consists

of queries Q, which possess at least one node v with the following properties: (1) Either v

or one of its ancestors has a descendant axis; and (2) v has at least two children with a child

axis.

40



Remark. Ideally, one would want to prove the recursion depth lower bound for any query

that consists of a node with a descendant axis. Yet, this is simply not true. For example, the

query //a can be evaluated with only 1 bit of memory, regardless of the document’s recursion

depth, and the query //a//b can be evaluated with space proportional to the logarithm of

the recursion depth. We were able to prove the lower bound only for queries that have at

least one node with a descendant axis that has at least two sibling descendants with a child

axis. The query //a[b and c] is a classical example of such a query. We believe the lower

bound holds also for queries that have a node with a descendant axis that has a descendant

with a child axis, e.g., //a/b. It is left open to extend our proof to such queries as well.

Theorem 7.4. Let Q be any query in Recursive XPath, and let v be the node of Q, as

defined above. Then, for any streaming algorithm that computes boolevalQ, and for any

integer r ≥ 1, there is at least one document of recursion depth at most r w.r.t. v, on which

the algorithm requires Ω(r) bits of space.

Proof. As in the proof of Theorem 4.5, we use a reduction from the set disjointness problem.

Recall that this problem has an Ω(r) communication lower bound. We will prove that

given a streaming algorithm that computes boolevalQ, and given any integer r ≥ 1, if the

algorithm uses at most C bits of space on any document of recursion depth at most r w.r.t.

v, then we can design a communication protocol that solves the set disjointness problem

with C bits of communication. It would then immediately follow that C has to be at least

Ω(r).

If v has a descendant axis itself, define v1 = v. Otherwise, let v1 be the lowest ancestor

of v with a descendant axis. Let v1, . . . , vk be the nodes along the path from v1 to v (i.e.,

vk = v). Note that v2, . . . , vk must have a child axis. Let v0 denote the parent of v1. Finally,

let w1, w2 be the two children of vk = v with a child axis. See Figure 10 for a schematic

illustration of the query tree.

Example. Suppose Q = //d[f and a[b and c]] (see Figure 11). Here, k = 2, v0 is the

root of the query, v1 is the node named “d”, v2 is the node named “a”, w1 is the node named

“b”, and w2 is the node named “c”.

Let D = Dc be the canonical document corresponding to the query Q (see Section 6.4),

and let φ = φc be the canonical matching of D and Q. Recall that for each node u ∈ Q,

φ(u) = shadow(u). Also recall that if u has a descendant axis, then φ(u) is a descendant

of φ(parent(u)), following a chain of h + 1 “artificial” nodes, where h is the longest chain

of wildcard nodes in Q. In our case, v1 has a descendant axis; so let y denote the child of

φ(v0) = φ(parent(v1)), which is the first artificial node in the chain of h+1 artificial nodes

preceding φ(v1). See Figure 12 for a schematic illustration of the canonical document.
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Figure 10: A query in Recursive XPath
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Figure 11: The query //d[f and a[b and c]]

Consider the stream representation of the document D, and split it into seven contiguous

segments as follows:

1. γprefix is the prefix of the stream ending just before the startElement event of the

element y.

2. γy-beg is the segment starting with the startElement event of y and ending just before

the startElement event of φ(w1).

3. γw1
is the segment containing the element φ(w1).

4. γy-mid is the segment starting after the endElement event of φ(w1) and ending just

before the startElement event of φ(w2).
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Figure 12: A canonical document corresponding to a query in Recursive XPath

5. γw2
is the segment containing the element φ(w2).

6. γy-end is the segment following the endElement event of φ(w2) and ending with the

endElement event of y.

7. γsuffix is the rest of the XML stream.

Example. The following is the canonical document corresponding to the example query

from above and the corresponding partition into segments. Z is the “auxiliary name”. (See

also Figure 13.)

No. Event No. Event Segment Event range
0) 〈$〉 7) 〈/a〉 γprefix [0]
1) 〈Z〉 8) 〈/d〉 γy-beg [1-4]
2) 〈d〉 9) 〈/Z〉 γw1

[5]
3) 〈f/〉 10) 〈/$〉 γy-mid [ ]
4) 〈a〉 γw2

[6]
5) 〈b/〉 γy-end [7-9]
6) 〈c/〉 γsuffix [10]

We next describe how to translate an input (s, t) of the set disjointness problem into an

XML document Ds,t of recursion depth at most r w.r.t. vk. Any s ∈ {0, 1}r is translated into
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Figure 13: The canonical document corresponding to the query //d[f and a[b and c]]

a prefix of an XML stream α = γprefix ◦α1 ◦ · · · ◦αr, where αi = γy-beg ◦ γw1
◦ γy-mid, if si = 1,

and αi = γy-beg ◦ γy-mid, if si = 0. That is, αi includes a copy of the subtree rooted at φ(w1),

if only if si = 1. Similarly, any t ∈ {0, 1}r is translated into a suffix of an XML stream

β = βr ◦ · · · ◦ β1 ◦ γsuffix, where βi = γw2
◦ γy-end, if ti = 1, and βi = γy-end, if ti = 0. That

is, βi includes a copy of the subtree rooted at φ(w2), if only if ti = 1. Ds,t is the document

obtained by concatenating α and β.

Example. Consider our example query from above, and suppose r = 3, s = 110, and

t = 010. Then, the stream representing the document Ds,t is as follows (see also Figure 14):

Segment No. Event Segment No. Event Segment No. Event

γprefix 0) 〈$〉 9) 〈a〉 β2 18) 〈c/〉
α1 1) 〈Z〉 10) 〈b/〉 19) 〈/a〉

2) 〈d〉 α3 11) 〈Z〉 20) 〈/d〉
3) 〈f/〉 12) 〈d〉 21) 〈/Z〉
4) 〈a〉 13) 〈f/〉 β1 22) 〈/a〉
5) 〈b/〉 14) 〈a〉 23) 〈/d〉

α2 6) 〈Z〉 β3 15) 〈/a〉 24) 〈/Z〉
7) 〈d〉 16) 〈/d〉 γsuffix 25) 〈/$〉
8) 〈f/〉 17) 〈/Z〉

Ds,t is well formed, because nesting of elements is properly maintained. We next describe

the exact structure of Ds,t. Refer to Figure 15 for assistance.

Let D1 be the subtree of D rooted at y, and let D0 be the document D after removing

D1. Ds,t is the same as D, except that the subtree D1 is replaced by a new subtree E1,

which we describe below. We denote by E0 the document Ds,t after removing E1. Clearly,

there is an isomorphism f0 from E0 to D0. Let g0 = f−1
0 be the inverse isomorphism.
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Figure 14: The document D110,010 corresponding to the query //d[f and a[b and c]]

For each of the four bit pairs (b1, b2) ∈ {00, 01, 10, 11}, define the tree Gb1,b2 to be the

same as D1, except that: (1) the subtree rooted at φ(w1) is excluded from Gb1,b2 if and

only if b1 = 0; and (2) the subtree rooted at φ(w2) is excluded from Gb1,b2 if and only if

b2 = 0. Note that Gb1,b2 can be embedded in D1, and therefore there exists an injective weak

homomorphism fb1,b2 from Gb1,b2 to D1. The only nodes of D1 to be excluded from the image

of fb1,b2 are nodes in the subtrees rooted at φ(w1) (if b1 = 0) and at φ(w2) (if b2 = 0). We

will denote the inverse mapping from the image of fb1,b2 to D1 by gb1,b2.

For each i = 1, . . . , r, define Fi
def
= Gsi,ti

, fi
def
= fsi,ti

, and gi
def
= gsi,ti

. Also inductively

define subtrees Er, . . . , E1 as follows: Er = Fr; assuming that Ei+1 is defined, Ei is the same

as Fi, except that the root of Ei+1 is attached as a child of gi(φ(vk)). E1 is the subtree that

replaces D1 in Ds,t.

Finally, define a mapping f from Ds,t to D, as follows:

f(x) =

{
f0(x) if x ∈ E0

fi(x) if x ∈ Fi
.

We note that f is well-defined, but is not even a structural homomorphism from Ds,t to

D, because for each i = 2, . . . , r, the root of Fi (i.e., gi(y)) is a child of gi−1(φ(vk)), yet

f(gi(y)) = y is an ancestor of f(gi−1(φ(vk))) = φ(vk).

Let I = {i ∈ {1, . . . , r} : si = ti = 1}. We will prove two crucial facts about the
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Figure 15: A schematic illustration of the document Ds,t

document Ds,t:

Lemma 7.5. If I 6= ∅, then Ds,t matches Q.

Lemma 7.6. The only nodes in Ds,t that can match vk are nodes in the set {gi(φ(vk)) :

i ∈ I}. In particular, if I = ∅, then Ds,t does not match Q.

Before we prove the two lemmas, let us see how to use them to finish off the proof of the

theorem. By Lemma 7.6, only the nodes g1(φ(vk)), . . . , gr(φ(vk)) can potentially match vk.

This immediately implies that the recursion depth of Ds,t w.r.t. vk can be at most r.

The protocol for set disjointness proceeds as follows. Alice runs the given streaming

algorithm (that evaluates Q) on the XML stream prefix α. When she is done, she sends the

state of the algorithm to Bob. Bob can continue the execution of the algorithm on the suffix

β. At the end of the execution, if the algorithm decides that there is a match, Bob declares

the sets S and T to be intersecting. Otherwise, he declares them to be disjoint.

Since the document Ds,t is of recursion depth at most r w.r.t. vk = v, the state of the

algorithm requires at most C bits to describe, and hence the protocol uses at most C bits

of communication. We next prove that it computes the function disj correctly. Suppose,
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initially, that S ∩ T 6= ∅. Then, there exists some index 1 ≤ i ≤ r, such that both si and

ti are 1. By Lemma 7.5, this means that Ds,t matches Q. Hence, the protocol will indeed

declare S and T as intersecting. Suppose now that S ∩ T = ∅. Then, for all 1 ≤ i ≤ r,

si = 0 or ti = 0. It follows from Lemma 7.6 that Ds,t does not match Q, and therefore the

protocol will declare the sets as disjoint.

For brevity, we denote E = Ds,t. g1(φ(v1)), . . . , g1(φ(vk)), . . . , gr(φ(v1)), . . . , gr(φ(vk)) lie

on the same root-to-leaf path in E. We will call this path the “spine” of E. The following

are easy to verify from the construction of E:

Observation 7.7. For any node x ∈ E, which does not belong to the spine, f restricted

to Ex (the subtree of E rooted at x) is an isomorphism of Ex with Df(x) (the subtree of D

rooted at f(x)).

Observation 7.8. If i ∈ I, then gi is an isomorphism of D1 with Fi.

Proof of Lemma 7.5. Suppose there exists some 1 ≤ i ≤ r, such that si = ti = 1. By Lemma

5.10, it suffices to exhibit a matching µ of Q and E. To this end, we will construct µ as a

hybrid matching (see Section 6.2).

The canonical matching φ matches D with Q. Let Q0 be the query Q after removing

the subtree rooted at v1. Let φ0 be the restriction of φ to Q0. Since φ is a leaf-preserving

matching of D and Q, it is immediate to check that φ0 is a leaf-preserving matching of D0

and Q0. Since there is a weak homomorphism g0 from D0 to E0, then µ0
def
= g0 ◦ φ0 is a

matching of E0 and Q0 (Lemma 6.4).

Let Q1 be the subtree of Q rooted at v1, and let φ1 be the restriction of φ to Q1. Let D′
1

be the subtree of D rooted at φ(v1). Recall that D1 is the subtree of D rooted at y, which

is the artificial child of φ(v0). y is an ancestor of φ(v1), and therefore D′
1 is a subtree of D1.

Again, it is immediate to check that φ1 is a leaf-preserving matching of D′
1 and Q1. By

Observation 7.8 above, gi is a isomorphism from D1 to Fi. Since Fi embeds in Ei, gi is also

a weak homomorphism from D1 to Ei. Let E ′
i be the subtree of Ei rooted at gi(φ(v1)). We

obtain that the restriction of gi to D′
1, which we denote by g′i, is a weak homomorphism from

D′
1 to E ′

i. Therefore, µ1
def
= g′i ◦ φ1 is a matching of E ′

1 with Q1 (Lemma 6.4).

We define µ to be the hybrid mapping induced by µ0 and µ1. In order for µ to be a

matching, we need µ1(v1) to relate to µ0(parent(v1)) according to axis(v1) (recall Lemma

6.7). Recall that v1 has a descendant axis. So we need to prove that µ1(v1) = gi(φ(v1))

is a descendant of µ0(parent(v1)) = g0(φ(v0)). By definition, gi(φ(v1)) ∈ Ei ⊆ E1 and all

the nodes in E1 are descendants of g0(φ(v0)). So in particular gi(φ(v1)) is a descendant of

g0(φ(v0)).
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Proof of Lemma 7.6. Let µ be any matching of E and Q. We will show that µ(vk) has to

equal gi(φ(vk)) for some i ∈ I.

Recall that vk = v has two children w1, w2 with a child axis. We want to show that

µ(w1) = gi(φ(w1)) for some i ∈ {1, . . . , r} and that µ(w2) = gj(φ(w2)) for some j ∈

{1, . . . , r}. We will prove the former; the proof of the latter is identical.

Claim 7.9. µ(w1) = gi(φ(w1)) for some i ∈ {1, . . . , r}.

Before we show the proof of this claim, let us use it to complete the proof of the lemma.

Let i be so that µ(w1) = gi(φ(w1)) and let j be so that µ(w2) = gj(φ(w2)). In particular, gi is

defined on φ(w1) and gj is defined on φ(w2). w1, w2 are children of vk and have a child axis.

Therefore, by the axis match property of µ, µ(w1), µ(w2) are children of µ(vk). This means

that µ(vk) = parent(gi(φ(w1))) = gi(φ(vk)) and µ(vk) = parent(gj(φ(w2))) = gj(φ(vk)).

In other words, i = j, and µ(vk) = gi(vk). Since gi is defined on both φ(w1) and φ(w2),

i ∈ I.

In order to prove Claim 7.9 we need a few preliminaries. The nodes of E, like the nodes

of D, can be classified as “shadow nodes” or “artificial nodes”. A node x ∈ E is artificial

if and only if f(x) is an artificial node of D. The same argument as in the proof of Lemma

6.12 shows that there are no artificial nodes in the image of µ:

Claim 7.10. For all u ∈ Q, µ(u) is not an artificial node.

Define vk+1 = w1. Note that the nodes v1, . . . , vk+1 form a path segment in Q, v1 has a

descendant axis, and v2, . . . , vk+1 have a child axis. We show next that if µ maps any of

these nodes to a node in Fi, then it maps all the others to nodes in Fi as well:

Claim 7.11. For each i ∈ {1, . . . , r}, if µ(vk+1) ∈ Fi, then also µ(v1) ∈ Fi.

Proof. Since v1, . . . , vk+1 form a path segment in Q, and since v2, . . . , vk+1 all have a child

axis, then by the axis match property of µ, also the sequence µ(v1), . . . , µ(vk+1) forms a path

segment in E.

Recall that the root of Fi is the artificial node gi(y), which is followed by a path of h

additional artificial nodes gi(y1), . . . , gi(yh). The rest of the nodes in Fi are all descendants

of gi(yh). Since µ(vk+1) belongs to Fi and is not an artificial node, it must be a descendant

of gi(yh). If µ(v1) 6∈ Fi, then µ(v1) has to be an ancestor of gi(y). This implies that

gi(y), gi(y1), . . . , gi(yh) all lie on the path segment µ(v1), . . . , µ(vk+1). This is impossible,

because as mentioned earlier, there are no artificial nodes in the image of µ.

Let Q0 be the query Q after removing the subtree rooted at v1. Let Q1 be the subtree of

Q rooted at v1. Let u1, . . . , ut be the path from the root of Q to vk+1 (that is, u1 = root(Q)

and ut = vk+1). We prove the following:
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Claim 7.12. There exists a matching η of E with Q that agrees with µ on Q1 and that sat-

isfies the following: for all j = 2, . . . , t, f(η(uj)) relates to f(η(uj−1)) according to axis(uj).

Proof. There are two cases: either µ(vk+1) ∈ E0 or µ(vk+1) ∈ E1. If µ(vk+1) ∈ E0, then also

its ancestors µ(u1), . . . , µ(ut−1) belong to E0. Recall that f restricted to E0 (a.k.a. f0) is an

isomorphism. We can therefore choose η = µ, and the desired property stated in the claim

follows from the axis match property of µ.

Consider then the case that µ(vk+1) ∈ E1. By Claim 7.11, µ(v1) also belongs to E1. We

next prove that, without loss of generality, µ agrees with g0 ◦ φ on Q0 (Q0 is the query Q

after removing the subtree rooted at v1).

Let φ0 be the restriction of φ to Q0. It is easy to verify that φ0 is a leaf-preserving

matching of D0 and Q0. Since g0 is a weak homomorphism from D0 to E0, then η0
def
= g0 ◦φ0

is a matching of E0 with Q0 (Lemma 6.4).

Let η1 be the restriction of µ to Q1 (Q1 is the subtree of Q rooted at v1). Clearly, η1 is

a matching of µ(v1) with v1. µ(v1) belongs to E1 and all the nodes in E1 are descendants

of g0(φ(v0)). Therefore, η1(v1) = µ(v1) relates to η0(parent(v1)) = g0(φ(v0)) according to

axis(v1) (which is descendant). Hence, the hybrid mapping η induced by η0 and η1 is a

matching of E with Q (Lemma 6.7). Note that η agrees with µ on Q1 and with g0 ◦φ on Q0.

Let i be the one for which µ(v1) ∈ Fi. Since, µ(v1), . . . , µ(vk+1) all belong to Fi (Claim

7.11), then f(µ(vj)) = fi(µ(vj)) for all j = 1, . . . , k + 1. Recall that fi is an injective

weak homomorphism from Fi to D1. Thus, the property stated in the claim holds for

f(µ(v2)), . . . , f(µ(vk+1)), due to the axis match property of µ and the axis preservation

property of fi. Since η agrees with µ on Q1 and v1, . . . , vk+1 ∈ Q1, then this property also

holds for f(η(v2)), . . . , f(η(vk+1)).

Recall that v2, . . . , vk+1 are the last k nodes on the path u1, . . . , ut, so we are left to

address only the first t− k nodes among f(η(u1)), . . . , f(η(ut)).

Since η agrees with g0 ◦φ on Q0, then for all j = 1, . . . , t−k−1, f(η(uj)) = φ(uj). Thus,

the property stated in the claim holds for these nodes due to the axis match property of φ.

The last missing component is to show that f(η(ut−k)) = f(η(v1)) relates to f(η(ut−k−1)) =

f(η(v0)) according to axis(v1). v1 has a descendant axis, so we need to show that f(η(v1))

is a descendant of f(η(v0)). Since η(v1) = µ(v1) ∈ E1, then f(η(v1)) ∈ D1, and is therefore

a descendant of φ(v0) (recall that the root of D1 is y, which is a child of φ(v0)). Since η

agrees with g0 ◦ φ on Q0, then f(η(v0)) = φ(v0). Therefore f(η(v1)) is indeed a descendant

of f(η(v0)) as desired.

Proof of Claim 7.9. Suppose, to reach a contradiction, that µ(w1) 6= gi(φ(w1)) for all i =

1, . . . , r. This means that f(µ(w1)) 6= φ(w1). Let η be the matching guaranteed by Claim

7.12. Since η agrees with µ on Q1 and since w1 ∈ Q1, then also f(η(w1)) 6= φ(w1).
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Consider the path u1, . . . , ut from the root of Q to w1. Since f(η(u1)) = φ(u1) but

f(η(ut)) 6= φ(ut), there is some 2 ≤ j ≤ t which is the first to satisfy f(η(uj)) 6= φ(uj).

There are now two cases: either η(uj) belongs to the spine of E or not. We will start by

analyzing the latter case.

Let Q1 be the subtree of Q rooted at uj, and let η1 be the restriction of η to Q1. Since

η is a matching of E with Q, then in particular η1 is a matching of η(uj) with uj. Let f ′

denote the restriction of f to Eη(uj ). By Observation 7.7, since η(uj) does not belong to the

spine, f ′ is an isomorphism of Eη(uj ) with Df(η(uj )). It follows that ρ1
def
= f ′ ◦η1 is a matching

of f(η(uj)) with uj (Lemma 6.2).

Let Q0 denote the query Q with the subtree Q1 removed. The restriction of the canonical

matching φ to Q0 induces a matching ρ0 of D with Q0.

From Claim 7.12, we know that f(η(uj)) relates to f(η(uj−1)) according to axis(uj).

However, by the choice of j, f(η(uj−1)) = φ(uj−1). We thus got a node in D (namely,

f(η(uj))) that has a matching with uj and relates to φ(parent(uj)) according to axis(uj).

Therefore, by Lemma 6.7, the hybrid mapping ρ induced by ρ0 and ρ1 is matching of D

with Q. ρ cannot equal the canonical matching, because ρ(uj) = f(η(uj)) 6= φ(uj). This

contradicts the uniqueness of the canonical matching (Lemma 6.15).

So let’s move on to the other case: η(uj) belongs to the spine. We note that for every

node x in the spine of E, f(x) is a node on the root-to-leaf path in D that goes through

φ(u1), . . . , φ(ut). In particular, f(η(uj)) belongs to this path. Since f(η(uj)) 6= φ(uj), it is

either an ancestor of φ(uj) or a descendant of φ(uj).

We first exclude the possibility that f(η(uj)) is an ancestor of φ(uj). By Claim 7.12,

f(η(u1)), . . . , f(η(uj)) lie on a single root-to-leaf path in D in this order. Therefore, all

these nodes, and not only f(η(uj)) belong to the path that goes through φ(u1), . . . , φ(uj).

By Claim 7.10, none of the nodes f(η(u1)), . . . , f(η(uj)) is artificial (note that the claim is

stated for µ but in fact holds for any matching of E with Q, and in particular for η). Thus, if

f(η(uj)) is an ancestor of φ(uj), then φ(uj) has at least j non-artificial ancestors. However,

φ(uj) has exactly j − 1 non-artificial ancestors, namely φ(u1), . . . , φ(uj−1). It follows that

f(η(uj)) cannot be an ancestor of φ(uj).

So assume that f(η(uj)) is a descendant of φ(uj). We will need the following claim:

Claim 7.13. Let j ≤ s ≤ t. If for all j ≤ ℓ < s, η(uℓ) belongs to the spine, then f(η(us))

has to be a descendant of φ(us).

Proof. The proof goes by induction on s. If s = j, then the claim immediately follows from

our assumption that f(η(uj)) is a descendant of φ(uj). So assume correctness for s− 1, and

we will show correctness for s as well.
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By the induction hypothesis, f(η(us−1)) is a descendant of φ(us−1). φ(us) is also a

descendant of φ(us−1), by the axis match property of φ. By the assumption in the claim,

η(us−1) belongs to the spine, and therefore (by the spine’s definition) f(η(us−1)) has to

be on the same root-to-leaf path as φ(us−1) and φ(us). f(η(us−1)) cannot be an ancestor

of φ(us), because all the nodes between φ(us−1) and φ(us) (if there are any) are artificial,

while f(η(us−1)) is not an artificial node. Therefore, f(η(us−1)) either equals φ(us) or is a

descendant of φ(us). In either case, f(η(us)), which is a descendant of f(η(us−1)) (Claim

7.12), is a descendant of φ(us).

We conclude from the above claim that there must be some s > j so that η(us) does

not belong to the spine. Because, otherwise, η(ut) belongs to the spine and f(η(ut)) is a

descendant of φ(ut); but for all nodes x in the spine, f(x) is an ancestor of φ(w1) = φ(ut).

So let s be the first (among the indices bigger than j) to satisfy the condition that η(us)

does not belong to the spine. By Claim 7.13, f(η(us)) has to be a descendant of φ(us).

Since η(us) does not belong to the spine, then by Observation 7.7, Eη(us) is isomorphic to

Df(η(us)). Furthermore, η(us) has a matching with us, and therefore by Lemma 6.2, also

f(η(us)) has a matching with us. We thus obtained a node in the canonical document D

(namely, f(η(us))) that has a matching with the node us but is a descendant of φ(us). This

contradicts Proposition 6.16.

7.3 Document depth

In this section we extend the document depth lower bound (Theorem 4.6) to arbitrary

redundancy-free queries that contain a query like a/b as a sub-query.

Remark. Some queries, like //a, */a, or a/* can be evaluated with only 1 bit of memory,

regardless of the document’s depth. We are able to prove the document depth lower bound

for queries that consist of at least one node with a child axis s.t. both this node and its

parent are not wildcards. This does not cover queries that consist solely of nodes with a

descendant axis, like //a//b. It is left open to decide whether the document depth lower

bound holds for such queries as well.

Theorem 7.14. Let Q be any redundancy-free query that has at least one node u s.t. (1)

u has a child axis; (2) the node tests of u and its parent are not wildcard. Then, for any

streaming algorithm that computes boolevalQ, and for any sufficiently large integer d, there

is at least one document of depth at most d, on which the algorithm requires Ω(log d) bits of

space.

Proof. We create from boolevalQ a two-argument function booleval
3
Q (recall our nota-

tions from Section 3.2): its first argument is a pair (α, γ), where α is a prefix of an XML
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stream and γ is a suffix of an XML stream; its second argument β is the middle part of an

XML stream.

We use the fooling set technique from Section 3.2. We thus need to create a set S

of t = Ω(d) documents D1, . . . , Dt of depth at most d that match Q. We then split each

document Di into three parts: αi, βi, and γi, and show that for all i 6= j, one of the documents

αi ◦ βj ◦ γi, αj ◦ βi ◦ γj is well-formed but does not match Q.

$

/a

/b u

Q

Figure 16: Schematic illustration of a query considered in the proof of Theorem 7.14

See Figure 16 for a schematic illustration of the query Q considered in this proof. Let

D = Dc be the canonical document corresponding to Q and let φ = φc be the canonical

matching of D with Q. We split the event stream representing D into three parts:

1. α is the prefix of the stream until the startElement event of the element φ(u).

2. β is the segment containing the element φ(u).

3. γ is the remainder of the stream.

Let Z be an “auxiliary name” (i.e., Z does not occur as a node test in Q). Let s be the

depth of D. We assume that d ≥ 2s and define t = d − s (note that t = Ω(d)). For each

i = 1, . . . , t, we define the following three SAX event sequences:

1. αi = α〈Z〉i.

2. βi = 〈/Z〉iβ〈Z〉i.

3. γi = 〈/Z〉iγ.

Di is defined to be the document corresponding to the sequence αi ◦ βi ◦ γi. Note that Di

is identical to D, except that we attach to it two paths of length i, all of whose nodes are

named by the name “Z”: one just before φ(u) and the other right after it (see Figure 17).
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Example. Suppose Q = /a/b. In this case u is the node named “b”. Di is the document

〈a〉〈Z〉i〈/Z〉i〈b/〉〈Z〉i〈/Z〉i〈/a〉.

$

b

a

Z

Z
i nodes

Z

Z

Z

Z

Z

Z
i nodes

Di

Figure 17: The document Di

First, we claim that D1, . . . , Dt all match Q. To this end, for each i = 1, . . . , t, we need

to exhibit a matching of Di with Q. Note that the canonical document D embeds in the

document Di. In fact, it is easy to verify there is an injective homomorphism from D to Di.

Therefore, Di matches Q (Proposition 6.17).

We next prove that for i > j, Di,j
def
= αi ◦ βj ◦ γi is a well-formed document that does

not match Q. The easiest way to see what happens in the document Di,j is to consider

the example Q = /a/b. For this query, Di,j = 〈a〉〈Z〉i〈/Z〉j〈b/〉〈Z〉j〈/Z〉i〈/a〉. That is, φ(u)

(named “b” in this example) becomes the child of the (i− j)-th node on the first new path

we inserted. Note that the proper nesting of elements is maintained, and therefore Di,j is a

well-formed document. The following lemma shows that the same holds in the general case:

Lemma 7.15. If i > j, then Di,j is a well-formed document and does not match Q.

We conclude that S is indeed a fooling set of size t = d−s. Applying Theorem 3.9 to the

function booleval
3
Q and Lemma 3.7 give us a space lower bound of (log t)/2 = Ω(log d).

Proof of Lemma 7.15. Figure 18 provides a schematic illustration of the canonical document

D. For brevity, we denote the node φ(parent(u)) by x∗ and the node φ(u) by y∗. The sub-

tree of D rooted at y∗ is called D1. The document obtained from D after removing the

sub-tree D1 is called D0.
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$

a

b y*=   (u)

D1

x*=    (parent(u))

D

Figure 18: The document D

To simplify notation, we denote E = Di,j. The event sequence representing E is the

following:

α〈Z〉i〈/Z〉jβ〈Z〉j〈/Z〉iγ.

It it easy to verify that because i > j the proper nesting of elements is maintained, and

therefore E is well-formed.

The document E (see Figure 19) is identical to the document D, except that it has

i + j extra nodes named “Z”. We call these nodes the “auxiliary nodes” and denote them

collectively by Z. k
def
= i−j of these auxiliary nodes, denoted z1, . . . , zk, separate the “copies”

of x∗ and y∗ in E. The rest are organized as two length j paths that dangle from zk.

$

Z

Z

j nodes

Z

Z

Z

j nodes

Z

a

E1

b g(y*)

k = i-j nodes

Zk

Z1

g(x*)
Di,j

Figure 19: The document Di,j = E

Let E1 be the subtree of E rooted at the “copy” of y∗. Let E0 be the document E after
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removing the subtree rooted at z1. It is easy to verify that E0 and D0 are isomorphic and

that E1 and D1 are isomorphic. Let f0, f1 be the corresponding isomorphisms from E0 to

D0 and from E1 to D1, respectively. Let g0 and g1 be the inverse isomorphisms. Note that

z1 is a child of g0(x
∗) and g1(y

∗) is a child of zk.

Let f be the following mapping from E \ Z to D:

f(x) =

{
f0(x) if x ∈ E0

f1(x) if x ∈ E1
.

f is a 1-1 function from E \ Z onto D. Let g be the inverse mapping. The following

observations are immediate from the definitions of E and f :

Observation 7.16.

1. If a node y ∈ E \Z is a descendant of a node x ∈ E \Z, then also f(y) is a descendant

of f(x).

2. If a node y ∈ E \ Z is a child of a node x ∈ E \ Z and y 6= g(y∗), then also f(y) is a

child of f(x).

Let x1, . . . , xr be the path from the root of D to x∗ (i.e., x1 = root(D) and xr = x∗).

We call the sequence S = (g(x1), . . . , g(xr)) the “spine” of E. The following observation is

immediate from the definitions of E and f :

Observation 7.17. For every node x ∈ E\(S∪Z), the subtrees Ex and Df(x) are isomorphic.

Suppose, to the contradiction, there exists a matching µ of E and Q. Define a node

x ∈ E \ Z to be “artificial” if f(x) is an artificial node of D (note that the auxiliary nodes

are not artificial). The proof of the following claim is identical to the proof of Lemma 6.12:

Claim 7.18. For all u ∈ Q, µ(u) is not an artificial node.

Note that auxiliary nodes in Z may belong to the image of µ.

Let u1, . . . , ut be the path from root(Q) to u (that is, u1 = root(Q), ut−1 = parent(u),

and ut = u). Consider the canonical matching φ = φc of D with Q. Since φ(u1), . . . , φ(ut−1)

lie on the same root-to-leaf path inD, φ(u1) = root(D) = x1 and φ(ut−1) = φ(parent(u)) =

xr, then φ(u1), . . . , φ(ut−1) all belong to the path x1, . . . , xr. It follows that the nodes

g(φ(u1)), . . . , g(φ(ut−1)) belong to the spine of E.

We next argue that there must be some j ∈ {1, . . . , t}, so that µ(uj) 6= g(φ(uj)). Because,

otherwise, µ(u) = µ(ut) = g(φ(ut)) = g(y∗), while µ(parent(u)) = µ(ut−1) = g(φ(ut−1)) =

g(x∗). Recall that g(y∗) is a proper descendant of g(x∗) (following a chain of k auxiliary

nodes). Nevertheless, axis(u) = child, hence µ(u) must be a child of µ(parent(u)). We
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conclude that there is a j, so that µ(uj) 6= g(φ(uj)). Let j be the first to satisfy this. Note

that j > 1, because µ(u1) = root(E) = g(root(D)) = g(φ(u1)). We split the analysis into

four cases:

1. µ(uj) ∈ S.

2. µ(uj) ∈ Z.

3. µ(uj) = g(y∗).

4. µ(uj) ∈ E \ (S ∪ Z ∪ {g(y∗)}).

Since Case 1 is the hardest, we postpone it to the end. Consider then Case 2. Suppose

µ(uj) = z for some auxiliary node z. Since z is named by an auxiliary name, uj must have a

wildcard node test. This already implies that j < t, because ut = u does not have a wildcard

node test. By the choice of j, µ(uj−1) = g(φ(uj−1)). Since j < t, φ(uj−1) is one of the nodes

x1, . . . , xr−1 (recall that φ(ut−1) = xr). z1 is a child of g(xr) and all the auxiliary nodes are

descendants of z1. We this obtain that z must be a proper descendant of µ(uj−1), and thus

uj has a descendant axis. This is impossible, because Q is star-restricted.

Consider Case 3. We have µ(uj) = g(y∗). Since g(y∗) is a proper descendant of each of

the nodes in the spine and since µ(uj−1) = g(φ(uj−1)) belongs to the spine, then uj has a

descendant axis. This implies that j < t, because ut = u has a child axis. The restriction

of µ to the subtree Eg(y∗) gives a matching of g(y∗) with uj. Since g(y∗) does not belong to

the spine, the subtrees Eg(y∗) and Dy∗ are isomorphic (Observation 7.17). Therefore, there is

also a matching of y∗ with uj (Lemma 6.2). Since j < t, y∗ is a descendant of φ(uj). We thus

found a node in Q (namely, uj) whose shadow (namely, φ(uj)) has a descendant (namely,

y∗) that has a matching with uj. This contradicts Proposition 6.16.

Consider now Case 4. By Observation 7.17, since µ(uj) does not belong to the spine,

Eµ(uj) and Df(µ(uj )) are isomorphic. The restriction of µ to Eµ(uj) gives a matching of µ(uj)

with uj. Hence, there also exists a matching η of f(µ(uj)) with uj (Lemma 6.2).

We would like to use η and the canonical matching φ to construct a hybrid matching φ′

of Q and D. To this end, we need to make sure that f(µ(uj)) relates to φ(uj−1) according

to axis(uj). By the choice of j, f(µ(uj−1)) = φ(uj−1). If uj has a child axis, then µ(uj)

is a child of µ(uj−1). Since µ(uj), µ(uj−1) 6∈ Z and µ(uj) 6= g(y∗) then by Observation

7.16, also f(µ(uj)) is a child of f(µ(uj−1)) = φ(uj−1). If uj has a descendant axis, then

since µ(uj), µ(uj−1) 6∈ Z, by Observation 7.16 also f(µ(uj)) is a descendant of f(µ(uj−1)) =

φ(uj−1). We conclude that f(µ(uj)) indeed relates to φ(uj−1) according to axis(uj).

We now apply Lemma 6.7, and obtain that the hybrid mapping φ′ induced by φ and

η is a matching of Q and D. Note that φ′ is a non-canonical matching, because φ′(uj) =
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f(µ(uj)) 6= φ(uj). This contradicts Lemma 6.15, according to which the canonical matching

is the only matching of Q and D.

Finally, let us go back to Case 1. Recall that g(φ(u1)), . . . , g(φ(ut−1)) belong to the spine.

Since µ(uj) 6= g(φ(uj)) but µ(uj) belongs to the spine, then µ(uj) is either an ancestor or

a descendant of g(φ(uj)). An identical argument to the one done in the proof of Claim 7.9

shows that µ(uj) cannot be an ancestor of g(φ(uj)). So assume it is a descendant. We will

need the following claim:

Claim 7.19. Let j ≤ s ≤ t. If for all j ≤ ℓ < s, µ(uℓ) belongs to the spine, then f(µ(us))

has to be a descendant of φ(us).

The proof is identical to the proof of Claim 7.13 and thus is not repeated.

If for all s > j, µ(us) belongs to the spine, then in particular µ(ut) does. It follows from

the claim that f(µ(ut)) is a descendant of φ(ut). Therefore, also µ(ut) is a descendant of

g(φ(ut)). However, g(φ(ut)) = g(φ(u)) = g(y∗) is a descendant (not an ancestor) of all the

nodes in the spine.

So there must be some s > j so that µ(us) does not belong to the spine. Assume that s is

the first to satisfy this condition. By Claim 7.19, f(µ(us)) has to be a descendant of φ(us).

We know that µ(us) does not belong to the spine. If it does not belong to Z as well, then

by Observation 7.17 Eµ(us) is isomorphic to Df(µ(us)). The restriction of µ to Eµ(us) gives a

matching of µ(us) with us. Therefore, there is also matching of f(µ(us)) with us (Lemma

6.2). We thus obtained a node in Q (namely, us) whose shadow in D (namely, φ(us)) has

a descendant (namely, f(µ(us))) that has a matching with uj . This contradicts Proposition

6.16.

We are left to address the case µ(us) ∈ Z. Suppose µ(us) = z for some auxiliary node

z. Since z has an auxiliary name as a name, us must have a wildcard node test. It follows

that s < t − 1 (because both ut = u and ut−1 = parent(u) do not have a wildcard node

test). Moreover, since Q is star-restricted, all the children of us, and in particular us+1, have

a child axis.

If z is one of the auxiliary nodes on the two length j paths that dangle from zk, then all

its descendants are auxiliary nodes too, and hence none of them can match the nodes ut−1

and ut, which do not have a wildcard node test. This means that µ(ut−1) and µ(ut) are not

descendants of µ(us), contradicting the axis match property of µ.

So assume z = zℓ for some ℓ ∈ {1, . . . , k}. If ℓ < k, then the only child of zℓ is zℓ+1, and

therefore µ(us+1) = zℓ+1. Continuing inductively, we obtain that for each p = 1, . . . , k − ℓ,

µ(us+p) = zℓ+p, and us+p has a wildcard node test and a child axis. Note that s + k − ℓ

has to be smaller than t − 1, because ut−1 does not have a wildcard node test. Now, since

µ(us+k−ℓ) = zk, since µ(ut−1) is a non-auxiliary descendant of µ(us+k−ℓ), and since all the
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non-auxiliary descendants of zk belong to the subtree Eg(y∗), µ(ut−1) belongs to this subtree.

This means that µ(ut−1) does not belong to the spine, and thus Eµ(ut−1) and Df(µ(ut−1)) are

isomorphic (Observation 7.17). µ(ut−1) has a matching with ut−1, and so also f(µ(ut−1)) has

a matching with ut−1 (Lemma 6.2). Since µ(ut−1) belongs to the subtree rooted at g(y∗),

it is a descendant of g(x∗). It follows that also f(µ(ut−1)) is a descendant of x∗. We thus

obtained a node in Q (namely, ut−1) whose shadow (namely, x∗) has a descendant (namely,

f(µ(ut−1))) that has a matching with ut−1. This contradicts Proposition 6.16.

8 Upper Bounds

In this section we describe an XPath filtering algorithm, whose space is close to the lower

bounds described in the previous section. The algorithm handles any leaf-only-value-restricted

univariate conjunctive query. An example run is also provided.

Overview Suppose Q is the input query and D is the input document, given as a stream

of SAX events. The algorithm tries to gradually construct a matching φ of D with Q. It

declares D as a match to Q if and only if the construction ends successfully. The algorithm

has the property that if there is at least one matching of D with Q, then the algorithm can

always find it, while if there are no matchings of D with Q, the construction fails. It then

follows from Lemma 5.10 that the algorithm’s output is always correct.

The algorithm is event-driven. As SAX events arrive, corresponding event handlers

are called, updating the global variables of the algorithm. There are five event handlers:

startDocument(), endDocument(), startElement(n), endElement(n), and text(α). In

addition, the algorithm has several other subroutines, described below.

The algorithm gradually constructs the matching φ on a “frontier” of the query. Initially,

the frontier consists of the query root alone. When the algorithm receives a startElement

event of a document node x, it searches for all the nodes u in the frontier, for which x is a

“candidate match” (see definition below). For each such node u, the children of u are added

to the frontier as well. When the algorithm receives the endElement event of x, it removes

the children of u from the frontier, and uses them to determine whether x is turned into a

“real match” (see definition below) for u or not. The algorithm declares the document as

matching the query if and only if a real match for the query root is found. The mapping of

query nodes to their real matches is the desired matching φ.

More formally, a document node x is a candidate match for u, if: (1) name(x) passes

ntest(u); and (2) x relates to the candidate match of parent(u) according to axis(u).3 x

3This definition holds for nodes u 6= root(Q). x is a candidate match for root(Q), only if x = root(D).
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is also a real match for u, if either (1) u is a leaf and strval(x) belongs to truth(u);4 or

(2) u is an internal node and every child v of u has a real match y that relates to x according

to axis(v). It is easy to verify that if x is a real match for u, then the map φu that maps

u and its descendants to their corresponding real matches in the subtree Dx is a matching

of x with u. In particular, if the document root is determined as a real match for the query

root, the corresponding map is matching of D with Q.

How do we determine whether a document node x is a candidate match for a query node

u? In order to do that, we only need to know the name of x and its “document level” (i.e.,

document depth). By comparing this level to the document level of the candidate match

z for parent(u), we know whether x relates to z according to axis(u). Therefore, we can

determine whether x is a candidate match for u already at the startElement event of u.

On the other hand, determining whether x turns into a real match for u or not requires

knowing the string value of x (if u is a leaf) or whether descendants of x are real matches

for the children of v. This can be inferred only at the endElement event of x.

Global variables The algorithm maintains the following global variables:

1. frontier: A table consisting of the current query “frontier”. Each tuple in the table

has the following attributes:

(a) ref: A reference to a query node.

(b) matched: A flag indicating whether a real match has already been found for the

query node.

(c) level: The document level at which we expect to find a candidate match for the

query node.

(d) strValueStart: The position in the buffer (see below), in which the string value

of the candidate match for the query node begins.

2. buffer: A buffer consisting of text from the document. Has the following data mem-

bers:

(a) data: The content of the buffered text.

(b) size: The size of the buffer.

(c) refCount: The number of currently processed document nodes whose string value

is being buffered.

3. currentLevel: The level of the currently processed document node.

4Recall that Q is leaf-only-value-restricted, and thus only leaves need to satisfy the value match property.
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Event handlers startDocument (see Figure 20) initializes the global variables. In partic-

ular, it inserts the query root to the frontier (lines 2-3), setting its matched flag to false,

indicating that no real match for the root has been found yet, and its level to 0, indicating

that a candidate match for the root should be at level 0. currentLevel is initialized to

indicate that the current document level is 0 (line 7).

Function startDocument()
1: frontier.initialize()
2: insert a new record with the following values into frontier:
3: (ref := root(Q), matched := false, level := 0)
4: buffer.data := ””
5: buffer.size := 0
6: buffer.refCount := 0
7: currentLevel := 0

Function startElement(n)
1: select * from frontier where
2: (ref.ntest = n OR ref.ntest = *) AND
3: (ref.axis = descendant OR level = currentLevel) AND
4: (matched = false)
5: for all records u selected do
6: if (u.ref.isLeaf) then
7: buffer.refCount := buffer.refCount + 1
8: u.strValueStart := buffer.size
9: else
10: if (u.ref.axis = child)
11: delete u from frontier
12: for v in u.ref.children do
13: insert a new record with the following values into frontier:
14: (ref := v, matched := false, level := currentLevel + 1)
15: end for
16: end if
17: end for
18: currentLevel := currentLevel + 1

Function text(α)
1: if (buffer.refCount > 0)
2: append α to buffer

Figure 20: Pseudo-code for the functions startDocument, startElement, and text

startElement (see Figure 20) is called every time a new document node x starts. The

function first selects all the query nodes u in the frontier, for which x is a candidate match,

and which have not found a real match yet (lines 1-4). Recall that x is a candidate match

for u if: (1) name(x) passes ntest(u) (line 2); and (2) x relates to the candidate match

of parent(u) according to axis(u). We next explain how line 3 guarantees the latter

condition. Let z be the candidate match for parent(u). As described below, u is inserted

into the frontier at the startElement event of z and removed at the endElement event of

z. Therefore, since u is currently in the frontier, x must be “encapsulated” by z, i.e., x is

a descendant of z. If axis(u) = descendant, this already suffices to guarantee Condition

(2). If axis(u) = child, x must be a child of z. When u is inserted into the frontier, its
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level attribute is set to be one more than the level of z. Thus, if the current level equals

the level attribute of u, it must mean that x is a child of z.

If a real match for a node u has already been found (line 4), we do not need any additional

real matches for u, and thus we do not need to verify whether x turns into a real match or

not.

If u is a leaf, checking whether x turns into a real match or not will require inspecting

the string value of x. We thus start buffering the contents of the text node descendants of

x (lines 6-8).

If u is an internal node, checking whether x turns into a real match or not will require

finding real matches for the children of u in the subtree Dx. We thus insert all the children

of u into the frontier (lines 12-15), setting their matched flag to false and their level to

the next document level.

When u has a child axis, we know that no further candidate matches for u can be found

among descendants of x. We can thus temporarily remove u from the frontier, to save space

(lines 10-11). u will be put back into the frontier, when the element x ends. Note that

this optimization cannot be applied if u has a descendant axis, because if the document

is recursive, then both x and descendants of x can be candidate matches for u at the same

time.

The function text (see Figure 20) updates the buffer with the text content of the current

text node, if there are any “consumers” for this buffer.

endElement (see Figure 21) is called every time a document node x ends. After updating

the current document level (line 1), the function selects all the leaf nodes in the frontier, for

which x is a candidate match and which have not found a real match yet (lines 2-6). For

each such node u, x is a real match for u if and only if strval(x) ∈ truth(u). In lines 7-10,

the function extracts the string value of x from the buffer and then checks whether it belongs

to truth(u). We use the function decrementRefCount() to decrement the reference count

of the buffer and reset the data and size members when the reference count reaches 0. The

membership in truth(u) is done by invoking the function evalPredicate, whose pseudo-

code is omitted. Let w be the succession root of u. There are two cases: either w = root(Q)

or w is a predicate child of parent(w), and is thus a variable in an atomic predicate P of

predicate(parent(w)). If w = root(Q), then truth(u) = S, and thus evalPredicate

returns the value true. If w is a variable in P , then truth(u) = truth(P ) (recall Definition

5.6). Thus whether strval(x) ∈ truth(u) depends on whether the evaluation of the atomic

predicate P on the value strval(x) results in the value true. This evaluation is done by

the function evalPredicate.

Next, the function endElement addresses the internal nodes u, for which x is a candidate
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Function endElement(n)
1: currentLevel := currentLevel - 1
2: select * from frontier where
3: (ref.ntest = n OR ref.ntest = *) AND
4: (ref.axis = descendant OR level = currentLevel) AND
5: matched = false AND
6: ref.isLeaf
7: for all records u selected do
8: u.matched := evalPredicate(u, buffer.data[u.strValueStart,buffer.size])
9: buffer.decrementRefCount()
10: end for
11: select * from frontier where
12: level > currentLevel
13: group by ref.parent
14: for all ref.parent u of records selected do
15: m := true
16: for all records v that were selected and for which ref.parent = u do
17: if (v.matched = false)
18: m := false
19 delete v from frontier
20: end for
21: if (u.axis = descendant) then
22: get record urec from frontier where ref = u
23: else
24: create a new record urec with:
25: (ref := u, matched := false, level := currentLevel)
26: insert urec into frontier
27: end if
28: urec.matched := m
29: end for

Function endDocument()
1: get record r from frontier where ref = root(Q)
2: return r.matched

Figure 21: Pseudo-code for the functions endElement and endDocument

match. In lines 11-13, the function selects all the children of these nodes. x is a real match

for u if and only if all the children v of u have already found a real match (lines 15-20).

These children are then removed from the frontier (line 19).

u itself may or may not be at the frontier at this point. If u has a descendant axis, it

already exists in the frontier (lines 21-22). If u has a child axis, it should be reinserted into

the frontier (lines 23-27). The matched flag of u is set in accordance with whether x is a real

match for u or not (line 28).

Finally, the function endDocument (see Figure 21) returns the output of the algorithm,

which is the value of the matched flag of the query root.

Example run In Figure 22 we present an example of how the algorithm processes the

query Q = /a[c[.//e and f] and b]. We show a sample document and a snapshot of the

state of the main global variables after each event. We use tuples to represent the values of

the level, ref.ntest, and matched attributes of the records in the frontier table. As the
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frontier size is 3 for this query, there are at most 3 tuples in the system. In Figure 22 we

show an array of 3 tuples and the values at each position (index) in the array. When the

state is less than 3 tuples, we leave the position empty.

Each event is represented by its name and by the level it happened. The first interesting

event is startElement(d) (event 4). Since the “d” element does not match any node in

the frontier, we increase the level by one but keep the frontier intact. The other interesting

event is the second startElement(c) event (event 11). Since the “c” query node is already

matched at that point, instead of processing the new “c” document node, we ignore it and

simply increment the level variable. At the end of the processing, the matched flag of the

root is set to 1 (true), meaning that the document matched the query.

$

c b

f

a

e

c

Sample document

d

1)  $,0  <0,a,1>   
2)  a,1  <0,c,2>  <0,b,2>   
3)  c,2  <0,e,3>  <0,b,2>  <0,f,3>
4)  d,3  <0,e,3>  <0,b,2>  <0,f,3>
5)  e,4  <0,e,3>  <0,b,2>  <0,f,3>
6) /e,4  <1,e,3>  <0,b,2>  <0,f,3>
7) /d,3  <1,e,3>  <0,b,2>  <0,f,3>
8)  f,3  <1,e,3>  <0,b,2>  <0,f,3>
9) /f,3  <1,e,3>  <0,b,2>  <1,f,3>
10)/c,2  <1,c,2>  <0,b,2>   
11) c,2  <1,c,2>  <0,b,2>   
12)/c,2  <1,c,2>  <0,b,2>   
13) b,2  <1,c,2>  <0,b,2>   
14)/b,2  <1,c,2>  <1,b,2>   
15)/a,1  <1,a,1>     
15)/$,0  <1,$,0>

Event Index 0 Index 1 Index 2

Figure 22: Example run for /a[c[.//e and f] and b]

Correctness The correctness of the algorithm follows from the next theorem and from

Lemma 5.10. The proof is straightforward from the description above and from the definition

of matchings, and is thus omitted.

Theorem 8.1 (Correctness). Let Q be a leaf-only-value-restricted univariate conjunctive

query and let D be a document. If D has at least one matching with Q, then the algorithm,

when running on D and Q, finds a real match for root(Q). Conversely, if the algorithm

finds a real match for root(Q), then there exists a matching of D with Q.

Complexity In order to analyze the time and space complexities of the algorithm, we need

to develop some terminology. We first introduce the following weak notion of a matching:
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Definition 8.2 (Path matching). Let Q be a query and let D be a document. A path

matching of a node x ∈ D with a node u ∈ Q is a map ρ from path(u) to path(x), which

satisfies the following:

1. Root match: ρ(root(Q)) = root(D).

2. Axis match: For all nodes v ∈ path(u), v 6= root(Q), ρ(v) relates to ρ(parent(v))

according to axis(v).

3. Node test match: For all nodes v ∈ path(u), v 6= root(Q), name(ρ(v)) passes

ntest(v).

x is said to path match u, if there exists a path matching of x with u.

Clearly, if x matches or even structurally matches u (relative to the context root(Q) =

root(D)), then it also path matches u. Note that in our algorithm, if a node x is determined

as a candidate match for a node u, then x must path match u. We next redefine the notion

of recursion w.r.t. path matchings.

Definition 8.3 (Path recursion depth). Let Q be a query. The path recursion depth of a

document D w.r.t. Q is the maximum length of a sequence of nodes x1, . . . , xr, all of which

path match the same node in Q and are nested within each other (i.e., xi is a descendant of

xi−1, for i = 2, . . . , r).

For example, if Q = //a[b] and D = 〈a〉〈a〉〈/a〉〈/a〉, then the path recursion depth of

D w.r.t. Q is 2, because both of the “a” nodes in D path match the “a” node in Q. Its

recursion depth, however, is 0, because neither of the two “a” nodes in D matches the “a”

node in Q. Clearly, the recursion depth of a document is always a lower bound on the path

recursion depth of the document.

Next, we define the following new notion:

Definition 8.4 (Text width). Let Q be a leaf-only-value-restricted univariate conjunctive

query. The text width of a document D w.r.t. Q is the maximum length, over all leaf nodes

u ∈ Q, and over all nodes x ∈ D that path match u, of strval(x).

For example, if Q = /a[b] and D = 〈a〉 dear 〈b〉sir〈/b〉 or 〈b〉madam〈/b〉 〈/a〉, then

the text width of D w.r.t. Q is 5, because the second “b” node in D is the node with the

maximum length string value that path matches a leaf in Q.

Finally, we define a strong notion of redundancy-freeness w.r.t. path matchings.

Definition 8.5 (Path consistency). Two nodes u, v ∈ Q are said to be path consistent, if

there exists a document D and a node x ∈ D, so that x path matches both u and v.
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For example, in the query Q = /a[.//b/c and b//c], the two “c” nodes are path

consistent: the node named “c” in the document D = 〈a〉〈b〉〈c〉〈/c〉〈/b〉〈/b〉 path matches

both.

Definition 8.6 (Path consistency-free query). A query Q is called path consistency-free,

if no two of its nodes are path consistent.

Consistency-freeness is a stronger notion than subsumption-freeness. It is easy to verify

that every path consistency-free query is also subsumption-free.

Definition 8.7 (Closure-free queries). A query Q is called closure-free, if none of its

nodes has the descendant axis.

We are now ready to state the theorem about the space and time complexities of the

algorithm. The following theorem shows that the algorithm uses space, which is: (1) (quasi-

) linear in the size of the query; (2) linear in the path recursion depth; (3) logarithmic in

the document depth; and (4) linear in the text width. Thus, the algorithm matches the

document depth lower bound (Theorem 7.14) and almost matches the recursion depth lower

bound (Theorem 7.4), modulo the difference between recursion depth and path recursion

depth. The second part of the theorem shows that for queries that are path consistency-free

and closure-free, the space used is (quasi-) linear in the query frontier size, and thus for these

queries the algorithm matches our main lower bound (Theorem 7.1).

Theorem 8.8 (Complexity). Let Q be any leaf-only-value-restricted univariate conjunctive

query. Let D be any document of depth at most d, of path recursion depth at most r w.r.t.

Q, and of text width space at most w w.r.t. Q. Then, the algorithm, when executed on Q and

D, uses at most O(|Q| ·r ·(log |Q|+log d+logw)+w) bits of space and runs in Õ(|D| · |Q| ·r)

time. (Õ suppresses poly-logarithmic factors.)

If Q is in addition path consistency-free and closure-free, then the algorithm uses at most

O(FS(Q) · (log |Q| + log d+ logw) + w) bits of space and runs in Õ(|D| · FS(Q)) time.

Proof. We start with the space complexity analysis. We need to analyze the space needed

for each of the global variables used by the algorithm (the local variables require negligible

space).

First, currentLevel needs O(log d) bits of space. Next, the buffer variable holds string

values of document nodes that are candidate matches for query nodes. Note that even

though multiple string values may be buffered simultaneously, they are always nested within

each other. The size of the buffer thus never exceeds the length of the string value of the

outermost node. This node is a candidate match for some query leaf node, and thus also
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path matches it. This string value must be then of length at most w. Thus, the buffer size

is O(w).

Finally, we analyze the maximum size of the frontier. A query node u is inserted into

the frontier every time a candidate match is found for its parent. The frontier consists

of multiple copies of u simultaneously only if these candidate matches are nested within

each other. This means that if the frontier consists of k copies of u, there are k candidate

matches for parent(u) that are nested within each other. These candidate matches path

match parent(u). Hence, k must be at most r, due to the fact D has path recursion depth

of at most r w.r.t. Q. We conclude that each query node can have at most r copies in the

frontier simultaneously. Therefore, the size of the frontier is at most |Q| · r. Every tuple in

the frontier is of size O(log |Q| + log d+ logw), giving the stated space upper bound.

Suppose now that Q is path consistency-free and closure-free. We next argue that when-

ever a node u is inserted into the frontier, the frontier consists solely of nodes that are siblings

of u or of one of its ancestors.

Suppose, to reach a contradiction, that when u is inserted into the frontier, there exists

a node v in the frontier, which is neither a sibling of u nor a sibling of an ancestor of u. Let

y be the document node, during whose startElement event v was inserted into the frontier.

This means that y is a candidate match for parent(v). Similarly, let x be the document

node, during whose startElement event u is inserted into the frontier. Since v is still in the

frontier at the startElement event of x, x must be a descendant of y.

y is the candidate match for parent(v) and thus path matches parent(v). x is the

candidate match for parent(u) and thus path matches parent(u). Since x is a descendant

of y and no ancestor of parent(u) has a descendant axis (recall that Q is closure-free),

then there must be an ancestor w of parent(u) that path matches y. Since Q is path

consistency-free, w = parent(v), because otherwise y path matches two distinct nodes in

Q.

We obtained that parent(v) is an ancestor of u. Thus, the only way for v not to be a

sibling of u or of one of its ancestors, is that v itself is an ancestor of u. Let z be the child

of y succeeding y on the path segment path(y..x). Since v is an ancestor of u and has a

child axis, z must path match v. Therefore, at the startElement event of z, v should have

been removed from the frontier (lines 10-11). That did not happen, hence v cannot be an

ancestor of u.

We conclude that the frontier of the algorithm always consists of the “query frontier”

(in the sense of Definition 4.1) of the query at the last node to be inserted into the frontier.

Therefore, its size never exceeds FS(Q), implying the stated space upper bound.

The running time of the algorithm is dominated by the time it takes to process the
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startElement and endElement events. Each one of these runs a loop on nodes selected from

the frontier. Since the size of the frontier is at most |Q| · r for general queries and FS(Q) for

path consistency-free closure-free queries, the stated time upper bounds follow.

9 Conclusions

In this paper we present the first systematic and theoretical study of memory lower bounds

for XPath queries over XML streams. We presented the minimum amount of memory that

any algorithm evaluating the query on a stream would need to incur. We also presented a

new XPath filtering algorithm that uses space close to the lower bounds.

This work should be viewed only as a starting point for the study of the memory re-

quirements of XPath evaluation on streams. First, our bounds are tight only for a restricted

class of queries. Second, there are other sources for high memory use, which we have not

addressed at all, such as full-fledged evaluation of queries with predicates (as opposed to

just filtering such queries) and evaluation of XQuery queries with multiple output nodes. In

subsequent work [5], we prove bounds for the former. The latter remains an open problem.
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A Redundancy-free XPath

In this section we prove statements about the various query classes discussed in Section 5.

Lemma 5.10 (restated) A document D matches a query Q if and only if there exists a

matching of D and Q.

In order to prove the lemma, we will need the two following lemmas:

Lemma A.1. Let Q be a univariate query and let D be a document. If there exists a

matching φ of a u ∈ Q with a x ∈ D, then u, x, and φ must satisfy the three following

conditions:

1. If u 6= root(Q), name(x) passes ntest(u), and if u = root(Q), x = root(D).

2. x satisfies predicate(u).

3. For every node v ∈ Qu, φ(v) ∈ select(v|u = φ(u)).

Lemma A.2. Let Q be a leaf-only-value-restricted univariate query and let D be a document

that matches Q. For every nodes u ∈ Q, x ∈ D, and y ∈ D, which satisfy the following three

conditions:

1. if u 6= root(Q), name(x) passes ntest(u), and if u = root(Q), x = root(D);

2. x satisfies predicate(u);

3. y belongs to select(leaf(u)|u = x) and strval(y) ∈ truth(leaf(u));

there exists a matching φ of x with u, which satisfies φ(leaf(u)) = y.
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Proof of Lemma 5.10. Suppose D matches Q. Then, by Definition 3.6, root(D) satisfies

the predicate of root(Q) and select(leaf(root(Q))|root(Q) = root(D)) 6= ∅. Let

y be some node in this selection. Since truth(leaf(root(Q))) = S, then strval(y) ∈

truth(leaf(root(Q))) trivially. It now follows from Lemma A.2 that there exists a match-

ing φ of root(D) with root(Q). φ is the desired matching of D with Q.

For the other direction, assume there exists a matching φ of root(D) with root(Q).

Then it follows from Lemma A.1 that: (1) root(D) satisfies predicate(root(Q)); and

(2) φ(leaf(root(Q))) ∈ select(leaf(root(Q))|root(Q) = root(D)). In particular,

select(leaf(root(Q))|root(Q) = root(D)) 6= ∅, and thus D matches Q.

The following is a basic fact describing necessary and sufficient conditions for an atomic

predicate to be satisfied. It will play a crucial role in the proofs of the two above lemmas.

Proposition A.3. Let u ∈ Q be any node, let P be any of the constituent atomic predicates

in predicate(u), let rP be the root of P , and let w be the child of u that occurs as a single

variable in P . Then, for every node x ∈ D, EBV(peval(rP , x)) = true if and only if there

exists a node y ∈ select(leaf(w)|u = x) whose string value belongs to truth(leaf(w)).

Proof. Let s be the leaf of P , which is labeled by a pointer to w. Recall from Definition 5.6

that truth(leaf(w)) = truth(P ).

Let S = peval(s, x). Recall from Definition 3.5 that S is the sequence of string values

of the nodes in select(leaf(w)|u = x). The statement in the proposition boils down to

proving that S ∩ truth(P ) 6= ∅ (where we view here S as a set).

Let s′ be the last ancestor of s (climbing from s upwards), whose output is non-boolean.

By our definition of the predicate evaluation process (Definition 3.5), peval(s′, x) is the

sequence of values we would obtain by substituting the values in S in the expression corre-

sponding to s′. Let us denote this sequence by S ′.

According to the definition of atomic predicates (Definition 5.3), we have two possible

cases: either (1) s′ = rP , implying the root itself has a non-boolean output; or (2) rP has a

boolean output and non-boolean arguments and s′ is a child of rP .

In the first case, EBV(peval(rP , x)) = true if and only if S ′ 6= ∅, which in turns happens

if and only if S 6= ∅. Note that in this case truth(P ) = S, and thus the condition S 6= ∅ is

equivalent to the condition S ∩ truth(P ) 6= ∅.

Consider then the second case. In this case rP is a boolean operator with non-boolean

operands. All the children of rP , except for s′, do not depend on w and thus evaluate to

constant atomic values. Therefore, by Definition 3.5, peval(rP , x) = true if and only if

there exists a value in S ′, which makes P true. But this in turn happens iff one of the
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values in S belongs to truth(P ). Thus, peval(rP , x) = true iff S ∩ truth(P ) 6= ∅, as

desired.

Proof of Lemma A.1. The first condition is trivially satisfied by the root match and node

test match properties of φ. We prove the satisfaction of the two other conditions by a double

induction on the following quantities:

1. height(u), which is 0 if u is a leaf, and maxw height(w) + 1, where the maximum is

over the children w of u, if u is an internal node.

2. dist(u, v), which is 0 if v = u, and dist(u, parent(v)) + 1 otherwise.

To begin the induction, suppose height(u) = 0. That is, u is a leaf, and thus in par-

ticular has no children and its predicate is empty. It follows that φ(u) trivially satisfies

predicate(u), and thus the second condition is met. v must equal u, and therefore,

select(v|u = φ(u)) = {φ(u)}. Indeed, y = φ(v) = φ(u) = x belongs in this case to

select(v|u = x), as desired. Therefore, also the third condition is met, and the statement

holds for the induction base.

Assume, then, that the statement holds for nodes u of maximum height at most k, and

we will show it holds also for nodes u of maximum height k + 1. We prove the following:

Claim A.4. For all nodes w ∈ Qu, φ(w) satisfies predicate(w).

Proof. Let P1, . . . , Pℓ be the constituent atomic predicates of predicate(w), let rP1
, . . . , rPℓ

be their roots, and let w1, . . . , wℓ be the children of w that appear as single variables in

them, respectively. For each i = 1, . . . , ℓ, the following hold: (1) the restriction of φ to

Qwi
is a matching of φ(wi) with wi; (2) height(wi) ≤ k. Therefore, by the induction

hypothesis, (1) name(φ(wi)) passes ntest(wi); (2) φ(wi) satisfies predicate(wi); and (3)

φ(leaf(wi)) belongs to select(leaf(wi)|wi = φ(wi)). By the axis match property of φ,

we also have: (4) φ(wi) relates to φ(w) according to axis(wi). From (1),(2),(4) we obtain

that φ(wi) ∈ select(wi|w = φ(w)). Combining this and (3), we have that φ(leaf(wi)) ∈

select(leaf(wi)|w = φ(w)).

By the value match property of φ, strval(φ(leaf(wi))) ∈ truth(leaf(wi)). We thus

found a node in select(leaf(wi)|w = φ(w)) whose string value belongs to truth(leaf(wi)).

This implies that peval(rPi
, φ(w)) = true (Proposition A.3). Since this holds for all

i = 1, . . . , ℓ, and predicate(u) is a conjunction of its atomic predicates, φ(w) satisfies

predicate(w).

It follows from the above claim that φ(u) satisfies predicate(u), and thus the second

condition of the lemma is met. We prove the third condition by induction on dist(u, v).
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Assume, initially, that dist(u, v) = 0. That is, v = u. In this case select(u|u = φ(u)) =

{φ(u)}, and therefore the condition is met. Suppose the condition holds for all nodes v, for

which dist(u, v) ≤ t. We will show it holds also for nodes v with dist(u, v) = t+ 1.

Since dist(u, v) = t + 1, then dist(u, parent(v)) ≤ t. Therefore, by the induction

hypothesis, φ(parent(v)) ∈ select(parent(v)|u = φ(u)). Note that: (1) φ(v) passes

ntest(v) (by the node test match property of φ); (2) φ(v) satisfies predicate(v) (by

Claim A.4); and (3) φ(v) relates to φ(parent(v)) according to axis(v) (by the axis match

property of φ). Therefore, φ(v) ∈ select(v|parent(v) = φ(parent(v))), and hence φ(v) ∈

select(v|u = φ(u)), as desired.

Proof of Lemma A.2. We prove the lemma by induction on height(u). Suppose, initially,

that height(u) = 0. Therefore, u is a leaf, and in particular, leaf(u) = u. Therefore,

select(leaf(u)|u = x) = {x}, and the only y in select(leaf(u)|u = x) is x itself. Hence,

it must be the case that strval(x) ∈ truth(u).

Define: φ(u) = x. It’s easy to check that φ is a proper matching of x with u: (1) root

match: follows from the definition; (2) axis match: since u is a leaf, follows trivially;

(3) node test match: name(x) passes ntest(u) (that’s given); and (4) value match:

strval(x) ∈ truth(u) (see above).

Assume now that the lemma holds for all nodes of maximum height at most k. Let u be a

node of maximum height k+1. Let v be the successor of u and let w1, . . . , wt be its predicate

children. We will construct the matching φ of x with u by pasting together matchings of

w1, . . . , wt and of v. First, define: φ(u) = x.

Let P1, . . . , Pt be the constituent atomic predicates of predicate(u) and let rP1
, . . . , rPt

be their roots. Since x satisfies predicate(u), then peval(rPi
, x) = true for all i = 1, . . . , t.

Fix any such i. If wi is the variable at Pi, we know from Proposition A.3 that there exists a

node yi ∈ select(leaf(wi)|u = x), so that strval(yi) ∈ truth(leaf(wi)). It follows there

exists a node xi ∈ D, so that yi ∈ select(leaf(wi)|wi = xi) and xi ∈ select(wi|u = x).

We next present a matching φi of xi with wi.

Note that: (1) xi satisfies predicate(wi) and its name passes ntest(wi) (because xi ∈

select(wi|u = x)); (2) yi ∈ select(leaf(wi)|wi = xi) and strval(yi) ∈ truth(leaf(wi))

(see above); and (3) height(wi) ≤ k. Hence, we can apply the induction hypothesis on

wi, xi, yi and obtain a matching φi of xi with wi, for which φ(leaf(wi)) = yi.

Let’s turn now to the successor v of u, if it exists. Note that: leaf(v) = leaf(u).

Therefore, if y ∈ select(leaf(u)|u = x), there exists a node x′ ∈ D, so that y ∈

select(leaf(u)|v = x′) and x′ ∈ select(v|u = x). Note that: (1) x′ satisfies predicate(v)

and its name passes ntest(v) (follows from the fact x′ ∈ select(v|u = x)); (2) strval(y) ∈

truth(leaf(u)) (that’s given); and (3) height(v) ≤ k. Hence, we can apply the induction
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hypothesis on v, x′, y, and obtain a matching φ′ of x′ with v, for which φ′(leaf(u)) = y.

We now prove that φ, the combination of φ′, φ1, . . . , φt and the definition φ(u) = x, is a

proper matching of x with u.

1. Root match: Follows from our definition φ(u) = x.

2. Axis match: Take any w ∈ Qu, w 6= u. If w = v, then φ(v) = x′ relates to φ(u) = x

according to axis(v), due to the fact x′ ∈ select(v|u = x). If w = wi for some

i ∈ {1, . . . , t}, then φ(wi) = xi relates to φ(u) = x according to axis(wi), due to the

fact xi ∈ select(wi|u = x). In all other cases, the axis match property follows from

the corresponding property of φ′ and φ1, . . . , φt.

3. Node test match: Take any w ∈ Qu. If w = u, then name(φ(u)) = name(x) passes

ntest(u) (that’s given). In all other cases, the node test match property follows from

the corresponding property of φ′ and φ1, . . . , φt.

4. Value match: Take any w ∈ Qu. If w = u, then truth(u) = S, because u is an

internal node. Therefore, strval(φ(u)) ∈ truth(u) trivially. In all other cases, the

value match property follows from the corresponding property of φ′ and φ1, . . . , φt.

Therefore, φ is indeed a proper matching and φ(leaf(u)) = φ′(leaf(u)) = y, as desired.

Lemma 5.19 (restated) If Q is strongly subsumption-free, then it is also subsumption-free.

Proof. Suppose, to reach a contradiction, that Q is strongly subsumption-free but is not

subsumption-free. Therefore, there exists a node u ∈ Q and a set of nodes S ⊆ Q \ {u}, so

that

matches(u) ⊆
⋃

v∈S

matches(v).

Since Q is strongly subsumption-free, we can define the “canonical document” Dc corre-

sponding to Q (see Section 6.4). The “canonical mapping” φc is a matching of Dc with Q

(Lemma 6.11). Therefore, 〈Dc, φc(u)〉 ∈ matches(v) for some v ∈ S. Hence, there exists

some matching φ′ of Dc and Q so that φ′(v) = φc(u). Since v 6= u, φ′ 6= φc. We thus found

a non-canonical matching of Dc with Q, which is a contradiction to Lemma 6.15.

B Hybrid matchings

In this section we prove the statement about hybrid matchings:
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Lemma 6.7 (restated) Let Q be a univariate query, let D be a document, let φ be a

matching of a node x ∈ D with a node u ∈ Q, and let η be a matching of D with Q−u. If x

relates to η(parent(u)) according to axis(u), then the hybrid mapping µ induced by φ and

η is a matching of D with Q.

Proof. We show that the hybrid mapping µ possesses the four properties of a matching:

1. Root match: root(Q) does not belong to the subtreeQu, and therefore µ(root(Q)) =

η(root(Q)) = root(D).

2. Axis match: Let v ∈ Q, v 6= root(Q). If v 6∈ Qu, then also parent(v) 6∈ Qu. Thus,

for such nodes µ(v) = η(v) and µ(parent(v)) = η(parent(v)). The axis match

property in this case follows from the corresponding property of η.

If parent(v) ∈ Qu, then also v ∈ Qu, and therefore µ(v) = φ(v) and µ(parent(v)) =

φ(parent(v)). The axis match property in this case follows from the corresponding

property of φ.

Consider then the case that v ∈ Qu but parent(v) 6∈ Qu. This can happen only if

v = u. In this case µ(u) = φ(u) = x, while µ(parent(u)) = η(parent(u)). Thus,

the axis match property in this case follows from the assumption that x relates to

η(parent(u)) according to axis(u).

3. Node test match Follows directly from the node test match properties of φ and η.

4. Value match Follows directly from the value match properties of φ and η.

C Document homomorphisms

In this section we prove the properties of document homomorphisms described in Section

6.1.

Lemma 6.2 (restated) Let D,D′ be two documents, let x ∈ D and x′ ∈ D′ be two nodes

in these documents, and assume there is a homomorphism (resp., structural homomorphism)

ξ from Dx to D′
x′. Let Q be a redundancy-free query, and suppose there is a matching (resp.,

structural matching) φ of x with a node u ∈ Q. Then, the mapping η
def
= ξ ◦ φ is a matching

(resp., structural matching) of x′ with u.

Proof. We first prove the lemma for the case ξ is a structural homomorphism and φ is a

structural matching. We show that η is a structural matching of x′ with u:
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1. Root match: η(u) = ξ(φ(u)) = ξ(x) = x′.

2. Axis match: Let v ∈ Qu, v 6= u. If v has a child axis (resp., descendant axis), then

by the axis match property of φ, φ(v) is a child (resp., descendant) of φ(parent(v)).

By the axis preservation property of ξ, ξ(φ(v)) is then a child (resp., descendant) of

ξ(φ(parent(v)).

3. Node test match: Let v be a node in Qu whose node test is not *. By the node test

match property of φ, name(φ(v)) = ntest(v). By the node test preservation property

of ξ, name(ξ(φ(v))) = name(φ(v)) = ntest(v).

If ξ is now a homomorphism and φ is a matching, they are in particular a structural homo-

morphism and a structural matching, respectively. Therefore, by the above η has the first

three properties of a matching. We are left to prove it has the value match property.

Let v ∈ Qu. By the value match property of φ, strval(φ(v)) ∈ truth(v). By the value

preservation property of ξ, strval(η(v)) = strval(φ(v)).

Lemma 6.4 (restated) Let D,D′ be two documents, let x ∈ D and x′ ∈ D′ be two nodes

in these documents, and assume there is a weak homomorphism ξ from Dx to D′
x′. Let Q be

a redundancy-free query, and suppose there is a leaf-preserving matching φ of x with a node

u ∈ Q. Then, the mapping η
def
= ξ ◦ φ is a matching of x′ with u.

Proof. ξ is a weak homomorphism from Dx to D′
x′, and therefore is in particular a structural

homomorphism. Similarly, φ is a leaf-preserving matching of x with u, and therefore is in

particular a structural matching. Hence, by Lemma 6.2, the mapping η already satisfies

the first three properties of a matching. We are left to prove that η has the value match

property.

Let v be any node in Qu. If v is internal, then since Q is leaf-only-value-restricted,

truth(v) = S, and thus the value match property of η follows trivially. So assume v

is a leaf. Since φ is leaf-preserving, φ(v) is a leaf. By the value match property of φ,

strval(φ(v)) ∈ truth(v). By the leaf value preservation property of ξ, strval(ξ(φ(v))) =

strval(φ(v)).

D Query automorphisms

In this section we prove the basic properties of structural query automorphisms discussed in

Section 6.4.
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Lemma 6.9 (restated) A node u ∈ Q structurally subsumes a node v ∈ Q if and only if

there exists a structural query automorphism ψ on Q, such that ψ(v) = u.

Proof. Suppose, initially, that there exists a structural query automorphism ψ on Q, so that

ψ(v) = u. We will prove that u must structurally subsume v.

Let 〈D, x〉 be any document-node pair in smatches(u). That is, x is a node in D and

structurally matches u. Let φ be the structural matching of D and Q with φ(u) = x. We

next define a new structural matching φ′ of D and Q so that φ′(v) = x. That would imply

that 〈D, x〉 also belongs to smatches(v), proving that u structurally subsumes v.

For any node w ∈ Q, we define φ′(w) = φ(ψ(w)). First note that φ′(v) = x as desired.

We next prove that φ′ is indeed a structural matching.

1. Root match: φ′(root(Q)) = φ(ψ(root(Q))) = φ(root(Q)) = root(D).

2. Axis match: Let w ∈ Q, w 6= root(Q). If w has a child axis, then ψ(w) is a child

of ψ(parent(w)) and ψ(w) has a child axis. Therefore, φ′(w) = φ(ψ(w)) is a child

of φ′(parent(w)) = φ(ψ(parent(w))). If w has a descendant axis, then ψ(w) is a

descendant of ψ(parent(w)), and therefore also φ′(w) = φ(ψ(w)) is a descendant of

φ′(parent(w)) = φ(ψ(parent(w))).

3. Node test match: For any w ∈ Q, if ntest(w) 6= *, then ntest(ψ(w)) =

ntest(w). That implies that also name(φ′(w)) = name(φ(ψ(w))) = ntest(w).

Therefore, the name of φ′(w) passes the node test of w.

For the other direction, we assume that u structurally subsumes v. We need to show that

there is a structural query automorphism ψ on Q, so that ψ(v) = u.

We use the construction of a “structurally canonical document” described in Section 6.4.

Let Dc be such a document. The canonical matching φc of Dc and Q is also a structural

matching of Dc and Q. Thus, the node φc(u) = shadow(u) structurally matches the node

u. Since u structurally subsumes v, there is another structural matching φ of Dc and Q,

such that φ(v) = φc(u).

The structural matching φ induces a structural query automorphism ψ, as described

in Lemma 6.14. Recall that ψ(w) = shadow
−1(φ(w)), for all nodes w ∈ Q. Therefore,

ψ(v) = u, as desired.

Proposition 6.10 (restated) Let ψ be any structural query automorphism on Q. Then,

for all u ∈ Q, depth(u) ≤ depth(ψ(u)).
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Proof. We prove that depth(u) ≤ depth(ψ(u)) by induction on depth(u). If depth(u) =

0, then u = root(Q), and therefore ψ(u) = root(Q). We thus have depth(u) = 0 =

depth(ψ(u)) in this case.

Assume, then, that depth(u) ≤ depth(ψ(u)) for all u with depth(u) ≤ k. Let u be

a node of depth k + 1. Therefore, parent(u) is of depth k. By the induction hypothesis,

depth(parent(u)) ≤ depth(ψ(parent(u))). By the axis preservation property of ψ, ψ(u)

is a descendant of ψ(parent(u)). Therefore, depth(ψ(u)) ≥ depth(ψ(parent(u))) + 1 ≥

depth(parent(u)) + 1 = depth(u).

E Canonical documents

In this section we prove statements about canonical documents discussed in Section 6.4

Proposition 6.16 (restated) For any node u ∈ Q, no descendant of shadow(u) has a

matching with u.

Proof. We prove the proposition by induction on the maximum height of the node u. When

u is a leaf (maximum height 0), its shadow has no descendants, and therefore the claim

follows trivially.

Suppose, then, that the claim holds for all nodes of maximum height at most d. Let u

be a node of maximum height d + 1 and assume, to reach a contradiction, there exists a

matching η of a descendant y of shadow(u) with u.

We consider two cases: either y = shadow(v) for some v ∈ Q, or y is artificial. Consider

first the case y = shadow(v). Since shadow(v) is a descendant of shadow(u), v has to

be a descendant of u. Now, η restricted to Qv is a matching of η(v) with v. Since η(v) is

a descendant of η(u) = y = shadow(v), we found a descendant of shadow(v) that has a

matching with v. This contradicts the induction hypothesis, because v is of maximum height

at most d.

Consider now the case that y is an artificial node. This means that y belongs to a chain

of h + 1 artificial nodes that ends with shadow(v′) for some v′ ∈ Q that has a descendant

axis. Since shadow(v′) is a descendant of shadow(u), v′ has to be a descendant of u. The

restriction of η to Qv′ is a matching of η(v′) with v′. η(v′) is a descendant of η(u) = y and

therefore either (1) it belongs to the chain of artificial nodes connecting y and shadow(v′);

or (2) it is a descendant of shadow(v′); or (3) equals shadow(v′).

Suppose that η(v′) is an artificial node. Then, the name of η(v′) is a the auxiliary name,

and thus ntest(v′) must be the wildcard. This is impossible, since axis(v′) = descendant,
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and no node in Q has both a descendant axis and a wildcard node test (recall that Q is

star-restricted). So η(v′) cannot be an artificial node.

Suppose then that η(v′) is a descendant of shadow(v′). Then we found a node v′ ∈ Q

whose shadow shadow(v′) has a descendant η(v′) that has a matching with v′. Since v′ is

of maximum height at most d, this contradicts the induction hypothesis.

We are left to address the case η(v′) = shadow(v′). Let u1, . . . , uℓ be the path segment

connecting u and v′; that is u1 = u, uℓ = v′, and uj is a child of uj−1 for j = 2, . . . , ℓ. Let

y1, . . . , yt be the path segment connecting y and shadow(v′). Note that η(u1) = y = y1 and

η(uℓ) = η(v′) = shadow(v′) = yt.

y1 is an artificial node and thus its name is the auxiliary name. This means that u1 has

a wildcard node test. Recall that Q is star-restricted, and therefore all the children of u1,

u2 in particular, have a child axis. The only child of y1 is y2. Therefore η(u2) = y2. Let

k = min(t, ℓ). By applying the same argument inductively, we obtain that for j = 2, . . . , k−1,

uj has a wildcard node test and for j = 2, . . . , k, uj has a child axis and η(uj) = yj.

Recall that η(uℓ) = yt. If ℓ < t, then by the above η(uℓ) = yℓ 6= yt. If ℓ > t, then

η(ut) = yt, and therefore η(uℓ) has to be a descendant of yt. Thus the only way η(uℓ) = yt

is that ℓ = t = k. But now ut = v′ has a descendant axis and not a child axis.

Lemma 6.19 (restated) Let ξ be an internal node preserving weak homomorphism from

a document D to Dc, and let φ be a matching of D and Q. Then, the mapping η
def
= ξ ◦ φ is

a matching of Dc and Q (and thus equals the canonical matching φc).

Proof. The idea is to show that φ must be leaf-preserving, and then resort to Lemma 6.4.

Assume, to reach a contradiction, that φ is not leaf-preserving. Therefore, there exists a leaf

node v ∈ Q, so that φ(v) is an internal node of D. Since ξ is internal node preserving, also

η(v) is an internal node of Dc.

Since ξ is in particular a structural homomorphism and φ is in particular a structural

matching, then by Lemma 6.2, η is a structural matching of Dc and Q. Now, since η(v) is

not an artificial node (Lemma 6.12), it equals shadow(u), for some internal node u ∈ Q.

Lemma 6.14 now implies that u structurally subsumes v. That is, v is a leaf in the structural

domination set of u.

It follows from the construction of Dc that shadow(u) has a text node child, preceding

all its other children, whose text content is a string α, which is not a prefix of any string in

truth(v).

Now, recall that ξ maps φ(v) to shadow(u) and that φ(v) is an internal node of D.

Since ξ is internal node preserving, the text node child of φ(v) preceding its other children

has the same text content as the text node child of ξ(φ(v)) preceding its other children.
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We conclude that α is the prefix of strval(φ(v)). Since α is not the prefix of any value in

truth(v), strval(φ(v)) 6∈ truth(v). This means that φ does not satisfy the value match

property, and is therefore not a valid matching. We reached a contradiction.
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