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Abstract

Current twig join algorithms incur high memory costs on queries that involve child-axis

nodes. In this paper we provide an analytical explanation for this phenomenon. In a first

large-scale study of the space complexity of evaluating XPath queries over indexed XML

documents we show the space to depend on three factors: (1) whether the query is a path

or a tree; (2) the types of axes occurring in the query and their occurrence pattern; and

(3) the mode of query evaluation (filtering, full-fledged, or “pattern matching”). Our lower

bounds imply that evaluation of a large class of queries that have child-axis nodes indeed re-

quires large space. Our study also reveals that on some queries there is a large gap between

the space needed for pattern matching and the space needed for full-fledged evaluation or

filtering. This implies that many existing twig join algorithms, which work in the pattern

matching mode, incur significant space overhead. We present a new twig join algorithm that

avoids this overhead. On certain queries our algorithm is exceedingly more space-efficient

than existing algorithms, sometimes bringing the space down from linear in the document

size to constant.
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1 Introduction

XQuery and XPath [9] queries are typically represented as node-labeled twig pat-

terns (i.e., small trees). Evaluating a twig pattern over an XML document is there-

fore a core database operation. As with relational databases, creating an index over

the XML document at a pre-processing step can significantly reduce the costs (time,

space) of query evaluation. Similarly to text search, an index for an XML document

consists of posting lists or streams, one for each XML label that occurs in the doc-

ument. The stream consists of positional encodings of all the elements that have

this label, in document order. In this paper we focus on the most popular encod-

ing scheme, the BEL encoding [6], in which each element is encoded as a (Be-

gin,End,Level) tuple. The BEL encoding, although being compact, enables simple

testing of structural relationships between elements.

Over the past decade, many algorithms for evaluating twig queries over indexed

XML documents have been proposed (e.g., [6,7,10,23,22,25,18]). Much progress

has been made in supporting wider fragments of XPath and XQuery and in achiev-

ing better performance in terms of running time, memory usage, and I/O costs.

Many of the existing algorithms follow two trends. The first trend is the tendency

to achieve good performance on queries that involve descendant-axis only nodes,

while suffering from poor performance on queries that involve child-axis nodes.

The second trend relates to the mode of evaluation: many current algorithms find

all possible matches of the whole query in the document (“pattern matching”), even

though they are required to output only the matches of the query’s output node(s)

(“full-fledged evaluation”) or to simply return a bit indicating whether there is at

least one match of the query in the document (“filtering”).
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These trends raise two natural questions. First, is the space overhead incurred by

child-axis nodes inherent or is it an artifact of the way existing algorithms work?

Second, does the pattern matching evaluation mode incur any overhead relative to

full-fledged evaluation and/or filtering?

1.1 Our results

In order to address the above questions, we embark on a large-scale study of the

space complexity of evaluating twig queries over indexed documents. Our lower

bound results are quite strong, since they apply to the instance data complexity [5],

rather than to the standard data complexity. That is, we fix any query, not just a

worst-case query, and then prove lower bounds for evaluating this query. There-

fore, our lower bounds are given in terms of properties of the query as well as

parameters of the document. Our analysis shows that the space complexity of twig

query evaluation depends on three parameters: (i) whether the query is a path or a

tree; (ii) the types of the axes in the query and their occurrence pattern; and (iii) the

mode of evaluation: filtering, full-fledged evaluation, or pattern matching.

Table 1 summarizes our results (marked in shaded background) as well as previ-

ously known bounds. We analyze each evaluation mode separately. We also cate-

gorize the queries according to the axis pattern of paths in the query (represented as

a regular expression). To classify a query, we check if at least one path in the query

fits the regular expression, starting from the lowest row of the table upwards. As

the query size is typically small relative to the document size or the output size, we

did not focus on it as a parameter. We use the Õ notation to suppress factors that

are linear in the query size or logarithmic in the document size.
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Table 1

Summary of Our ResultsUpper bound Lower bound Upper bound  Lower bound  (/)*(//)* Õ(1) Ω(1) Õ(1) Ω(1)(//|/)*(//)(/)(//|/)* Õ(d) Ω(d) Õ(d) Ω(d)Upper bound Lower bound Upper bound  Lower bound  (/)*(//)* Õ(1) Ω(1) Õ(1) Ω(1)(//|/)*(//)(/)(//|/)* Õ(d) Ω(d) Õ(D) Ω(max(d,out))Upper bound Lower bound Upper bound  Lower bound  (/)*(//)? Õ(d) Ω(1) Õ(out) Ω(out)(/)*(//)(//)+ Õ(d) Ω(d) Õ(out) Ω(out)(//|/)*(//)(/)(//|/)* Õ(d) Ω(d) Õ(D) Ω(max(d,out))

FilteringPath queriesFull-fledged evaluationAxis pattern Path queries Tree queriesPattern MatchingAxis pattern Path queries Tree queries
Tree queriesAxis pattern

D, d, and “out” denote the document size, its depth, and the output size, resp.

Our results provide two theoretical explanations for the difficulty in handling queries

with child-axis nodes. The first explanation applies to all evaluation modes and

to queries that contain the (//)(/) pattern (i.e., ones that consist of at least one

descendant-axis node that is followed by a child-axis node, such as //a/b; see the

last row in all three tables). We show that the space needed to evaluate such queries

is Ω(d), where d is the document’s depth. The lower bound follows from the need to

simultaneously hold in memory candidate matches of the descendant-axis node that

are nested within each other. Thus, when evaluating the query on highly recursive

documents (ones that consist of long chains of same-label elements), Ω(d) space

may be needed. The second, and possibly more significant, explanation applies to

the full-fledged evaluation and pattern matching modes and to (a subset of) the tree
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queries that contain the (//)(/) pattern (see the lower right corner at the second and

third tables). We prove that processing such queries additionally requires Ω(out)

space, where “out” is the output size (approximately, the number of matches of the

query in the document). As the output size can be as large as the document itself, it

may be unavoidable to use a lot of memory on such queries. 1

Our study reveals another notable phenomenon. On tree queries that do not contain

the (//)(/) pattern (i.e., ones that consist of descendant-axis nodes only or ones in

which child-axis nodes always precede descendant-axis nodes; see the upper right

corners in all three tables), pattern matching is subject to an Ω(out) lower bound,

while the other modes are not. We present a new twig join algorithm that is adapted

for the filtering and full-fledged evaluation modes and uses only constant space

for these queries. Thus, our algorithm demonstrates that working in the pattern

matching mode, while only filtering or full-fledged evaluation are needed, incurs

significant space overhead.

The Õ(d) upper bound for path queries (in all evaluation modes) follows from the

PathStack algorithm [6]. The Õ(d) upper bound for filtering tree queries follows

from the TurboXPath algorithm [20] 2 (see also [18,5]). The tight upper bounds

in the pattern matching mode (see the second row of the third table) follow from

extensions we propose to the TwigStack algorithm [6]. Obtaining space-optimal

algorithms for tree queries that contain the (//)(/) pattern remains an open problem.

(Õ(D) is the space needed by an in-memory algorithm that simply stores the whole

document in main memory.)

1 Note that in general the algorithm does not need to allocate expensive main memory

storage for the output, since the output can be written to a write-once output device.
2 TurboXPath is designed for XML streams, yet it can be made to work on indexed XML

documents with a constant factor space overhead.
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This paper focuses on space complexity. Analysis of other complexity measures,

such as running time and I/O is postponed to future work.

1.2 Our techniques

Space lower bounds for data stream algorithms are normally proved via communi-

cation complexity. It turns, however, that the standard communication complexity

model [21] is inadequate for proving lower bounds for multiple data stream (MDS)

algorithms. We therefore introduce a new model of multi-party communication

complexity—the token-based mesh communication model (TMC)—which enables

proving space lower bounds for MDS algorithms. The model allows a clean abstrac-

tion of the information-theoretic arguments made in the lower bound proofs. It also

enables us to recycle arguments that are repeatedly used in the proofs, thus making

them more modular. We prove communication lower bounds in the TMC model for

two variants of the set-disjointness problem and for the tensor product problem.

Our space lower bounds for twig query evaluation are obtained via reductions from

these problems.

Our new twig join algorithm differs substantially from previous approaches. Like

TwigStack and its successors, our algorithm is “holistic”, as it treats the whole

query as one unit. Yet, unlike TwigStack, our algorithm is not “document-driven”,

but rather “query-driven”. That is, rather than traversing the elements in document

order and at each step looking for the largest query subtree that is matched by the

current document subtree, our algorithm traverses the query top-down and advances

the stream cursors to the next match. We include detailed theoretical correctness

and performance analysis of our algorithm. As the main thrust of this paper is the

analytical study of the space complexity of processing twig queries, we do not
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include empirical analysis of our algorithm. This is left for future work.

1.3 Outline

We begin by presenting background information, and a formal definition of the

evaluation model. In Section 4 we prove our lower bounds, and describe the generic

reduction scheme we use in our proofs. Section 5 presents the TMC model and

communication lower bounds for three problems. In Section 6 we discuss existing

and new upper bounds, and in particular, we present our twig join algorithm with

its full analysis.

2 Related work

Starting with the seminal work of Bruno et al. [6] on holistic twig join algorithms,

there have been many follow-up studies that presented improvements in the I/O and

memory costs (e.g., [19,23,22,10]) or extended the supported fragment of queries

(e.g., [18,25]). However, none of these papers presents a systematic study of lower

bounds as we do.

The only previous work to address space lower bounds for processing twig queries

was a paper by Choi et al. [8]. They state that any algorithm evaluating the query

//a[a and a] requires super-constant memory. 3 Our study does not address a single

worst-case query, but provides lower bounds for evaluation of any query. Our lower

3 While this statement is true, we suspect the proof included in [8] to be flawed, as it relies

on a reduction to, and not from, evaluation of Select-Project-Join queries over continuous

data streams [2].
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bounds are also finer-grained and yield a quantitative characterization of the space

complexity.

Chen et al. [7] compared three different indexing schemes: by label, by label and

level, and by ancestors’ labels. They demonstrate the impact of the chosen scheme

on the classes of twig patterns that can be evaluated “optimally”, i.e., without re-

dundant intermediate results. However, their focus is on the two latter schemes, and

not on lower bounds for the first scheme, which is the subject of study in this paper.

Several previous works proved space lower bound for evaluating XPath queries in

other models. Gottlob, Koch, and Pichler [12], Segoufin [24], and Götz, Koch and

Martens [13] studied the complexity of evaluating XPath queries over XML doc-

uments stored in main memory. Grohe, Koch, and Schweikardt [16] proved lower

bounds for XPath evaluation on external memory machines with limited random

accesses. As the models studied in these works are completely different from the

model studied in this paper, their lower bounds are not applicable to our setting.

Bar-Yossef, Fontoura, and Josifovski [5,4] showed space lower bounds for evalu-

ating XPath queries over a single XML stream. Lower bounds in our model derive

the same lower bounds in the their model, while upper bounds in their model also

apply in our model.

There is extensive literature on massive data sets computations in general, and on

multiple data streams in particular. Various models have been presented and an-

alyzed, e.g. [3,2,17,16,15,11,1]. All these models are different from the multiple

data stream model studied in this paper, either because they are stronger (and thus

admit weaker lower bounds) or because they focus on other complexity measures

than space.

The multiple-cursor multiple data stream model was analyzed in [14] and a lower
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bound for reverse set-disjointness was provided. Yet, the paper focuses on relational

algebra queries and not on XPath.

3 Preliminaries

3.1 Data model

XML documents are modeled as ordered rooted trees. Each node in the tree is

called an element and is labeled by a name or a text value. The edges represent

direct element-subelement or element-value relationships. Every document has an

(invisible) root whose label we denote by “$”. Figure 1 depicts an example docu-

ment tree.

Similarly to previous papers on twig joins, we assume only leaf elements in the

document may contain text. This makes the relationship element-value easier to

represent and evaluate.$BookTitleWeb Year2003
Book chapterTitleWeb chapterYear2003 TitleHtml TitleXMLSectionTitleWeb

$

Fig. 1. Example XML document (right) and twig query (left) for the XPath query:

//Book[.//Title=”Web” and Y ear=2003].
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3.2 XPath fragment

We focus on a fragment of XPath, which we call basic twig queries. Many existing

algorithms focus on this type of queries [6,22,19]. The syntax of a basic twig query

is defined as follows :

Twig ::= Step | Step Twig

Step ::= Node [Predicate]?

Path ::= Node | Node Path

Node ::= (/|//) label

Predicate ::= Twig | Path = textvalue | Predicate and Predicate

A basic twig query can be represented as a tree, where each internal node is marked

by a label and each leaf is marked by a label or by a text value. Similarly to docu-

ments, every query has an invisible root labeled by “$”. One of the tree’s nodes is

designated as the output node 4 . Figure 1 depicts an example basic twig query. The

output node is pointed by an arrow.

3.3 Evaluation model

We consider query evaluation over indexed XML documents. An XML document

is represented in positional encoding. Each document node is encoded as a triple:

4 The output node in an XPath query is always the path’s leaf. Yet, in the tree representa-

tion, this leaf may become any labeled node in the tree. For example, the two queries //a[b

and c] and //a[b]/c are represented by the same tree, but their output nodes are different.

11



(Begin, End, Level), based on its position in the document. “Begin” and “End”

are the positions of the beginning and the end of the element, respectively, and

“Level” is the nesting depth. Positional encoding is the most popular format for

representing XML documents, since it is simple and compact, yet it allows for

efficient evaluation of structural relationships between document nodes.

An indexed XML document consists of a collection of index streams, one stream

for every label that occurs in the document. For every label ’a’, stream Ta contains

positional encodings of all elements with label ’a’ in the document, sorted by the

“Begin” attribute. Each query node u is associated with a cursor in the correspond-

ing stream Tu. An algorithm can read from a cursor position many times, until it

decides to advance it. Cursors can be advanced only forwards, and not backwards.

The output is written to a write-only stream. If two query nodes u, v share the same

label, the algorithm maintains two separate cursors on streams Tu and Tv, which

represent the same stream. We therefore abuse notation and use Tu to denote the

cursor on the stream corresponding to u. As mentioned earlier, the algorithms we

consider are restricted to access only streams corresponding to labels that occur in

the query. All known twig join algorithms conform to this restriction.

When analyzing the space complexity of an algorithm that runs over an indexed

XML document, we do not take into account the space used for storing the input

streams, the cursors, or the output stream.

3.4 Modes of evaluation

We consider three modes of query evaluation: filtering, full-fledged, and pattern

matching. The underlying notion in all modes is a match.
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For a query Q and a node u ∈ T , we denote by Qu the sub-query rooted at u.

Similarly, for a document D and an element e ∈ D, we denote by De the sub-

document rooted at e.

Definition 1 (Sub-query match) A match of a sub-query Qu in a sub-document

Deu is a mapping φ from the nodes of Qu to elements in Deu satisfying the fol-

lowing: (1) root match: φ(u) = eu, (2) labels match: w and φ(w) have the same

label, for every w ∈ Qu, and (3) structural match: the structural relationship

between φ(w) and φ(parent(w)) matches the axis of w, for every w ∈ Q, w 6= u.

A match of a query Q in a document D is a match of Qroot(Q) in Droot(D). Given a

query Q and a document D, the filtering of D using Q, denoted FILTERQ(D), is a

bit indicating whether Q has at least one match in D. The pattern matching of Q

in D, denoted PMQ(D), is the collection of all matches of Q in D. The full-fledged

evaluation of Q on D, denoted FFEQ(D), is the collection of elements φ(t), for all

matches φ of Q in D (t is the output node of Q).

4 Lower bounds

In this section we present our lower bounds for evaluating basic twig queries, for

the three evaluation modes. The proof of each lower bound is based on a reduction

from another problem, whose lower bound we prove separately in Section 5. We

start by describing our generic reduction scheme, and then we use it to prove three

lower bounds, one for each evaluation mode.
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4.1 Techniques

Our lower bounds are proved via reductions from problems in the multiple data

streams (MDS) model:

4.1.1 The MDS model

In the multiple data streams (MDS) model, the input data x is divided into several

read-only streams, and the required output, f(x), is written to a write-only output

stream. Each of the input streams is associated with a cursor that can move only

in the forward direction. The cursor specifies which part of the stream has already

been read. An algorithm can read from a cursor position many times, until it decides

to advance it. When the entire input has been read, the output stream contains f(x).

This model generalizes our evaluation model for basic twig queries.

Definition 2 (MDSS) The MDS space complexity of function f , denoted as MDSS(f),

is the minimum space required for A, over all algorithms A that compute f in the

MDS model.

Definition 3 (DSS) Let DSS(f) denote the (single) data stream space complexity of

function f , where f is a function whose input is given in one stream, i.e., DSS(f) =

MDSS(f).

4.1.2 An MDS-reduction

Let f be a function in the MDS model over k streams: s1, . . . , sk, and let g be a

function in the MDS model over k+l streams: t1, . . . , tk and c1, . . . , cl. We say r =

(r1
in, . . . , r

k
in, r

1
c , . . . , r

l
c, rout) is an MDS reduction from f to g, denoted f ≤MDS g,
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if r satisfies the following:

(1) ∀i, 1 ≤ i ≤ k : ri
in : si → ti

(2) ∀i, 1 ≤ i ≤ l : ri
c : ε → ci (the input is empty)

(3) rout : Outputs(g) → Outputs(f)

(4) ∀(s1, . . . , sk) ∈ Inputs(f) : rout(g(r1
in(s1), . . . , r

k
in(sk), r

1
c (ε), . . . , r

l
c(ε))) =

f(s1, . . . , sk)

Lemma 4 Suppose there exists an MDS reduction r = (r1
in, . . . , r

k
in, r

1
c , . . . , r

l
c, rout)

from f to g. Then: MDSS(f) ≤ MDSS(g)+Σk
i=1DSS(ri

in)+Σl
i=1DSS(ri

c)+DSS(rout)

PROOF. Assume the space optimal algorithms for g, r1
in, . . . , r

k
in, r1

c , . . . , r
l
c, and

rout, are Ag, Ar1
in, . . . , Ark

in, Ar1
c , . . . , Arl

c, and Arout, respectively. We now build

an algorithm Af for f , whose space complexity is exactly MDSS(g)+Σk
i=1DSS(ri

in)+

Σl
i=1DSS(ri

c) + DSS(rout), by computing:

rout(g(r1
in(s1), . . . , r

k
in(sk), r

1
c (ε), . . . , r

l
c(ε)))

Specifically, we simulate Arout, whose input is the output stream of g. Therefore,

whenever Arout advances the cursor of the input stream and reads the next bit, we

simulate Ag until it outputs the next bit. But in order to simulate Ag, we need to

generate on-the-fly its input streams: t1, . . . , tk and c1, . . . , cl (each time we gener-

ate the next requested bit). Therefore, whenever Ag advances the cursor of some

input stream, say ti, and reads its next bit, we simulate Ari
in until it outputs the next

bit. Note that the input stream of Ari
in is si, which is given as the input for Af . If

Ag advances the cursor of a ci input stream, then we simulate Ari
c, whose input is

ε.
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The algorithm Af we described correctly computes f (by the MDS reduction prop-

erties), and its space complexity is MDSS(g) + Σk
i=1DSS(ri

in) + Σl
i=1DSS(ri

c) +

DSS(rout), since we simulate simultaneously all the corresponding algorithms.

Corollary 5 Suppose there exists an MDS reduction from f to g. Then: MDSS(g) ≥
MDSS(f)− Σk

i=1DSS(ri
in)− Σl

i=1DSS(ri
c)− DSS(rout)

4.2 Filtering

In this section we prove an Ω(docDepth) lower bound for filtering mode, for any

query that contains the (//)(/) pattern (e.g., //a/b). Since filtering is easier than the

other two modes of evaluation, the Ω(docDepth) lower bound applies also to both

full-fledged evaluation and pattern matching of queries that consist of the (//)(/)

pattern. This lower bound is matched by PathStack [6] for pattern matching of path

queries, and by TurboXPath [20] for filtering any query.

Theorem 6 Let a,b be any two labels, and let Q be any basic twig query that

contains the path segment //a/b. Furthermore, assume a 6= b and that a,b do not

appear elsewhere in Q. Then, for every algorithm for FILTERQ and for every d ≥ 1,

there exists a document of depth at most d− 1+depth(Q), on which the algorithm

uses at least d−O(|Q| log(|Q| · d)) bits of space.

The requirement that the labels a, b are different and unique in Q is made for tech-

nical reasons. We conjecture that the lower bound holds even if this requirement is

not met. However, proving this would require a lower bound for a variant of the the

reverse-set-disjointness problem (see below).
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We first prove the theorem for the special case Q = //a/b. This proof captures the

main technical challenges of the general case. We then present the proof of the

general case.

The difficulty in finding whether the query //a/b has a match or not emanates from

recursive documents that contain multiple nodes named ’a’ nested within each

other. Any filtering algorithm will have to match the list of nested ’a’ elements

read from the stream Ta against the list of ’b’ elements read from the stream Tb.

The query has a match if and only if one of these ’b’ elements is a child of an ’a’

element. If for every ’a’ element, the candidate ’b’ child appears after the nested

’a’ child/descendant, then due to the pre-order organization of elements in the two

streams, Ta has to be matched against the reverse of Tb. This implies that no al-

gorithm can match the two streams on the fly, but rather has to store at least one

of them in memory. As the length of these streams can be as long as half of the

document’s depth, this implies the space lower bound.

Formally, the theorem is proven by an MDS reduction from the problem of reverse-

set-disjointness in the MDS model.

4.2.1 Reverse set disjointness

Given two binary vectors: x, y ∈ {0, 1}n, the reverse set disjointness function,

RDISJn(x, y), is defined to be 1 if ∃i, s.t. xi = yR
i = 1, and 0 otherwise. Here, yR is

the reverse of y. When computed in the MDS model, x is given on one stream and

y on another stream.

Theorem 7 For any n ≥ 7, the space complexity of RDISJn in the MDS model is at

least n− log(n + 1)− 3.
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The proof appears in Section 5.3.

4.2.2 The reduction

We prove Theorem 6 for the case Q = //a/b by an MDS reduction from RDISJn to

FILTERQ. Note that FILTERQ can also be described as a function over two stream:

FILTERQ(Ta, Tb), as we restricted ourselves to algorithms that access only streams

corresponding to labels that occur in the query (see Section 3). Let n = d− 1. The

MDS reduction is based on the following functions:

• r1
in and r2

in construct the index streams Ta and Tb, respectively, of the XML doc-

ument D(x, y) (see Figure 2). Specifically, r1
in(x) = Ta and r2

in(y) = Tb. D(x, y)

is the same for all (x, y), except for the labeling of elements. When xi = 1, the

corresponding element si is labeled ’a’, and otherwise it is labeled ’c’. When

yi = 1, the corresponding element ti is labeled ’b’, and otherwise it is labeled

’d’.

• rout(b) = b (note that the output of both RDISJn and FILTERQ is one bit). There-

fore DSS(rout) = 0.

s1
s2
sn

tn
tn-1
t1

Fig. 2. The document D(x, y).

Claim 8 DSS(r1
in) = DSS(r2

in) ≤ log n.
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PROOF. We describe algorithms A and B for r1
in and r2

in, resp. In order to output

the next tuple in Ta [Tb], A [B] advances the stream x [y] to the next set bit. If

the position of this bit is i, the algorithm creates the tuple (i, 4n − 3i + 3, i) in Ta

[(n+3i−2, n+3i−1, n+2− i) in Tb]. If no set bit is found in x [y], the algorithm

creates a Ta.End [Tb.End] tuple.

It is easy to check that the index streams constructed are well-formed, i.e., sorted

by the “Begin” attribute, and that they represent the document D(x, y) whose depth

is d. The space needed for A [B] is log n bits for keeping the current position in x

[y].

Lemma 9 RDISJn(x, y) = FILTERQ(D(x, y)).

PROOF. RDISJn(x, y) = 1 if and only if there exists some index 1 ≤ i ≤ n, such

that both xi and yR
i (i.e., yn+1−i) are 1. This means that in D(x, y) the label of si is

’a’ and the label of tn+1−i is ’b’. Since tn+1−i is a child of si, the latter happens iff

there is a match of Q in D(x, y).

Since r1
in and r2

in construct the index streams Ta and Tb of D(x, y), it follows that:

rout(FILTERQ(r1
in(x), r2

in(y))) = FILTERQ(r1
in(x), r2

in(y)) = RDISJn(x, y)

Therefore, by Corollary 5, MDSS(FILTERQ) ≥ MDSS(RDISJn)−DSS(r1
in)−DSS(r2

in)−
DSS(rout) ≥ n−O(log n) = d−O(log d).

Now that we have proved Theorem 6 for the special case Q = //a/b, we present a

proof sketch of the general case. A full proof of the theorem appears in Appendix

A.
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PROOF. [Proof sketch of Theorem 6] Similarly to the proof of the special case,

the functions r1
in and r2

in construct the index streams Ta and Tb, respectively, of an

XML document. The document’s labels, as before, depend on x and y. However,

since now the query is some arbitrary tree that contains the path segment //a/b, the

document structure should match the query tree except, maybe, for the segment

//a/b. This means that the document structure will resemble that of the special case

(see Figure 2, but we add all the other query nodes ”around” these potentially a (si)

and b (ti) nodes. This way the existence of a match of Q in this document depends

only on the labels of si and ti nodes, i.e., on the set bits in x and y. Note that

since the query may consist of additional labels, the reduction should build their

index streams too. However, these index streams do not depend on x, y, and can be

”encoded” in the reduction.

Remark 10 (Regarding the case a = b) Theorem 6 required that the labels a, b

are different and unique in Q. We noted earlier that if this requirement is not met,

then proving the filtering lower bound requires a lower bound for a variant of

the reverse-set-disjointness problem. The reason is that now the streams Ta and

Tb are the same, i.e., the cursors of both a and b point to the same stream. The

corresponding variant of the reverse-set-disjointness problem (in order to use the

same MDS reduction shown above) is where both streams contain x ◦ y.

4.3 Full-fledged evaluation

The Ω(docDepth) lower bound we proved for filtering applies also to full-fledged

evaluation of queries that consist of the (//)(/) pattern. In this section we prove

that full-fledged evaluation of some of these queries is subject to an additional

Ω(outputSize) lower bound. Strictly speaking, the lower bound does not apply to
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all queries that contain (//)(/), but rather only to a subset of them, depending on

the location of the output node in the query. These two lower bounds are combined

to an Ω(max(docDepth, outputSize)) lower bound for this fragment of queries, as

shown in Table 1 (see the middle table, lower right corner).

We define the output size of the evaluation of a query Q on a document D to be

|FFEQ(D)|, that is, the number of document nodes to which the query’s output node

can be matched.

Theorem 11 (Output size lower bound) Let Q be any basic twig query that con-

tains the path segment //z/b. Furthermore, assume the following: (1) the output

node is a descendant of the node labeled z but not of the node labeled b (this is

where we require Q to be a tree and not a path); (2) the output node’s label and

z, b are distinct and do not appear elsewhere in Q. Then, for every algorithm for

FFEQ and for every S ≥ 1, there exists a document D, for which |FFEQ(D)| ≤ S

and on which the algorithm uses at least Ω(S) bits of space.

Here, we prove the theorem for the special case Q = //z[b]/a. This proof captures

the main technical challenges of the general case. Formally, the theorem is proven

by an MDS reduction from the following variant of the set-disjointness problem,

which we call delayed intersection:

4.3.1 Delayed intersection

Given three binary vectors s, t, u ∈ {0, 1}n and a bit v ∈ {0, 1}, the delayed inter-

section function, DINTn(s,t,u,v), is defined as (s ∩ vn) ◦ (t ∩ u), where ∩ denotes

bitwise-and, vn is the n-dimensional vector obtained by taking n copies of v, and

◦ denotes concatenation of vectors. For example, DINTn(101,011,101,1) is 101001.
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When computed in the MDS model, s◦ t is given on one stream and u◦v on another

stream.

Theorem 12 For any n ≥ 7, the space complexity of DINTn in the MDS model is

at least n− log(n + 1)− 3.

The proof appears in Section 5.4.

4.3.2 The reduction

We prove Theorem 11 for the case Q = //z[b]/a by an MDS reduction from DINTn

to FFEQ. Let n = S/2. The MDS reduction is based on the following functions:

• r1
in(s ◦ t) and r2

in(u ◦ v) construct the index streams Ta and Tb, respectively, of

an XML document G(s, t, u, v). The document structure, which is presented in

Figure 3, The document structure is the same for all inputs (s, t, u, v), except for

the labeling of elements. When si = 1 or ti = 1, the corresponding element si

or ti is labeled ’a’, and otherwise it is labeled ’c’. When ui = 1 or v = 1 , the

corresponding element ui or v0 is labeled ’b’, and otherwise it is labeled ’d’.

• r1
c constructs the index stream Tz of the document G(s, t, u, v). Note that Tz is

fixed and does not depend on the input.

• rout: its input is a stream of a-elements from the document G, and it constructs a

2n-bit vector, whose set bits correspond to the position of the a-elements. Specif-

ically, an a element may be an (si) or a (ti) node, and accordingly the position

of the set bit is i or n + i, respectively. The position i may be computed from the

element’s tuple, and therefore DSS(rout) ≤ log n.

Claim 13 DSS(r1
in) = DSS(r2

in) ≤ log n.
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s1 s2 sn z z zz$
t1 u1 t2 u2 v0tn un

Fig. 3. The document G(s, t, u, v).

PROOF. We describe algorithms A and B for r1
in and r2

in, resp. In order to output

the next tuple in Ta [Tb], A [B] advances the stream s ◦ t [u ◦ v] to the next set bit.

The tuple created is a simple function of the position of this bit.

It is easy to check that the index streams constructed are well-formed, i.e., sorted by

the “Begin” attribute, and that they represent Ta and Tb of the document G(s, t, u, v).

The space needed for A [B] is log n bits for keeping the current position in the input

stream s ◦ t [u ◦ v].

Claim 14 DSS(r1
c ) ≤ log n)

PROOF. The index stream Tz can be generated on-the-fly, based on the position

of the required tuple. Therefore, only log n bits of space are needed, to maintain

this position.

The following proposition proves the validity of the reduction:

Proposition 15 Let 1 ≤ k ≤ 2n. The k-th bit in DINTn(s,t,u,v) is set iff:

(i) if k ≤ n, sk ∈ FFEQ(G(s, t, u, v)), and (ii) if k > n, tk−n ∈ FFEQ(G(s, t, u, v)).
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PROOF. If k ≤ n, then the k-th bit is in (s∩ vn), and it is set iff both sk and v are

set. This means that the labels of elements sk and v0 in the document G are ’a’ and

’b’, respectively. The latter happens if and only if the mapping φ = (a 7→ sk, b 7→
v0) is a match of Q in G. If φ is a match, then sk ∈ FFEQ(G(s, t, u, v)). We only

have to prove now that if sk ∈ FFEQ(G(s, t, u, v)), then φ is a match, i.e., prove that

the labels of elements sk and v0 are ’a’ and ’b’, respectively. Since sk was output,

then there is a match that maps a 7→ sk. As the only element in G that is a child of

sk’s parent and may have a ’b’ label is v0, the only possible match is φ.

The second case is when k > n. Now the corresponding bit is the (k − n)-th bit in

(t ∩ u), which is set iff both tk−n and uk−n are set. The proof here is similar to the

previous case, but with elements tk−n and uk−n instead of sk and v0.

Since (r1
in, r

2
in, r

1
c ) construct the index streams of G(s, t, u, v), it follows that:

rout(FFEQ(r1
in(s ◦ t), r2

in(u ◦ v), r1
c (ε))) = DINTn(s, t, u, v)

Therefore, by Corollary 5,

MDSS(FFEQ) ≥ MDSS(DINTn)−DSS(r1
in)−DSS(r2

in)−DSS(r1
c )−DSS(rout) ≥ n−O(log n)) = Ω(s)

Note also that the output size of FFEQ(G(s, t, u, v)) is at most 2n = S. This con-

cludes the proof of Theorem 11 for the special case Q = //z[b]/a.

Remark 16 (Regarding the proof of the general case) The proof of Theorem 11

for the general case, similarly to the proof of the special case given above, is also

based on an MDS reduction from the delayed intersection problem. However, the

document structure should be extended, similarly to the extension we made in the

proof of Theorem 6 (see Appendix A) to ensure all other nodes in the query (except
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for z, a, b) can be matched. Therefore all subtrees surrounding the //z/b segment in

the query should be replicated in the document around each z-element.

4.4 Pattern matching

In this section we present two lower bounds for computing all the matches of basic

twig queries. First, we show that computing all the matches of path queries that

have at least one non-leaf descendant-axis node requires Ω(docDepth) space. This

lower bound is matched by the PathStack algorithm of Bruno et al. [6]. Then, we

prove that the situation with tree queries is quite different: computing the matches

of any tree query (regardless of the axis pattern) requires Ω(outputSize) space.

4.4.1 Pattern matching for path queries

We now prove that computing all the matches of a path query that has at least

one non-leaf descendant-axis node requires Ω(docDepth) space. For the case the

non-leaf descendant-axis node is followed by a child-axis node, the lower bound

immediately follows from the Ω(docDepth) space lower bound in the filtering

mode (Theorem 6). What we prove here is that even if the axis pattern of the path

is (/)∗(//)(/)+ (i.e., the path ends with two or more descendant-axis nodes), then

Ω(docDepth) space is needed. For such queries (e.g., //a//b), we therefore have a

gap between evaluation in the filtering mode, in which constant space is sufficient,

and evaluation in the pattern matching mode, where Ω(docDepth) space is needed.

The lower bound is matched by the PathStack and TwigStack algorithms of Bruno

et al. [6].

Remark 17 Actually the lower bound for queries with axis pattern (/)∗(//)(/)+ is
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Ω(min(docDepth, outputSize)) (see Table 1). It means that there exist documents,

for which docDepth >> outputSize, that require at least outputSize space, and

other documents, for which docDepth <= outputSize, that require at least docDepth

space. For clarity, we show here only the proof of the Ω(docDepth) lower bound

for the latter type of documents. The Ω(outputSize) lower bound can be shown in a

similar way.

To gain some intuition for the hardness of queries like //a//b, consider a document

that contains a path of m a’s followed by n b’s. In order to output all the mn matches

of the query //a//b in this document, any algorithm will have either to store all the

a’s before starting to read the b’s or vice versa. This gives a min{m,n} space lower

bound. The intuition is formalized in the following theorem:

Theorem 18 Let Q be any path query of the form /c1/c2/. . ./c`//a1//a2 . . .//ak, where

` ≥ 0, k ≥ 2, and c1, . . . , c`, a1, . . . , ak are distinct labels. Then, for every algo-

rithm for PMQ and for every d ≥ 1, there exists a document of depth at most d, on

which the algorithm uses at least Ω(d) bits of space.

We start with a proof of the theorem for the special case Q = //a//b. We then extend

the proof to deal with arbitrary queries in the above XPath fragment. The proof is

based on an MDS reduction from the tensor product problem:

Definition 19 (Tensor product) Given two binary vectors x, y of lengths m and n,

respectively, the tensor product of x and y, denoted x⊗ y, is a vector of length mn

whose (i, j)-th entry is xi · yj . The required output is a list of indices of the set bits

in x ⊗ y, in arbitrary order. The tensor product of k vectors x1, . . . , xk is defined

similarly by induction.
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The following is a space lower bound for the tensor product problem in the MDS

model. We assume x is given on one stream and y on another stream. The proof

appears in Section 5.5.

Theorem 20 The space complexity of computing x ⊗ y (x and y are of lengths m

and n, respectively) in the MDS model is at least min(m,n)− 3 bits.

The reduction We prove Theorem 18 for the case Q = //a/b by an MDS reduction

from the tensor product problem to PMQ. Let m = n = d/2 (m,n are the lengths

of the input to x⊗ y). The MDS reduction is based on the following functions:

• r1
in(x) and r2

in(y) construct the index streams Ta and Tb, respectively, of the XML

document E(x, y) (see Figure 4). E(x, y) is the same for all (x, y), except for the

labeling of elements. When xi = 1, the corresponding element si is labeled ’a’,

and otherwise it is labeled ’c’. When yi = 1, the corresponding element ti is

labeled ’b’, and otherwise it is labeled ’d’.

• rout: its input is a stream of matches, i.e., pairs of (a, b)-elements, from the doc-

ument E, and the output is a list of indices that correspond to the position of the

a and b elements in the input. Specifically, an input match (si, tj) is translated

on-the-fly to the output: “(x⊗ y)i,j = 1”. Therefore, DSS(rout) ≤ log n.

Claim 21 DSS(r1
in) = DSS(r2

in) ≤ log n.

PROOF. We describe algorithms A and B for r1
in and r2

in, resp. In order to output

the next tuple in Ta [Tb], A [B] advances the stream x [y] to the next set bit. If the

position of this bit is i, the algorithm creates the tuple (i, 2m + 2n + 1− i, i) in Ta

[(m + j, m + 2n + j − i,m + j) in Tb]. If no set bit is found in x [y], the algorithm

creates a Ta.End [Tb.End] tuple.
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s1
s2
sm
t1
t2
tn

Fig. 4. The document E(x, y).

It is easy to check that the index streams constructed are well-formed, i.e., sorted

by the “Begin” attribute, and that they represent the document E(x, y) whose depth

is d. The space needed for A [B] is log n bits for keeping the current position in x

[y].

Proposition 22 (x⊗y)i,j = 1 iff the match (a 7→ si, b 7→ tj) belongs to PMQ(E(x, y)).

PROOF. (x ⊗ y)i,j = 1 if and only if xi = yj = 1. This means that in E(x, y)

the label of si is ’a’ and the label of tj is ’b’. The latter happens if and only if

(a 7→ si, b 7→ tj) is a match of //a//b in E(x, y).

Since r1
in and r2

in construct the index streams Ta and Tb of E(x, y), it follows from

the proposition above that:

rout(PMQ(r1
in(x), r2

in(y))) = rout(PMQ(E(x, y))) = x⊗ y
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Therefore, by Corollary 5,

MDSS(PMQ) ≥ MDSS(x⊗y)−DSS(r1
in)−DSS(r2

in)−DSS(rout) ≥ n−3−O(log n) = Ω(d)

We have proved Theorem 18 for the special case Q = //a//b. The extension of

the proof to arbitrary path queries of the above form is quite straightforward. We

therefore provide only a proof sketch. The proof relies on a reduction from the

tensor product of k vectors. For the latter, we have the following lower bound,

which is proven in Section 5.5:

Theorem 23 Given k vectors x1, x2, · · · , xk of dimensions m1, . . . , mk, respec-

tively, the space complexity of computing x1 ⊗ x2 ⊗ · · · ⊗ xk in the MDS model is

at least
∑k

i=1 mi −maxi{mi} − log k − k + 1.

PROOF. [Proof of Theorem 18 (Sketch)] We use a very similar MDS reduction

from the tensor product of k vectors x1, · · · , xk of lengths m1, · · · ,mk, where
∑k

i=1 mi = d − `. Similarly to the document E(x, y) we constructed above (see

Figure 4), the document E(x1, . . . , xk) we construct now is a path. There are two

differences, however: (1) E(x1, . . . , xk) consists of k nested chains of elements

(corresponding to a1, . . . , ak) rather than just two; and (2) the path begins with the

prefix /c1/c2 . . . /c`.

4.4.2 Pattern matching for tree queries

As opposed to the filtering mode, pattern matching of all tree queries incurs high

space costs. For a query Q and a document D, we define the size of PMQ(D) to be

the number of distinct elements that occur in the matches in PMQ(D). We prove:

Theorem 24 Let Q be any basic twig query, which is a tree (i.e., has at least two
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leaves). Then, for every algorithm for PMQ and for every s ≥ 1, there exists a

document D, for which the size of PMQ(D) is at most s and on which the algorithm

uses at least Ω(s) bits of space.

This theorem too is proven via an MDS reduction from the tensor product problem.

We first prove the theorem for the special case Q = /a[b and c].

s1 s2 sm t1 t2 tma
Fig. 5. The document F (x, y).

The reduction Let n = m = s−1
2

(m,n are the lengths of x, y, resp.). The MDS

reduction is based on the following functions:

• r1
in(x) and r2

in(y) construct the index streams Tb and Tc, respectively, of the XML

document F (x, y) (see Figure 5). F (x, y) is the same for all (x, y), except for the

labeling of elements. When xi = 1, the corresponding element si is labeled ’b’,

and otherwise it is labeled ’e’. When yi = 1, the corresponding element ti is

labeled ’c’, and otherwise it is labeled ’f ’.

• r1
c constructs the index stream Ta of the document F (x, y), which consists of only

one tuple. Note that Ta is fixed and does not depend on the input, and therefore

DSS(r1
c ) = O(log n).

• rout: its input is a stream of matches, i.e., tuples of (a, b, c)-elements, from the

document E, and the output is a list of indices that correspond to the position

of the b and c elements in the input. Specifically, an input match (a, si, tj) is

translated on-the-fly to the output: “(x ⊗ y)i,j = 1”. Therefore, DSS(rout) =

O(log n).
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Claim 25 DSS(r1
in) = DSS(r2

in) ≤ log n.

PROOF. We describe algorithms A and B for r1
in and r2

in, resp. In order to output

the next tuple in Tb [Tc], A [B] advances the stream x [y] to the next set bit. The

corresponding tuple can be easily computed based on the position of that bit. If no

set bit is found in x [y], the algorithm creates a Tb.End [Tc.End] tuple.

It is easy to check that the index streams constructed are well-formed, i.e., sorted

by the “Begin” attribute, and that they represent the document F (x, y). Note also

that the size of PMQ(F (x, y)) is at most 2m + 1 = s, as required by the theorem.

The space needed for A [B] is O(log n) bits for keeping the current position in x

[y].

Proposition 26 (x ⊗ y)i,j = 1 iff the match (a 7→ a, b 7→ si, c 7→ tj) belongs to

PMQ(F (x, y)).

PROOF. (x ⊗ y)i,j = 1 if and only if xi = yj = 1. This means that in F (x, y)

the label of si is ’b’ and the label of tj is ’c’. The latter happens if and only if

(a 7→ a, b 7→ si, c 7→ tj) is a match of //a//b in E(x, y).

Since r1
c , r

1
in, r

2
in construct the index streams of F (x, y), it follows from the propo-

sition above that:

rout(PMQ(r1
c (ε), r

1
in(x), r2

in(y))) = rout(PMQ(F (x, y))) = x⊗ y

Therefore, by Corollary 5,

MDSS(PMQ) ≥ MDSS(x⊗y)−DSS(r1
in)−DSS(r2

in)−DSS(r1
c )−DSS(rout) ≥ n−3−O(log n) = Ω(s)
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In order to prove Theorem 24 for any tree query Q, we slightly change the reduc-

tion shown in the special case. Instead of the document F (x, y), built on-the-fly

(see Figure 5), now the document will be of the same structure and labels of Q,

except for two query leaves, which will be replaced with the nodes s1, . . . , sm and

t1, . . . , tm (as in the document F (x, y)).

5 The TMC model

In this section we present a new model of communication, the token-based mesh

communication model (TMC), which can be used to prove space lower bounds in the

MDS model. After investigating basic properties of protocols in the model, we use

them to prove lower bounds for three problems: reverse set disjointness (Theorem

7), delayed intersection (Theorem 12), and tensor product (Theorems 20,23). We

note that these lower bounds could have been proved directly through the MDS

model, without using the new TMC model. However, we believe that the TMC model

presents in an explicit way the various possible computations of a multiple data

stream algorithm, i.e., the various cursor configurations, and enables cleaner and

more modular proofs.

5.1 The TMC model

In the token-based mesh communication (TMC) model, there are n players, who

wish to jointly compute a function f on a shared input x ∈ {0, 1}m. The players

are placed on nodes of a network, whose underlying topology is a d-dimensional

mesh. Specifically, the set of nodes is V = [m1]× [m2]× · · · × [md], where [mi] =

{0, 1, . . . , mi}. Every node (i1, i2, . . . , id) has an outgoing edge to (i1, i2, . . . , id)+
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ej , for all j for which ij < mj . Here, ej is the d-dimensional j-th standard unit

vector.

The input x ∈ {0, 1}m is viewed as a concatenation of d strings x1, x2, . . . , xd,

where xi ∈ {0, 1}mi . Node (i1, i2, . . . , id) receives (b1,i1 , b2,i2 , . . . , bd,id), where bj,k

is the k-th bit in xj , for 1 ≤ k ≤ mj , and is 0, for k = 0.

The communication in the network is not in broadcast, as is in the more standard

models, but is token-based. At each round of the protocol, a single player holds a

“token”, indicating she is the only one who can send messages in the round. She

sends a single private message to one of her outgoing neighbors. The neighbor

who receives the message holds the token at the next round. The communication

always starts at the node s = 0d (the “start player”) and ends at the node t =

(m1,m2, . . . , md) (the “end player”). All players share a write-only output stream,

to which only a player who holds the token can write. The stream should contain

the value f(x) by the end of the protocol.

The max communication cost of a protocol P in this model is the length of the

longest message sent during execution of P on the worst-case choice of input x.

Figure 6 shows a 2-dimensional mesh, with m1 = m2 = n.

The following shows a reduction from the TMC model to the MDS model:

Lemma 27 (Reduction lemma) Let f : {0, 1}m1×{0, 1}m2×· · ·×{0, 1}md → B.

If there exists an algorithm that computes f in the MDS model with S bits of space,

then there exists a protocol that computes f in the d-dimensional TMC model whose

max communication cost is at most S bits.

PROOF. Let A be an algorithm that computes f in the MDS model with S bits
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(n,0) (n,1) (n,2) ...  (n,n-1) (n,n) … … … …  … … … … … (i+1,j)  … … … … … (i,j) (i,j+1) … … … … … …  … … (1,0) (1,1) (1,2) …  (1,n-1) (1,n) (0,0) (0,1) (0,2) …  (0,n-1) (0,n)  
Fig. 6. A 2-dimensional mesh, with m1 = m2 = n, in the TMC model.

of space. The input of A is d streams {x1, . . . ,xd} of sizes {m1, . . . , md}, respec-

tively. In the TMC model we have a d-dimensional mesh, where every dimension

corresponds to one stream. Each setting of the d cursors in the MDS model corre-

sponds to one player in the d-dimensional mesh. We now describe a protocol P that

computes f in the TMC model. At the beginning, player s (i.e., 0d) holds the token,

and it has received no input (by definition). It starts to execute the algorithm A.

Whenever A moves a cursor, say the cursor of stream xi, the player who currently

holds the token, denoted as (i1, i2, . . . , id), sends the token together with the cur-

rent content of the memory of A (S bits) to player (i1, i2, . . . , id) + ei. The player

who receives the token and the memory-content continues the execution of A at the

same way. Whenever A writes to the output stream, the simulating player does the

same. Player t is the last to execute A, and it finishes the simulation. Note that P

correctly computes f (because A does) and its max communication is S.

5.2 Properties of the TMC model

We now investigate some basic properties of the TMC model, which are crucial to

our lower bound proofs. For simplicity of exposition, we focus on 2-dimensional
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meshes, yet the definitions and results can be easily extended to d-dimensional

meshes as well.

Let P be a protocol that computes f(x, y) in the 2-dimensional TMC model.

Definition 28 (Communication path) The communication path of protocol P on

input (x, y), denoted PATH(x, y), is the sequence of players {(i, j)} through whom

the token passes during the execution of P on (x, y).

The following fact states that all communication paths must pass through the diag-

onals i + j = C:

Proposition 29 ∀1 ≤ C ≤ min(m1,m2) and ∀x, y, ∃ 0 ≤ i ≤ C, such that

(i, C − i) ∈ PATH(x, y).

PROOF. The diagonal i + j = C is an (s, t)-cut, and thus any path from s to t

crosses this cut.

Definition 30 (Passing set) The passing-input-set of protocol P w.r.t. player (i, j),

denoted PASS(i, j), is the set of all inputs (x, y) s.t. (i, j) ∈ PATH(x, y).

Let PREFi(x) denote the first i bits of x, and let SUFFi(x) denote the last i bits of x,

for 0 ≤ i ≤ m1. For i = m1 + 1, SUFFm1+1(x) is 0 ◦ x. (The same goes for m2.)

Let player (i, j) ∈ PATH(x, y). MSGi,j(x, y) denotes the message sent by player

(i, j) during the execution of P on input (x, y). SUCCi,j(x, y) denotes the successor

of (i, j) in PATH(x, y).

Definition 31 (Packet) Let player (i, j) ∈ PATH(x, y). The packet sent by (i, j),

denoted PACKETi,j(x, y), is defined as the combination of MSGi,j(x, y) and SUCCi,j(x, y).
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Definition 32 (Prefix set) The passing-prefix-set of protocol P w.r.t. player (i, j),

denoted PREF(i, j), is the set: {(PREFi(x), PREFj(y)) | (x, y) ∈ PASS(i, j)}

Proposition 33 |PASS(i, j)| = |PREF(i, j)| · 2(m1−i)+(m2−j)

PROOF. For every (α, β) ∈ PREF(i, j), α ∈ {0, 1}i and β ∈ {0, 1}j , there are

2(m1−i)+(m2−j) different continuations to inputs in PASS(i, j).

The following lemma states that the execution (i.e., packets and output) from any

given node on the communication path depends solely on the message received by

that node and on the input bits from that node and forward. Given that, the future

execution is conditionally independent of the history, i.e., of previous messages and

input bits.

Lemma 34 (History independence) Let (x, y), (x′, y′) ∈ PASS(i, j). If PACKETi,j(x, y) =

PACKETi,j(x
′, y′), SUFFm1−i+1(x) = SUFFm1−i+1(x

′), and SUFFm2−j+1(y) = SUFFm2−j+1(y
′),

then the output written from the time player (i, j) sent his packet and until the end

is the same on both inputs.

PROOF. Let PATHk(x, y) denote the k-th player in PATH(x, y), for 0 ≤ k ≤ m1 +

m2. Note that, by the structure of the mesh, (i, j) = PATHi+j(x, y) = PATHi+j(x
′, y′).

We now show that from the time player (i, j) sends his packet and until the end, the

computation (i.e., packets) on both input pairs is exactly the same. It then follows

that the output written during this time is also the same.

Specifically, we prove by induction on k, k = i+j, . . . , m1+m2, that (i) PATHk(x, y) =

PATHk(x
′, y′); and if (i′, j′) is the k-th player in both communication paths, then (ii)

(i′, j′) sends the same packet on both input pairs.
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For k = i + j, PATHi+j(x, y) = PATHi+j(x
′, y′) = (i, j), and we know that

PACKETi,j(x, y) = PACKETi,j(x
′, y′). By the induction assumption, for any k <

(m1 + m2), PATHk(x, y) = PATHk(x
′, y′) = (i′, j′), where i′ ≥ i and j′ ≥ j, and

PACKETi′,j′(x, y) = PACKETi′,j′(x
′, y′). We prove for k+1. (i) Since PACKETi′,j′(x, y) =

PACKETi′,j′(x
′, y′), and it contains the destination node, then PATHk+1(x, y) =

PATHk+1(x
′, y′). Let (p, q) be the player at position k + 1 in both communication

paths. (ii) The packet that player (p, q) sends depends only on the message it has

received from (i′, j′) (and it is the same in both cases), and on its input bits, which

are xp or x′p, and yq or y′q. Since p ≥ i and q ≥ j, and both inputs have the same

(m1− i+1) and (m2− j +1) suffixes, then xp = x′p and yq = y′q. Therefore player

(p, q) sends the same packet.

5.3 Lower bound for Reverse set disjointness

We now use the TMC model to prove the space lower bound for reverse set disjoint-

ness in the MDS model.

Theorem 7 (restated) For any n ≥ 7, the space complexity of RDISJn in the MDS

model is at least n− log(n + 1)− 3.

PROOF. We will prove that any 2-dimensional TMC protocol computing the re-

verse set disjointness problem has a max communication cost of at least m =

n− log(n + 1)− 3 bits. Using Lemma 27, this would imply the same lower bound

in the MDS model.

To reach a contradiction, we assume there exists a protocol P that solves RDISJn

with max communication of m bits, where m < n− log(n + 1)− 3. We will prove
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that there must be an input on which P errs.

According to Proposition 29, all communication paths go through the diagonal

i + j = n. There are 22n different inputs (x, y), which means there are 22n com-

munication paths, while there are n + 1 players in this diagonal, i.e., players of the

form (i, n− i). Therefore, by the pigeonhole principle, there exists 0 ≤ i ≤ n, s.t.

|PASS(i, n− i)| ≥ 22n

n+1
. We call this player (i, n− i) the congested player.

Claim 35 Let (i, n− i) be the congested player of P . Then |PREF(i, n− i)| ≥ 2n

n+1

PROOF. By Proposition 33, |PREF(i, n− i)| = |PASS(i,n−i)|
2n ≥ 22n

2n(n+1)

Let (x, y) be any input in PASS(i, n− i). Consider the i-th bit of x and the (n− i)-

th bit of y. There are four possible settings for these bits, inducing a partition of

PREF(i, n − i) into four sets. By the pigeonhole principle, one of these sets is of

size at least 2n−2

n+1
. Call this set A. Since the message sent by the congested player

(i, n−i) has at most m bits, where m < n−log(n+1)−3, and since this player has

only two neighbors, the number of possible packets it can send is less than 2·2n−3

n+1
.

Since there are 2n−2

n+1
different prefix pairs in A, then by the pigeonhole principle,

there exist two pairs of prefixes (α′, β′), (α′′, β′′) ∈ A s.t. PACKETi,n−i(α
′, β′) =

PACKETi,n−i(α
′′, β′′), and α′i = α′′i , and β′n−i = β′′n−i.

The above prefix pairs (α′, β′) and (α′′, β′′) differ in at least one bit. W.l.o.g., we

assume this is the k-th bit in α′ and α′′, where k < i. W.l.o.g., assume α′k = 1 and

α′′k = 0. We now define two different inputs for P , on one of which P must err. Let

γ = 0n−i and δ = 0i−k ◦ 1 ◦ 0k−1.

Claim 36 P outputs the same answer on the two inputs: (α′ ◦ γ, β′ ◦ δ) and (α′′ ◦
γ, β′′ ◦ δ).
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PROOF. First examine the execution (and possible output) until player (i, n − i)

sends its packet. Since the length of α′ and α′′ is i, and the length of β′ and β′′ is

n − i, then there is no j s.t. both (α′ ◦ γ)j and (β′ ◦ δ)R
j belong to the prefix pair

(α′, β′) (the same goes for α′′ and β′′). This implies that the value of RDISJn on

these two input pairs is not necessarily 1. In addition, recall that α′k = 1, implying

that the value of RDISJn on (α′ ◦ γ, β′ ◦ δ) is not necessarily 0. Therefore, in order

to determine RDISJn(α′ ◦ γ, β′ ◦ δ), one needs to know (β′ ◦ δ)R
k = δR

k , which is

unavailable yet. Hence the output bit on (α′ ◦ γ, β′ ◦ δ) was not written yet.

Now recall that PACKETi,n−i(α
′, β′) = PACKETi,n−i(α

′′, β′′), and that the (n− i, i)-

suffix pairs (i.e., (α′i ◦ γ, β′n−i ◦ δ)) are the same for the two executions. Therefore,

by Lemma 34, P outputs the same value 5 .

Claim 37 RDISJn(α′ ◦ γ, β′ ◦ δ) 6= RDISJn(α′′ ◦ γ, β′′ ◦ δ).

PROOF. Since γ is all zero, and the only ’1’ bit in δ is in position (i + 1 − k),

which is the k-th bit in δR, then RDISJn(α′ ◦ γ, β′ ◦ δ) = 1 iff α′k is 1. Similarly,

RDISJn(α′′ ◦ γ, β′′ ◦ δ) = 1 iff α′′k is 1. Recall that α′ and α′′ differ in the k-th bit.

Therefore, only one of RDISJn(α′ ◦ γ, β′ ◦ δ) and RDISJn(α′′ ◦ γ, β′′ ◦ δ) equals 1.

Claims 36 and 37 prove that there is no protocol that solves RDISJn with less than

n− log(n + 1)− 3 bits of space. This concludes the proof of Theorem 7.

5 We claimed that the output bit was not written by the time player (i, n − i) sends its

packet only on (α′ ◦ γ, β′ ◦ δ). Note that it possible that P on (α′′ ◦ γ, β′′ ◦ δ) has already

written the output bit before player (i, n− i) sends its packet. However, since P on the two

inputs writes the same output after player (i, n− i) sends its packet, and it has to write the

output bit for (α′ ◦ γ, β′ ◦ δ), it means that P writes two output bits on (α′′ ◦ γ, β′′ ◦ δ), and

therefore obviously errs. Hence we can discard this case
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5.4 Lower bound for delayed intersection

Theorem 12 (restated) For any n ≥ 7, the space complexity of DINTn in the MDS

model is at least n− log(n + 1)− 3.

PROOF. We will prove that any 2-dimensional TMC protocol computing the de-

layed intersection problem has a max communication cost of at least m = n −
log(n + 1) − 3 bits. Using Lemma 27, this would imply the same lower bound in

the MDS model.

To reach a contradiction, we assume there exists a protocol P that solves DINTn

with max communication of m bits, where m < n− log(n + 1)− 3. We will prove

that there must be an input on which P errs.

According to Proposition 29, all communication paths go through the diagonal i +

j = n. There are 23n+1 different inputs (s, t, u, v), which means there are 23n+1

communication paths, while there are n+ 1 players in this diagonal, i.e., players of

the form (i, n− i). Therefore, by the pigeonhole principle, there exists 0 ≤ i ≤ n,

s.t. |PASS(i, n− i)| ≥ 23n+1

n+1
. We call the player (i, n− i) the congested player.

By Proposition 33, |PREF(i, n − i)| = |PASS(i,n−i)|
22n+1 ≥ 2n

n+1
(note that here m1 =

2n,m2 = n + 1). Now consider the i-th bit of s and the (n − i)-th bit of u in

any input in PREF(i, n− i). There are four possible settings for these bits, inducing

a partition of PREF(i, n − i) into four sets. By the pigeonhole principle, one of

these sets is of size at least 2n−2

n+1
. Call this set A. Since the message sent by the

congested player (i, n − i) has at most m bits, where m < n − log(n + 1) − 3,

and since this player has only two neighbors, the number of possible packets it

can send is less than 2·2n−3

n+1
. There are 2n−2

n+1
different prefix pairs in A, therefore
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by the pigeonhole principle, there exist two prefix pairs (α′, β′), (α′′, β′′) ∈ A s.t.

PACKETi,n−i(α
′, β′) = PACKETi,n−i(α

′′, β′′), and α′i = α′′i , and β′n−i = β′′n−i.

We now define two different inputs for P , on one of which P must err. The above

prefix pairs (α′, β′) and (α′′, β′′) differ in at least one bit. There are two cases, based

on the position of this bit:

• First assume this is the k-th bit in α′ and α′′, where k < i. W.l.o.g., assume

α′k = 1. We will show that P did not output the k-th bit of DINTn, denoted

DINTn[k], on (α′, β′) by the time player (i, n−i) sends its packet. For every input

(s, t, u, v) s.t. PREFi(s ◦ t) = α′ and PREFn−i(u ◦ v) = β′, DINTn[k](s, t, u, v) =

(sk ∧ v) = (α′k ∧ v) = v. Note that v is the n + 1-st bit in (u ◦ v) and the length

of β′ is n − i ≤ n. Therefore, v is not a part of β′, implying that after seeing

(α′, β′), no algorithm can determine v = DINTn[k](s, t, u, v).

Let γ ∈ {0, 1}2n−i, δ ∈ {0, 1}i × {1}. We next show that P must output the

same answer for DINTn[k] on the two inputs: (α′ ◦ γ, β′ ◦ δ) and (α′′ ◦ γ, β′′ ◦ δ).

Recall that PACKETi,n−i(α
′, β′) = PACKETi,n−i(α

′′, β′′), and that the suffixes

α′i ◦ γ and β′n−i ◦ δ are the same for the two executions. Therefore, by Lemma

34, P outputs the same value.

On the other hand, we show that DINTn[k](α′ ◦ γ, β′ ◦ δ) 6= DINTn[k](α′′ ◦
γ, β′′ ◦ δ). This would imply that P errs on at least one of the inputs. Recall that

DINTn[k](α′◦γ, β′◦δ) = (α′k∧v) = α′k, and similarly DINTn[k](α′′◦γ, β′′◦δ) =

α′′k. Since α′k 6= α′′k, then the corresponding value of DINTn[k] is also different.

• The proof for the other case, where the two prefix pairs (α′, β′) and (α′′, β′′)

differ in the k-th bit in β′ and β′′, is very similar. Either β′k = 1 or β′′k = 1. For

example, assume the former. The value of DINTn[n + k] on inputs whose prefix

pair is (α′, β′) depends on the k-th bit of t, which is not available at the time the

algorithm reads (α′, β′). Hence, the protocol P can not output DINTn[n + k] on
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(α′, β′) by the time player (i, n− i) sends its packet.

We choose a suffix pair (γ, δ) for the two prefixes, such that the k-th bit in t,

i.e., the n − i + k-th bit in γ, is set. DINTn[n + k] is different on the two inputs

(α′ ◦ γ, β′ ◦ δ) and (α′′ ◦ γ, β′′ ◦ δ).

5.5 Lower bound for tensor product

We start with a proof of the lower bound for the tensor product of two vectors:

Theorem 20 (restated) The space complexity of computing x⊗ y (x and y are of

lengths m and n, respectively) in the MDS model is at least min(m,n)− 3 bits.

PROOF.

We prove the lower bound in the TMC model. The corresponding lower bound in

the MDS model would then follow from the reduction lemma (Lemma 27). To reach

a contradiction, we assume there exists a protocol P that computes x⊗ y with max

communication of s bits, where s < min(m, n)−3. We shall prove that there exists

an input (x, y) on which P must err.

We consider only inputs in which the last bit is set. The number of inputs is there-

fore 2m+n−2. For every input (x, y), the communication path goes either through

player (m,n− 1) or through (m− 1, n). This induces a partition of the inputs into

two sets: PASS(m, n − 1), PASS(m − 1, n). By the pigeonhole principle, one of

these sets is of size at least 2m+n−2

2
. W.l.o.g., we assume it is PASS(m,n− 1). There

are 2n possible values for y, which induces a partition of PASS(m,n − 1) into 2n

sets. By the pigeonhole principle, one of these sets is of size at least 2m+n−2

2·2n . Call

this set A. Since the message sent by player (m,n − 1) has at most s bits, where
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s < min(m,n) − 3, then by the pigeonhole principle, there exist two pairs of in-

puts (x′, y), (x”, y) ∈ A s.t. PACKETm,n−1(x
′, y) = PACKETm,n−1(x”, y). x′ and x”

differ in at least one bit, let it be the k-th bit, k < m.

Since yn has not been read yet, the results of (x⊗ y)∗,n could not have been written

to the output stream yet. Recall that x′m = x′′m = 1, yn = 1, and PACKETm,n−1(x
′, y) =

PACKETm,n−1(x
′′, y). Therefore, player (m,n) writes the same output for the two

inputs: (x′, y) and (x′′, y). But since x′k 6= x′′k, then (x′ ⊗ y)k,n 6= (x′′ ⊗ y)k,n.

This proves that there is no algorithm that computes x⊗y with less than min(m,n)−
3 bits of space.

We now extend the proof to deal with k ≥ 2 vectors:

Theorem 23 (restated) Given k vectors x1, x2, · · · , xk of dimensions m1, . . . ,mk,

respectively, the space complexity of computing x1⊗x2⊗· · ·⊗xk in the MDS model

is at least
∑k

i=1 mi −maxi{mi} − log k − k + 1.

PROOF. We give a proof sketch, since it is an extension of the above proof for

two vectors. We assume there exists a protocol P that computes x1⊗ · · · ⊗ xk with

max communication of s bits, where s <
∑k

i=2 mi − log k − k + 1. We shall prove

that there must be an input on which P errs.

We consider only input vectors in which the last bit is set (2
∑k

i=1
(mi−1) inputs).

The last position of the communication path, before reaching player (m1, · · · , mk),

induces a partition of the inputs into k sets. One of these sets is of size at least

2

∑k

i=1
(mi−1)

k
. W.l.o.g., we assume it is PASS(m1 − 1,m2, · · · ,mk). There are 2m1−1

possible values for x1, which induces another partition, in which one of the sets is

of size at least 2

∑k

i=2
(mi−1)

k
. Call this set A. By the pigeonhole principle, there exist

43



two inputs I1 = (x1, x
′
2, · · · , x′k) and I2 = (x1, x”2, · · · , x”k) in A, s.t. the packet

sent by player (m1 − 1,m2, · · · ,mk) is the same on these inputs. Therefore, the

last player writes the same output for the two inputs, but since I1 and I2 differ in at

least one bit, then their tensor products also differ in the corresponding entry.

6 Algorithms

In this section we present our upper bounds for evaluating twig queries, for the

three evaluation modes.

6.1 The filtering algorithm

We now present a constant space filtering algorithm for queries that do not contain

the (//)(/) pattern. The algorithm, presented in Algorithm 1) computes FILTERQ(D)

by trying to find a match of Q in D. The basic procedure used in the algorithm is

NextMatchUnderSelf(u, eu), which gets as input a query node u and the element

eu, on which the cursor of the stream Tu is currently positioned 6 , and returns true

if and only if the sub-query Qu has a match in the sub-document Deu . Moreover, if

such a match exists, the procedure advances the stream cursors to the positions that

indicate the match.

NextMatchUnderSelf works by recursively searching for matches of the sub-queries

rooted at the children of v. To this end, it calls the procedure NextMatchUnderParent(v,

eu). The latter gets as input a query node v and the element eu, on which the cursor

6 As mentioned in Section 3, we use Tu to denote the cursor on the stream corresponding

to u. This way, if two query nodes u, v share the same label, then Tu and Tv denote two

separate cursors on the same stream.
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of Tu (u = parent(v)) is currently positioned, and returns true if and only if Qv has

a match in Dev , where ev is a descendant of eu whose relationship with eu matches

the axis of v. This procedure works by repeatedly advancing the cursor of Tv, until

finding the desired element ev. If a match is found, the cursors of the corresponding

streams are advanced to positions that indicate the match.

The axis pattern of Q allows the algorithm to decide locally whether an element

participates in a match or not, without having to remember elements for later use.

The intuition is that a child-axis node can be matched only to elements of the same

level, since all of its query-ancestors are also child-axis nodes. Therefore recursions

in the document, which are the cause of difficulty in the pattern //a/b, are irrelevant

for this case.

6.1.1 Example run

In order to illustrate how the filtering algorithm works, we provide an example run.

Consider the document and the query presented in Figure 7. A subscript is added

to each element to indicate the order in the index stream. Initially, the three cursors

point to (a1, b1, c1). NextMatchUnderSelf calls NextMatchUnderParent(a, root(D)),

which searches for an a element that has b and c descendants. a1 is the first element

checked. Now Tb and Tc are advanced separately, until the cursors point to b and c

elements that are descendants of a1, or begin after a1 ends. Since b1 is not nested

within a1, Tb is advanced to b2, which matches the required axis. However, c1 be-

gins after a1 ends, and therefore a1 is rejected as a possible match to a, and Ta

is advanced to a2. Now the three cursors point to (a2, b2, c1). Again, we look for

b and c descendants of a2. b2 is not nested within a2, and Tb is advanced to b3,

which matches the required axis. c1 is a already a descendant of a2. Therefore both
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Algorithm 1 Filtering algorithm for queries without (//)(/).
1: function FILTER(Q, D)

2: return NextMatchUnderSelf(root(Q), root(D))

3: end function

1: function NEXTMATCHUNDERSELF(u, eu)

2: for every child v of u do

3: if (!NextMatchUnderParent(v, eu)) then

4: return false

5: end if

6: end for

7: return true

8: end function

1: function NEXTMATCHUNDERPARENT(v, eu)

2: ev := Tv.ReadElement()

3: while (ev != Tv.End) and (ev.Begin < eu.End) do

4: if (relationship between ev and eu matches axis(v)) and

(NextMatchUnderSelf(v, ev)) then

5: return true

6: end if

7: Tv.Advance()

8: ev := Tv.ReadElement()

9: end while

10: return false

11: end function

calls to NextMatchUnderParent(b, a2) and NextMatchUnderParent(c, a2)

return true, which means that NextMatchUnderParent(a, root(D)) returns true.

Filter(Q) returns true and the three cursors point to (a2, b3, c1), which indicate the
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match found. $b1a1 a2 c1b2 b3 a3
$ab c

Fig. 7. An example XML document (right) and query (left).

6.1.2 Complexity analysis

Space complexity:

Proposition 38 Let Q be a basic twig query that does not contain the (//)(/) pattern.

Then, the space complexity of the algorithm Filter(Q,D) is Õ(1).

PROOF. The recursion depth of the algorithm is equal to the query depth. Each

level requires space for storing O(1) document elements. Therefore, the space com-

plexity is Õ(1).

Time and I/O complexity: The time and I/O complexity of the algorithm are both

linear in the length of the input streams. Note that the I/O complexity may be sub-

stantially decreased by using B+ trees over the index streams, and ”ForwardTo(pos)”

methods in the NextMatchUnderParent method, similarly to previous algo-

rithms (e.g., see [19]). However, since the focus of this research is the memory re-

quirements, and it is quite simple to integrate these I/O saving methods, we present

here the simplified version.
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6.1.3 Correctness analysis

We now provide a full analysis of the algorithm’s correctness:

Theorem 39 Let Q be any basic twig query, which does not contain the (//)(/)

pattern. Then, the algorithm Filter(Q,D) returns true if and only if there exists at

least one match of Q in D.

In order to prove Theorem 39, we need to show that the algorithm is both sound

(returns true, only if a match exists) and complete (if a match exists, returns true).

Cursor configurations

A notion that will play a crucial role in our analysis is cursor configurations. We

denote by Q and D any basic twig query and any document, respectively. Let u

be a query node. A Qu-cursor configuration (or Qu-configuration, in short) is a

setting of the cursors {Tv}v∈Qu
7 . For a Qu-configuration C and for a node v ∈ Qu,

C[v] denotes the position of the cursor Tv as specified by C. We sometimes abuse

notation and think of C[v] as the document element pointed by this cursor.

A Qu-configuration can be viewed as a mapping from Qu to elements of D that

preserves label matches. If this mapping is a match, we say that the configuration

induces a match.

Let C1, C2 be two Qu-configurations. C1 is said to dominate C2, denoted C1 º C2,

if for every v ∈ Qu, C1[v] ≥ C2[v]. As stream cursors move only in the forward di-

rection, subsequent configurations encountered during an execution of an algorithm

always dominate one another.

7 We slightly abuse notation, and use Tv to denote both the stream Tlabel(v) and the cursor

on this stream corresponding to v.
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The Qu-configuration at the time a function f is called is the starting Qu-configuration

of f . The Qu-configuration when f returns is called the ending Qu-configuration of

f . By the above, the ending configuration always dominates the starting configura-

tion.

We next analyze the main subroutine, NextMatchUnderSelf, and show it is sound

and complete. It is easy to verify that whenever NextMatchUnderSelf(u, eu) is

called, then eu is the element on which the cursor Tu is currently positioned.

Soundness

The soundness of Filter(Q,D) will follow from the soundness of the function NextMatchUn-

derSelf:

Lemma 40 (Soundness) If NextMatchUnderSelf(u, eu) returns true, then its end-

ing Qu-configuration induces a match of Qu in Deu .

PROOF. We prove the lemma by induction on k = height(u). The base case,

k = 0, corresponds to a leaf u. In this case the function always returns true, and

indeed the mapping u 7→ eu is a trivial match of Qu in Deu . The ending Qu-

configuration equals in this case the starting Qu-configuration. The latter induces

the trivial match, by assumption.

Assume that the lemma holds for all nodes of height at most k. Let u be a node of

height k+1. Since the function returns true, then also the calls to NextMatchUnderParent(v,

eu), for every child v of u, return true. Consider one such child v.

Since NextMatchUnderParent(v, eu) returns true, the function must have found an

element ev that satisfies the following: (1) the structural relationship between ev

and eu matches axis(v); and (2) the function NextMatchUnderSelf(v, ev) returns
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true. By the induction hypothesis, the latter implies that there is a match φv of Qv

in Dev and that the ending Qv-configuration of the call to NextMatchUnderSelf(v,

ev) induces this match.

We can now define a match φu of Qu in Deu as follows: (1) φu(u) = eu; (2) for ev-

ery child v of u and for every node w ∈ Qv, φu(w) = φv(w). As each node in Q has

its own separate cursor, then the ending Qu-configuration of NextMatchUnderSelf(u,

eu) consists of the ending Qv-configurations of NextMatchUnderParent(v, eu), for

each child v of u. The latter induce the matchings {φv}v is a child of u and there-

fore the ending Qu-configuration induces the matching φu.

Completeness

The completeness of Filter(Q,D) follows from the following lemma:

Lemma 41 (Completeness) Suppose Q does not contain the (//)(/) pattern and let

C be the starting Qu-configuration of NextMatchUnderSelf(u, eu). If there exists a

Qu-configuration C ′ º C that induces a match of Qu in Deu , then NextMatchUnderSelf(u,

eu) returns true.

We assume from now on that Q does not contain the (//)(/) pattern. The following

propositions are a key to proving the completeness lemma:

Proposition 42 Let φ be a match of Q in D. Then, for every child-axis node u,

depth(φ(u)) = depth(u).

The proof is straightforward by induction on depth(u).

Proposition 43 If during the execution of Filter(Q,D), NextMatchUnderSelf(u, eu)

is called with a child-axis node u, then depth(eu) = depth(u).
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PROOF.

We prove by induction on k = depth(u). The base case, k = 0, corresponds to the

query root. In this case the function NextMatchUnderSelf(u,*) is only called with

the document root as its second parameter, and indeed its depth is 0.

Assume that the lemma holds for all nodes of depth at most k. Let u be a node

of depth k + 1. The function NextMatchUnderSelf(u,eu) can only be called from

NextMatchUnderParent(u, ev), where ev ∈ Tv and v = parent(u) in Q, and only

if eu is a child of ev. u is a child-axis node, therefore all of its ancestors are too

(by the definition of Q). Since NextMatchUnderParent(u, ev) can only be called

from NextMatchUnderSelf(v, ev), then by the induction hypothesis, depth(ev) =

depth(v) = k, which proves that depth(eu) = k + 1 (because eu is a child of ev).

PROOF. [Proof of Lemma 41] We prove the lemma by induction on k = height(u).

For k = 0, u is a leaf. In this case the function always returns true.

Suppose that the lemma holds for all nodes of height at most k. Consider a node

u of height k + 1. NextMatchUnderSelf(u, eu) returns true only if the calls to

NextMatchUnderParent(v, eu), for each child v of u, return true. Consider such

a child v, then.

Let Cv be the restriction of C to Qv. Note that Cv is the starting Qv-configuration

of NextMatchUnderPa- rent(v, eu), even if v is not the first child to be processed.

This is because a call to NextMatchUnderParent(v′, eu), for any other child v′ of u,

cannot change cursors corresponding to nodes in Qv.

Let C ′
v be the restriction of C ′ to Qv. C ′

v induces a match of Qv in De′v , where

e′v = C ′[v]. Note that e′v ∈ Deu and its structural relationship with eu matches
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axis(v).

Since C ′ dominates C, then also C ′
v dominates Cv. It follows that Cv[v] precedes

(or equals) e′v in the stream Tv. When calling NextMatchUnderParent(v, eu), the

function enumerates the elements ev on the stream Tv, starting with Cv[v]. We next

show that the enumeration has to stop either at e′v or before in success.

If the enumeration stops at some ev that precedes e′v, then NextMatchUnderParent(v,

eu) returns true. So suppose the enumeration has not stopped at any of these nodes.

We would like to show it must stop at e′v.

Claim 44 Let C ′′
v be the Qv-configuration when the algorithm starts processing e′v,

i.e., when NextMatchUn- derParent(v, eu) reaches line 3 and the cursor Tv points

to e′v. Then, C ′′
v ¹ C ′

v.

Before we prove this claim, let us use it to conclude the proof of Lemma 41. Since

C ′′
v [v] = e′v and C ′′

v is dominated by C ′
v, which induces a match of Qv, then by

the induction hypothesis, the function NextMatchUnderSelf(v, e′v) returns true,

and so does its calling function NextMatchUnderParent(v, eu). We conclude that

NextMatchUnderParent(v, eu) returns true for all children v of u, and thus also

NextMatchUnderSelf(u, eu) returns true.

PROOF. [Proof of Claim 44] Suppose, to reach a contradiction, that C ′′
v is not

dominated by C ′
v. This implies that there exists a node b ∈ Qv s.t. C ′′

v [b] > C ′
v[b].

If there is more than one such node, we choose b to be the node, for which Tb

is the first to be advanced beyond C ′
v[b]. Let a be the parent of b in Q. Tb must

be advanced beyond C ′
v[b] during the execution of NextMatchUnderParent(b, e′′a),

where e′′a is some node in the stream Ta. Note that at the time Tb is advanced beyond

C ′
v[b], the cursor Ta points to e′′a. By the choice of b, the position of e′′a in the stream
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Ta is at most C ′
v[a], i.e., e′′a.Begin ≤ C ′

v[a].Begin.

There are two possible positions for e′′a in the document: (1) e′′a.End < C ′
v[a].Begin,

or (2) e′′a is an ancestor of (or equals) C ′
v[a]. We prove that both lead to a contradic-

tion.

Consider the first option, i.e., e′′a.End < C ′
v[a].Begin. C ′

v[b] is nested within C ′
v[a]

since C ′ induces a match. Therefore, e′′a.End < C ′
v[b].Begin, which means that the

condition of the while loop in NextMatchUn- derParent(b, e′′a) is not satisfied, and

the function could not advance Tb beyond C ′
v[b], in contradiction to our assumption.

Consider then the second option, i.e., e′′a is an ancestor of (or equals) C ′
v[a]. There

are two sub-cases here. (i) a is a child-axis node and e′′a 6= C ′
v[a], (ii) a is a

descendant-axis node, or (iii) e′′a = C ′
v[a]. In case (i), e′′a is an ancestor of C ′

v[a]

and therefore depth(e′′a) < depth(C ′
v[a]). Since C ′ induces a match, then accord-

ing to Proposition 42, depth(C ′
v[a]) = depth(a), and thus depth(e′′a) < depth(a).

Therefore, based on Proposition 43, there is no call to NextMatchUnderSelf(a,e′′a),

which means there is no call to NextMatchUnderParent(b,e′′a), in contradiction to

the assumption.

To deal with cases (ii) and (iii), we first show that in both of them the relationship

between C ′
v[b] and e′′a matches axis(b). In case (ii), a is a descendant-axis node.

Hence, also b must be a descendant-axis node (Q does not have the (//)(/) pattern),

and since C ′ induces a match, then C ′
v[a] is an ancestor of C ′

v[b]. In addition, recall

that e′′a is an ancestor of (or equals) C ′
v[a]. Therefore, C ′

v[b] is a descendant of e′′a, and

thus the relationship between C ′
v[b] and e′′a matches axis(b). In case (iii), e′′a = C ′

v[a],

and thus the relationship between C ′
v[b] and e′′a matches axis(b), because C ′ induces

a match.
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Now consider the Qb-configuration when NextMatchUnderParent(b, e′′a) starts pro-

cessing C ′
v[b], i.e., when it reaches line 3 and the cursor Tb points to C ′

v[b]. The rela-

tionship condition in line 4 is satisfied, therefore the function calls NextMatchUnderSelf(b,C ′
v[b]).

Since we assumed b is the node in Qv whose cursor is the first to move beyond

C ′
v[b], then the current Qb-configuration is dominated by C ′

b (the restriction of C ′

to Qb). By the induction hypothesis, NextMatchUnderSelf(b,C ′
v[b]) returns true.

NextMatchUnderParent(b,e′′a) would also return true, without advancing Tb, in con-

tradiction to our assumption.

6.2 The full-fledged evaluation algorithm

In this section we extend the filtering algorithm we presented in Section 6.1, which

evaluates queries that do not contain the (//)(/) pattern, into a full-fledged evaluation

algorithm. The algorithm, presented in Algorithm 2, makes use of the NextMatchUn-

derSelf procedure from the filtering algorithm. The basic procedure of the algorithm

is Eval(Q, t, D), which gets as input a query tree Q, its output node t, and a doc-

ument D, and works by iteratively looking for a match of Q in D. For each match

found, it: (i) outputs the document element et that t is mapped to by this match, and

(ii) advances the cursor beyond et.

Algorithm 2 FFE algorithm for queries without (//)(/).
1: procedure EVAL(Q, t, D)

2: while (NextMatchUnderSelf(root(Q), root(D)) do

3: output Tt.ReadElement()

4: Tt.Advance()

5: end while

6: end procedure
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6.2.1 Complexity analysis

Space complexity:

Proposition 45 Let Q be a basic twig query that does not contain the (//)(/) pattern.

Then, the space complexity of the algorithm Eval is Õ(1).

PROOF. The function Eval is iteratively calling NextMatchUnderSelf , which

uses constant space (see Proposition 38). Therefore, the space complexity of Eval

is Õ(1).

Time and I/O complexity: The time and I/O complexity of the algorithm are both

linear in the length of the input streams. As we noted in Section 6.1.2, the I/O

complexity may be easily decreased.

6.2.2 Correctness analysis

In order to prove the correctness of the algorithm Eval, we need to show it is

sound (every element it outputs indeed matches t) and complete (every element

that matches t node is output).

Soundness

To prove soundness, let et be an element that Eval outputs. et must have been the

element pointed by the cursor Tt after the function NextMatchUnderSelf returned

true. By Lemma 40, the ending configuration of NextMatchUnderSelf (if it returns

true) induces a match φ of Q in D. Therefore, et = φ(t) indeed matches t.

Completeness
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Let et1 , et2 , ..., etk be the elements that match t, in document order. We prove that

Eval outputs them in this order.

PROOF. [Proof sketch] We show that the i-th call to NextMatchUnderSelf in line

2 of Eval advances the cursor configuration to the “minimum” match φ, for which

φ(t).Begin ≥ eti .Begin. Here, the “minimum” is w.r.t. the partial order induced by

the domination relation, and the existence of the minimum is guaranteed by the fact

Q does not have the (//)(/) pattern. Since we always move to the minimum match,

we are guaranteed not to miss a match of t with one of the eti’s.

We now examine the execution of Eval(Q,t,D), which consists of a sequence of

calls to NextMatchUnderSelf. Let Cs
i and Ce

i denote the starting and ending con-

figuration of the i-th call, respectively.

Proposition 46 ∀v ∈ Q: if v 6= t then Cs
i+1[v] = Ce

i [v], and for t: Cs
i+1[t] =

Ce
i [t] + 1.

Since every match m induces a configuration, we sometimes abuse notation and

think of m as the induced configuration. Let Mi denote the set of all matches m

of Q in D, for which m[t] ≥ eti . Recall that domination induces a partial order

over the space of configurations [matches]. Therefore, not every set of configura-

tions necessarily has a minimum (i.e., a configuration that is dominated by all other

configurations in the set). The following lemma describes a scenario, where such

a minimum always exists. The lemma will be used at the core of the completeness

arguments below:

Lemma 47 Suppose Q is a basic twig query, which does not contain the (//)(/)

pattern. Then ∀1 ≤ i ≤ k, Mi has a minimum, denoted mi.
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PROOF. In order to show Mi has a minimum, it suffices to prove that Mi has

only one match that does not dominate any other match in Mi. Suppose, to reach a

contradiction, Mi has two such matches, m1 and m2. We use m1 and m2 to define a

new match m3. For each v ∈ Q, m3[v] = min{m1[v],m2[v]}. Since m1,m2 ∈ Mi,

i.e., m1[t],m2[t] ≥ eti , then also m3 ∈ Mi. We would like to show that m3 induces

a match.

For each v ∈ Q, let mv
3 denote the restriction of m3 to Qv. We prove by induction on

height(v), that for every such v, mv
3 induces a match. The base case, height(v) = 0,

corresponds to leaves. In this case, mv
3 consists of the single element m3[v], which

by definition belongs to Tv, and thus matches v.

Assume, then, that for every node w of height k, mw
3 induces of a match of Qw. Let

v be a node of height k + 1. By the induction hypothesis, for every child w of v,

mw
3 induces a match of Qw. In order for mv

3 to induce a match, we need to make

sure that the structural relationship between m3[w] and m3[v] matches axis(w), for

every child w of v.

Fix one such child w. If m3[w] = m1[w] and m3[v] = m1[v], then since m1 induces

a match, the structural relationship between m3[w] and m3[v] matches axis(w).

The same thing happens if m3[w] = m2[w] and m3[v] = m2[v], due to the fact

m2 induces a match. Assume, then, that m3[w] = m1[w] < m2[w] and m3[v] =

m2[v] < m1[v] (the opposite case is handled analogously). We therefore have the

following situation: m2[v] precedes m1[v] in pre-order traversal. However, the child

or descendant m2[w] of m2[v] succeeds the child or descendant m1[w] of m1[v].

This can happen only if m1[v] is a descendant of m2[v]. We now split to two cases,

based on the axis of w.

• Case 1: axis(w) = //. In this case m1[w] is a descendant of m1[v] (since m1 in-
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duces a match), which in turn is a descendant of m2[v] (by the above). Therefore,

m3[w] is a descendant of m3[v], as desired.

• Case 2: axis(w) = /. In this case we have an element and its descendant, namely

m2[v] and m1[v], both of which match the same query node v. This can happen

only if v or one of its ancestors has a descendant axis. However, since w has a

child axis and is a child of v, neither v nor its ancestors are allowed to have a

descendant axis (recall that in our query no (//) is followed by a (/)). Therefore,

this case simply cannot happen.

We conclude that m3 ∈ Mi induces a match. By definition, both m1 and m2 dom-

inate m3, in contradiction to our assumption that neither of them dominates any

other configuration in Mi. The lemma follows.

Lemma 48 mi[t] = eti .

PROOF. Recall that for each m ∈ Mi, m[t] ≥ eti . In addition, eti ∈ FFEQ(D),

therefore ∃m ∈ Mi, s.t. m[t] = eti . Since mi is the minimum, then mi[t] = eti .

Lemma 49 Let 1 ≤ i ≤ k. If Cs
i [t] > eti−1

and Mi º Cs
i , then Ce

i = mi.

PROOF. Let us examine the starting configuration of the i-th call to NextMatchUn-

derSelf, i.e., Cs
i , and the set S of matches dominating it. By the lemma, Mi º Cs

i .

In addition, Cs
i [t] > eti−1

, therefore for any match m dominating Cs
i , m ∈ Mi.

Thus S = Mi. The next property of NextMatchUnderSelf shows that its ending

configuration is exactly mi.

Claim 50 Suppose that we call NextMatchUnderSelf(u, eu) with a starting Qu-

configuration C with C[u] = eu. Let MC denote the set of Qu-configurations that:
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(1) dominate C; (2) induce a match of Qu in Deu . If MC has a minimum, then

NextMatchUnderSelf(u, eu) returns true and its ending Qu-configuration is the min-

imum of MC .

PROOF. By the completeness property of NextMatchUnderSelf (Lemma 41), we

know that if MC is not empty, then the function returns true. By Lemma 40, the

ending configuration induces a match. We only need to prove that this match m

is the minimum of MC . Suppose, to reach a contradiction, that there is a different

match m′ ∈ MC , which is the minimum. Now assume the following setting: we

”end” all the streams right after the positions of m′, and call NextMatchUnderSelf

with the same starting configuration C. In this case MC = {m′}, and by the correct-

ness of NextMatchUnderSelf, the ending configuration is m′. Since the algorithm

reads the streams sequentially, then until reaching configuration m′, it can not dif-

ferentiate between the two settings, and therefore in our original setting the ending

configuration would also be m′ and not m.

Lemma 51 For each i ∈ [k]: (*) Cs
i [t] > eti−1

and (**) Mi º Cs
i .

PROOF. We prove by induction on i. The base case corresponds to the first call

to NextMatchUnderSelf, when the starting configuration is the beginning of all

streams. In this case both (*) and (**) trivially hold. Assume the lemma holds

for every i ≥ j. By the induction hypothesis, Cs
j [t] > etj−1

and Mj º Cs
j . By

Lemma 49, Ce
j = mj . Note that before the (j + 1)-th call only Tt is advanced,

and mj[t] = etj (Lemma 48), therefore Cs
j+1[t] > etj (*). mj ¹ Mj+1, since mj

is the minimum of Mj and Mj+1 ⊆ Mj . Note that mj is identical to Cs
j+1 except

for the position of Tt, which was advanced only by one element. It follows that

Cs
j+1 ¹ Mj+1 (**).
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Corollary 52 For each i ∈ [k]: Ce
i = mi.

The above corollary and Lemma 48 prove that for each i ∈ [k]: Ce
i [t] = eti , which

means that the i-th call to NextMatchUnderSelf outputs eti . Thus the FFE algorithm

outputs all eti ∈ FFEQ(D), and this concludes the proof of completeness.

6.3 Pattern matching upper bound

In this section we present an upper bound for computing all the matches of basic

twig queries.

We observe that existing algorithms (TwigStack [6] and TwigStackList [22])

use in some cases much more space than indicated by the output size lower bound.

When the query contains only descendant axes, both algorithms keep only elements

that are guaranteed to be in at least one match. However, when child axis nodes are

involved, the algorithms may keep many redundant intermediate results. To demon-

strate this sub-optimality, consider the query Q = /a[b and c], and the document D

depicted in Figure 8. There is no match for Q in D (i.e., the output size is 0),

but both TwigStack and TwigStackList keep the n paths (a1, b1), . . . , (a1, bn) in

memory until they reach their second phase, in which they merge path solutions.

b1 b2 bn a2a1 c
Fig. 8. A document demonstrating the sub-optimality of TwigStack and TwigStackList

on the query /a[b and c].

We now describe a minor modification to the known TwigStack algorithm. The
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new version uses O(output- Size) space in the worst-case, for queries which do not

consist of the (//)(/) pattern. Finding matching upper bounds for queries that contain

the (//)(/) pattern remains an open problem.

We suggest the following modification. Note that each child axis node in this frag-

ment can match only elements of the same depth (see Proposition 42). Therefore,

we can filter its stream to read only such candidate elements. Done that, we can

run twigstack as if all nodes have a descendant-axis. Now consider the example

document and query presented in Figure 8. The suggested modification will result

in automatically ignoring the element c, since its depth is not 2 (as in the query),

and therefore twigStack will not consider any of the bi elements as candidates for

a match, and therefore will not store them.

7 Conclusions

In this paper we initiated a systematic study of memory lower bounds for evaluat-

ing twig queries over indexed documents. We provide an analytical explanation for

the difficulty in handling queries with child-axis nodes, and also point out the over-

head incurred by algorithms that work in the pattern matching mode. We present

a new algorithm that avoids this overhead, and achieves dramatic improvements in

space for certain types of queries. We introduce a new model of communication

complexity, the TMC model, through which we can prove space lower bounds for

multiple data streams algorithms.
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A Filtering lower bound

In Section 4.2, we proved Theorem 6 for the special case Q = //a/b. We now

prove the more general result:

Theorem 6 (restated) Let a, b be any two labels, and let Q be any basic twig query

that contains the path segment //a/b. Furthermore, assume a 6= b and that a, b do

not appear elsewhere in Q. Then, for every algorithm for FILTERQ and for every

d ≥ 1, there exists a document of depth at most d − 1 + depth(Q), on which the

algorithm uses at least d−O(|Q| log(|Q| · d)) bits of space.

PROOF. We first characterize the structure of Q: a schematic illustration of Q is

presented in Figure A.1. The spinal path of Q is the path from the root of Q (f0) to

b. Every Ti, for i = 0, . . . , k [or i = a, b], represents all the subtrees rooted at the

children of fi [or a, b]. Ti is essentially a forest, and may be empty. Note that the

subtrees included in Ti can occur on either side of the spinal path.

Let n = d. We prove the theorem by showing an MDS reduction from the reverse-

set-disjointness problem (RDISJn) to FILTERQ. The MDS reduction is based on the

following functions:

• r1
in and r2

in construct the index streams Ta and Tb, respectively, of an XML doc-

ument D(x, y). The document structure, which is presented in Figure A.2, is as

follows. All edges denote parent-child relationships. f0, . . . , fk and T0, . . . , Tk

are exact copies of the corresponding elements in Q. Ta,i and Tb,i are an ex-

act copy of Ta and Tb, respectively, for i = 1, . . . , n. The only difference be-

tween documents of different (x, y) is the labels of the nodes s1, s2, . . . , sn and

t1, t2, . . . , tn. When xi = 1, the corresponding node si is labeled ’a’, and other-
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f1
fk

b

f0

a
T0T1

TkTaTb
Fig. A.1. A schematic illustration of a basic twig query that contains a unique “//a/b”.

wise it is labeled c’. When yi = 1, the corresponding node ti is labeled ’b’, and

otherwise it is labeled ’d’. ’c’ and ’d’ are any labels that do not appear in Q.

• r1
c , . . . , r

l
c construct the index streams of all the other labels in Q (except for Ta

and Tb), of the document D(x, y).

• rout(b) = b (note that the output of both RDISJn and FILTERQ is one bit). There-

fore DSS(rout) = 0.

Claim 53 DSS(r1
in) = DSS(r2

in) ≤ log n.

PROOF. We describe algorithms A and B for r1
in and r2

in, resp. In order to output

the next tuple in Ta [Tb], A [B] advances the stream x [y] to the next set bit. The

tuple created is a simple function of the position of this bit. Specifically, if the

position is i, then the index tuple of node si [ti] is added to Ta [Tb].

It is easy to check that the index streams constructed are well-formed, i.e., sorted

by the “Begin” attribute, and that they represent Ta and Tb of the document D(x, y).
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Fig. A.2. A schematic illustration of the document constructed by the reduction from

RDISJn to FILTERQ.

The space needed for A [B] is log n bits for keeping the current position in x [y].

Claim 54 ∀i, 1 ≤ i ≤ l : DSS(ri
c) = O(log(|Q| · n))

PROOF. Note that the document D(x, y) has a fixed structure independent of x

and y. In addition, the position of all the labels, except for a and b, is also fixed. It

follows that the index stream of any label ( 6= a, b) can be generated on-the-fly, based

on the position of the required tuple. The space needed to maintain this ”virtual”

position while generating the index stream is O(log(|Q| · n)) bits.

Lemma 55 RDISJn(x, y) = FILTERQ(D(x, y)).
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PROOF. First we assume that RDISJ(x, y) = 1. By definition, there exists some

index 1 ≤ i ≤ n, such that both xi and yR
i (i.e., yn+1−i) are 1. This means that in

D(x, y) the label of si is ’a’ and the label of tn+1−i is ’b’. Since tn+1−i is a child

node of si, since si is a descendant of fk, and since all other query nodes can be

matched, the value of FILTERQ(D(x, y)) is 1. The proof of the opposite direction

is similar, and relies on the fact that a and b do not appear elsewhere in Q, and

therefore can appear only in nodes s∗ and t∗.

Since (r1
in, r

2
in, r

1
c , . . . , r

l
c) construct the index streams of D(x, y), it follows that:

rout(FILTERQ(r1
in(x), r2

in(y), r1
c (ε), . . . , r

l
c(ε))) = FILTERQ(D(x, y)) = RDISJn(x, y)

Therefore, by Corollary 5,

MDSS(FILTERQ) ≥ MDSS(RDISJn)−DSS(r1
in)−DSS(r2

in)−Σl
i=1DSS(ri

c)−DSS(rout)

≥ n−O(|Q| log(|Q| · n)) = d−O(|Q| log(|Q| · d))

.
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