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Index Coding with Side Information

Ziv Bar-Yossef Yitzhak Birk T. S. Jayram Tomer Kol

Abstract—Motivated by a problem of transmitting supplemen-
tal data over broadcast channels (Birk and Kol, INFOCOM
1998), we study the following coding problem: a sender communi-
cates withn receiversR1, . . . , Rn. He holds an input x ∈ {0, 1}n

and wishes to broadcast a single message so that each receiverRi

can recover the bit xi. Each Ri has prior side informationabout
x, induced by a directed graphG on n nodes;Ri knows the bits
of x in the positions {j | (i, j) is an edge ofG}. G is known to
the sender and to the receivers. We call encoding schemes that
achieve this goalINDEX codes for{0, 1}n with side information
graph G.

In this paper we identify a measure on graphs, theminrank,
which exactly characterizes the minimum length of linear and
certain types of non-linear INDEX codes. We show that for natural
classes of side information graphs, including directed acyclic
graphs, perfect graphs, odd holes, and odd anti-holes, minrank
is the optimal length of arbitrary INDEX codes.

For arbitrary INDEX codes and arbitrary graphs, we obtain a
lower bound in terms of the size of the maximum acyclic induced
subgraph. This bound holds even for randomized codes, but is
shown not to be tight.

Index Terms—Error correction coding, broadcast channels,
code length, information cost.

I. I NTRODUCTION

Source coding is one of the central areas of coding and
information theory. Shannon’s famous source coding theorem
states that the average number of bits necessary and sufficient
to encode a source is equal (up to one bit) to the entropy
of the source. In many distributed applications, though, the
receiver may have some priorside informationabout the
source message, before it is sent. Source coding with side
information addresses encoding schemes that exploit the side
information in order to reduce the length of the code. Classical
results in this area [1], [2], [3] describe how to achieve optimal
rates with respect to the joint entropy of the source and the
side information.

Witsenhausen [4] initiated the study of the zero-error side
information problem. For every source inputx ∈ X, the
receiver gets an inputy ∈ Y that gives some information about
x. This is captured by restricting the pairs(x, y) to belong to a
fixed setL ⊆ X×Y. Both the sender and the receiver knowL,
and thus each of them, given his own input, has information
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about the other’s input. Witsenhausen showed that fixed-length
side information codes are equivalent to colorings of a related
object called theconfusion graph, and thus the logarithm
of the chromatic number of this graph tightly characterizes
the minimum number of bits needed to encode the source.
Further results by Alon and Orlitsky [5] and Koulgi et al. [6]
showed that graph-theoretic information measures could be
used to characterize both the average length of variable-length
codes, as well as asymptotic rates of codes that simultaneously
encode multiple inputs drawn from the same source.

In this paper, we study a new variant of source coding with
side information, first proposed by Birk and Kol [7] in the
context of a server that disseminates a set of data blocks over
a broadcast channel to a set of caching clients. Each client
possesses in its cache only a subset of the transmitted blocks,
due to reception problems, limited storage space, rejection by
an interest filter, etc. The client needs a certain subset of the
data blocks, yet some of these blocks may be missing from its
cache. The client uses a backward channel to request blocks
that it needs but has not cached and to advise the server of
the blocks it already has in its cache. The challenge is to
minimize the amount of supplemental information that must be
broadcast by the server in order to enable every client to derive
all its requested blocks. See SectionII for more details on this
problem. In [7], the idea of coding on demand by an informed
source (ISCOD) is proposed and explored. Specifically, a
heuristic algorithm is used to judiciously partition the set of
clients into subsets, and the requests of the clients in each
subset are handled using an erasure correcting code such that
each member of any given subset is able to derive the union of
the blocks requested by that subset’s members. This approach
is related to the notion of a graph cover by “partial” cliques,
and is shown to generally not provide the optimal solution even
with an optimal partition. The paper first considers the case
wherein each client requests a single, unique block, and then
shows a simple reduction that represents a client requesting
multiple blocks as several single-request clients. (Multiple
requests for the same block are prohibited.)

The above scenario is formalized as a source coding with
side information problem as follows (cf. [7]). There is a sender
(server) who has an input (data)x from a source alphabetX =
{0, 1}n (we assume here single bit blocks; see more details in
SectionII ). There aren receivers (clients)R1, . . . , Rn, where
for eachi, Ri is interested in the bit (requested block)xi. The
side information is characterized by a simple directed graphG
(no self loops or parallel edges) on{1, 2, . . . , n}. For a subset
S ⊆ [n], x[S] denotes the projection ofx on the coordinates in
S. The side information ofRi (cached blocks) equalsx[N(i)],
whereN(i) , {j ∈ V | (i, j) is an edge} denotes the set of
out-neighbors ofi in the graphG. The sender and the receivers
are both assumed to knowG.
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Example 1. For an inputx ∈ {0, 1}n, each receiverRi is
interested in the valuexi but knowsxi−1 as side information.
(Abusing notation slightly, receiverR1 knows xn.) The side
information graph is thus a directed cycle of lengthn. Since
xi−1 is “independent” ofxi, it may not be clear at first how
the sender can take advantage of the side information of the
receivers to shorten the broadcast message. However, there is
a strategy in which the sender can save one bit: rather than
sending all the bits ofx, the sender broadcasts then−1 parities
x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn. Now, each receiverRi for
i > 1 can recoverxi by taking the parity ofxi−1 ⊕ xi with
xi−1. Finally, receiverR1 XORs then − 1 parities broadcast
by the sender together withxn to recoverx1.

Definition 2 (INDEX codes). A deterministic INDEX code
C for {0, 1}n with side information graphG on n nodes,
abbreviated as “INDEX code for G”, is a set of codewords
in {0, 1}` together with:

1) An encoding functionE mapping inputs in{0, 1}n to
codewords, and

2) A set of decoding functionsD1, D2, . . . Dn such that
Di(E(x), x[N(i)]) = xi for every i.

The graphG is known in advance to the sender and the
receivers; thus the encoding and decoding functions typically
depend onG. The lengthof C, denoted bylen(C), is defined
to be `.

The above problem can also be cast in an equivalent setting
with a single receiver: The receiver is given an indexi and
the side informationx[N(i)] as inputs and wants to recover
the value xi. (The equivalence follows from the fact the
sender does not know the indexi given to the receiver, and
thus has to use an encoding that enables the recovery of
xi, for any i.) Using this equivalent form, we can contrast
our side information problem with Witsenhausen’s zero-error
side information problem. A first notable difference is that
while in Witsenhausen’s setting theentire input x has to
be recovered, in our setting only a single bitxi is needed.
This allows significant savings in the encoding length, as the
following example demonstrates: suppose the side information
graph is a perfect matching onn nodes. Since the receiver
has only a single bit of side information, thenn − 1 bits
are necessary to recover the entire input. If, however, only
a single bit is needed, then the sender can encode his input
by the n/2 parities of pairs of matched bits. A second
difference from Witsenhausen’s setting is that the type of
side information addressed in our problem is restricted to side
information graphs. This natural restriction emanates from the
broadcast application mentioned above and also imposes more
structure that enables us to obtain an interesting combinatorial
characterization of the minimum length ofINDEX codes in
terms of the side information graphs.

We also consider in this paper randomizedINDEX codes,
in which the encoding and decoding functions are allowed
to be randomized and are even allowed to use a common
public random string. Decoding needs to succeed only with
high probability, taken over the random choices made by the
encoding and decoding functions.

Our contributions. In this paper we identify a graph func-
tional, called minrank, which we show to characterize the
minimum length ofINDEX codes, for natural types of codes
and for wide classes of side information graphs. LetG be a
directed graph onn vertices without self-loops. We say that a
0-1 matrixA = (aij) fits G if for all i andj: (i) aii = 1, and
(ii) aij = 0 whenever(i, j) is not an edge ofG. Thus,A− I
is the adjacency matrix of anedge subgraphof G, whereI
denotes the identity matrix. Letrk2(·) denote the 2-rank of a
0-1 matrix, namely, its rank over the fieldGF (2).

Definition 3. minrk2(G) , min {rk2(A) : A fits G}.

The above measure forundirectedgraphs was considered
by Haemers [8] in the context of proving bounds for the
Shannon capacityΘ of undirected graphs. For an undirected
graphG whose adjacency matrix isM , the 2-rank ofM + I
(which fits G) has also been studied in the algebraic graph
theory community. For example, Brouwer and van Eijl [9]
and Peeters [10] study this quantity for strongly regular and
distance-regular graphs, respectively. It has been shown by
Peeters [11] that computingminrk2(G) is NP-hard. Finally, it
is known thatminrk2 has the “sandwich property”, similar to
other natural quantities such as the Lovász Theta function:

Proposition 4 ( [12], [8]). For any undirected graphG,
ω(G) ≤ Θ(G) ≤ minrk2(G) ≤ χ(G), where G is the
complement ofG and ω(·), Θ(·), and χ(·) are, respectively,
the clique number, the Shannon capacity, and the chromatic
number. Moreover, each of these inequalities is strict.

Our first result (see SectionIII ) shows thatminrk2(G)
completely characterizes the minimum length oflinear INDEX

codes (i.e., ones whose encoding function is linear), for
arbitrary directed side information graphsG:

Theorem 5. For any side information graphG, there exists
a linear INDEX code forG whose length equalsminrk2(G).
This bound is optimal for all linearINDEX codes forG.

This bound strictly improves a previous upper bound of
Birk and Kol [7]. Birk and Kol showed a construction of a
linear INDEX code, whose length is the “cover cost” of the
side information graph (and showed that the construction is
suboptimal). For undirected graphs, the cover cost is the same
as the chromatic number of the complement graph. Since the
minrank can be strictly smaller than this chromatic number,
it immediately follows that the minrank bound beats the Birk
and Kol bound. The lower bound for linear codes is of interest,
since linear codes are possibly the most natural type of codes.
In fact, all the existingINDEX codes (with or without side
information) we are aware of are linear.

In SectionIV we prove thatminrk2(G) characterizes not
only the optimal length of linear codes, but also the optimal
length of a wide class ofnon-linear codes. AnINDEX code
is called linearly-decodable, if all its n decoding functions
are linear. A linearly-decodable code need not be linearly
encodable. A simple argument shows that the length of a
linearly-decodableINDEX code for any graphG is at least
minrk2(G). We relax the notion of linearly-decodable codes
to “semi-linearly-decodable” codes. AnINDEX code is k-
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linearly-decodableif at least k of its decoding functions
are linear. Note thatn-linearly-decodable codes are simply
linearly-decodable, while0-linearly-decodable codes are un-
restricted. We are able to prove thatminrk2(G) is the optimal
length ofk-linearly-decodable codes whenk ≥ n− 2:

Theorem 6. For any graphG, and for anyk ≥ n − 2, the
length of anyk-linearly-decodableINDEX code for G is at
leastminrk2(G).

As our new linear INDEX code (proof of Theorem5in
Section III ) is also linearly-decodable (and thusk-linearly-
decodable, for anyk), the bound in Theorem6 is tight.

Our third contribution is a lower bound that holds for
generalINDEX codes including deterministic and randomized
INDEX codes. This result is presented in SectionV.

Theorem 7. The length of anyδ-error randomizedINDEX

code forG is at leastMAIS(G) · (1−H2(δ)), whereMAIS(G)
is the size of the maximum acyclic induced subgraph ofG and
H2(·) is the binary entropy function.

This lower bound immediately gives a tight bound for
directed acyclic graphs and undirected graphsG that satisfy
ω(G) = minrk2(G) = χ(G). In particular, it holds for perfect
graphs1. In SectionVI , we are able to prove that minrank
characterizes the minimum length ofINDEX codes, even for
non-perfect graphs, namelyodd holes(undirected odd-length
cycles of length at least 5) andodd anti-holes(complements
of odd holes).

Theorem 8. Let G be any graph, which is either a DAG, a
perfect graph, an odd hole, or an odd anti-hole. Then, the
length of anyINDEX code forG is at leastminrk2(G).

This theorem implies that our lower bound for general codes
(Theorem7) is not tight. For odd holes,MAIS(G) is the size
of the largest independent set, i.e.,ω(G), which we show to
be strictly smaller thanminrk2(G).

The Strong Perfect Graph Theorem (conjectured by Berge
[13] and proved by Chudnovskyet al. [14]) states that a graph
is perfect if and only if it contains no (induced) odd hole or
odd anti-hole. It follows that every undirected graph can be
partitioned into induced subgraphs, each of which is either
perfect, an odd hole, or an odd anti-hole. This motivated us
to study the following direct sum-type problem: if a graph
G can be partitioned intok induced sub-graphsG1, . . . , Gk,
then is the length of the bestINDEX code forG equal to the
sum of the lengths of the best codes forG1, . . . , Gk? While
we believe the answer to this general question to be negative,
we were able to prove it for the case whereinG1, . . . , Gk are
disconnected components (i.e., there is no edge connectingGi

and Gj , for any i 6= j). A direct proof of this result seems
to be elusive. In fact, an argument based on the techniques of
Federet al. [15] incurs a loss of an additive term that depends
linearly onk. After lower bounding the length of a code by its
information cost[16], [17], we are able to prove a tight direct
sum theorem w.r.t. the information cost measure. We note that

1Recall that an undirected graphG is calledperfect, if for every induced
subgraphG′ of G, ω(G′) = χ(G′). Perfect graphs include a wide class of
graphs such as trees, bipartite graphs, interval graphs, chordal graphs, etc.

almost all our lower bounds hold not only for the length of
INDEX codes but also for their information cost. This result is
presented in SectionV.
Techniques. We resort to a multitude of techniques from
linear algebra, information theory, Fourier analysis, and com-
binatorics to prove the results presented in this paper.

The lower bounds for linearly-encodable and linearly-
decodable codes are based on dimension arguments from lin-
ear algebra. To extend the lower bound for linearly-decodable
codes to semi-linearly-decodable codes, we used an intriguing
“balance property” of Boolean functions: if all linear Boolean
functions are “balanced” on some setU (i.e., get the same
number of 0’s and 1’s on the set), then all Boolean func-
tions (whether linear or not) are balanced onU . To prove
this property, we use Fourier analysis to represent arbitrary
Boolean functions as linear combinations of linear functions.
We then introduce the notion of “minimum dimension”, which
is dual to minrank, and explore its properties using the balance
property. This in turn allows us to extend the lower bound for
linearly-decodable codes to(n− 2)-linearly-decodable codes.

The lower bound for general (randomized) codes and the
direct sum theorem are proved via information theory argu-
ments. We extend previous arguments from [17], [18] to obtain
a direct sum theorem for theinformation costof codes.

Finally, our lower bounds for odd holes and odd anti-holes
are purely combinatorial. We employ a connection between
vertex covers of a graphG and the structure of the confusion
graph corresponding toINDEX codes forG. We note that deal-
ing with odd holes, and with the pentagon in particular, turned
out to be very challenging, because the standard technique of
lower bounding the chromatic number of the corresponding
confusion graph via its independence number does not work.
Related work. There are settings other than source coding
in which INDEX codes have been addressed. Ambainiset
al. [19] considered what they called “random access codes”,
which are identical to randomizedINDEX codes without side
information. Their main thrust was proving tight bounds on the
length of the codes in the quantum setting, where inputs can be
encoded by qubits rather than classical bits; their result applied
to the classical setting is a special case of our Theorem7 for
the case whenG is the empty graph.

The problem ofINDEX coding with side information can
also be cast as aone-way communication complexityproblem
of the indexing function [20] (from which the termINDEX

codes was coined) with the additional twist of side infor-
mation. Alice (the sender) is given an inputx and sends a
single message to Bob. Bob is given an indexi and the side
information x[N(i)], and uses Alice’s message to learnxi.
Another formulation ofINDEX coding is in terms ofnetwork
coding [21], [22]. As such, it represents a restricted case of a
single source, a single encoder and a single channel, but with
the important addition of a special flavor of side information.
Parts of this information are known to different decoders, and
the encoder is fully aware of this knowledge.
Subsequent work. Following the publication of the extended
abstract of this work [23], Lubetzky and Stav [24] were able
to make remarkable progress and prove that there could be
an unbounded gap betweenminrk2(G) and the length of an
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optimal INDEX code forG. They achieved this by constructing
a new family of Ramsey graphs. It thus remains an open
problem to find an exact characterization of the optimal length
of INDEX codes for general codes and arbitrary graphs. It
should nonetheless be noted that the commonly used codes
are linear, for which the bounds presented in the current paper
are tight.
Notation. Throughout the paper, we use the following no-
tations. Let [n] denote the set{1, 2, . . . , n}. Let ei denote
the i-th standard basis vector. The dimension of this vector
is understood from the context. For a subsetS ⊆ [n], we
denote byx[S] the projection of a vectorx ∈ {0, 1}n on the
coordinates inS.

II. M OTIVATING APPLICATION

Many important data dissemination systems employ a
broadcast channel at the physical level. Prominent examples
include satellite, terrestrial wireless systems, and systems
employing coaxial cable. Broadcast channels are frequently
used to disseminate high volumes of media-rich content, such
as movies, episodes of TV series and video clips, as well as
text and images such as the daily newspaper (which may soon
include video clips).

The broadcast channel is extremely efficient for sending
the same data to a large number of receivers, but its use
for sending different data to different users is wasteful. For
the case wherein users (may) need the same data but at
different times (e.g., on-demand viewing of a “hot” movie),
service providers can speculatively “push” data to clients; upon
demand by a client, the already present data is presented
immediately, as if it were sent on demand. XTV by News
Data Systems2 is an early example.

The above example demonstrates how abundant client stor-
age capacity can be used in liew of true communication
capability in order to increase perceived communication-
related quality of service. With the rapid decline in the cost
of non-volatile storage (disk drives and Flash memory), it
is interesting to look for additional ways of exploiting its
abundance in order to reduce demand on less abundant or more
expensive resources. We next describe such an application,
which has motivated the current work.

Despite the use of a broadcast channel, not all information
is received by all clients. This may result from intermittent
connectivity due to bad weather, a power outage at some
receiver locations, intermittent reception by mobile receivers,
or due to equipment being temporarily switched off. Finally,
even data that is received by a given client may be discarded,
be it for lack of space or by an “interest filter”.

Following the broadcast of various content, each client thus
typically has in its local storage some subset of the transmitted
data. As for the remainder of this data, a given client may
request some of it while not being interested in the rest. The
question is then how to use a broadcast channel, which is very
effective at sending the same data to all recipients, in order
to efficiently send differentsupplementaldata to the different
clients. An important insight provided in [7] is that whenever
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each client stores a substantial fraction of the transmitted data
while only requesting a single block, the probability that a
pair of clients each have the block requested by the other is
much higher than the probability that they both request the
same block. This gave rise to the idea of using source coding
for this purpose.

Motivated by the above, Birk and Kol posed in [7] the
following coding problem. A server transmits a set of data
blocks over a broadcast channel to a set of caching clients.
Each client only stores a subset of the transmitted blocks.
Each client needs a certain subset of the transmitted blocks,
yet some of these blocks may be missing from its cache. The
client can use a (slow) “upstream” channel to request blocks it
has not cached and to advise the server of the blocks it already
has in its cache. (By using large blocks, the amount of this
metadata information can be made negligible.) The challenge
posed was to design coding schemes that minimize the amount
of supplemental information that must be broadcast in order
to enable every client to derive all its requested blocks. It is
important to note that the goal is not to provide all blocks to
every client.

Blocks are usually compressed before being transmitted, and
thus we can assume their bits to be independent. Therefore, a
code for blocks of sizeB can be constructed by concatenating
B instances of a code for single bit blocks: an instance
encoding the first bit of all requested blocks, an instance
encoding the second bit of all requested blocks, etc. Note that
the metadata information for all bits in a requested/cached
block is the same, and thus the client can still transmit this
information once per block. The focus is thus on codes for
single bit blocks. Finally, both [7] and the current paper
assume that any given block is requested by at most one client
(though others may have it, of course).

III. L INEAR CODES

In this section we obtain a tight characterization of the
length of linearINDEX codes for all side information graphs
G.

Theorem 5 (restated) For any side information graphG,
there exists a linearINDEX code forG whose length equals
minrk2(G). This bound is optimal for all linearINDEX codes
for G.

Proof: Let A be the matrix that fitsG whose 2-rank equals
minrk2(G) , k. Assume without loss of generality that the
span of the firstk rows A1, . . . , Ak equals the span of all
the rows ofA. The encoding function is simply thek bits
bj , Aj · x for 1 ≤ j ≤ k.

Decoding proceeds as follows. Fix a receiverRi for some
i ∈ [n] and let Ai =

∑k
j=1 λjAj for some choice ofλj ’s.

The receiver first computesAi · x =
∑k

j=1 λjbj using the
k-bit encoding ofx. Now, consider the vectorci = Ai − ei,
where ei is the i-th standard basis vector. Observe that the
only non-zero entries inci correspond to coordinates that are
among the neighbors ofi in G. This means that the receiver
can computeci ·x using the side information. ReceiverRi can
now recoverxi via (Ai · x)− (ci · x) = ei · x = xi.

www.nds.com
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For the lower bound, supposeC is an arbitrary linearINDEX

code forG defined by the setS = {u1, u2, . . . , uk}, i.e., x is
encoded by the taking its inner product with each vector inS.

Claim 9. For everyi, ei belongs to the span ofS ∪ {ej : j ∈
N(i)}.

Before we prove the claim, we show how to finish the proof
of the lower bound. For eachi ∈ [n], the claim shows that
ei =

∑k
j=1 λjuj +

∑
j∈N(i) µjej , for some choice ofλ andµ.

Rearranging, we have
∑k

j=1 λjuj = ei−
∑

j∈N(i) µjej , Ai.
It follows thatAi has value 0 in coordinates outsideN(i)∪{i},
Ai has value 1 in itsi-th coordinate, andAi belongs to the
span ofS. Therefore, the matrixA whose rows are given by
A1, A2, . . . , An fits G and has rank at mostk. We conclude
that k ≥ rk2(A) ≥ minrk2(G).

It remains to prove the claim. Fix ani and suppose to the
contrary thatei is not in the subspaceW spanned by the
vectors inS ∪ {ej : j ∈ N(i)}. Recall that thedual of W ,
denoted byW⊥, consists of the set of vectors orthogonal to
every vector inW , i.e.,W⊥ = {v : v ·w = 0 for all w ∈ W}.
It is well-known thatW⊥⊥ = W . Therefore, the assumption
ei /∈ W implies that there is a vectorx ∈ W⊥ such that

x · ei

(∗)
6= 0. On the other hand, sincex ∈ W⊥, we have that

x is orthogonal to every vector inS ∪ {ej : j ∈ N(i)}. It
follows that (i) the encoding forx equals0k, and (ii) the side
information xj available to receiverRi equals0 for all j ∈
N(i). This violates the correctness of the encoding because
the input0n also satisfies (i) and (ii), yet Equation (*) shows
that it differs fromx in coordinatei.

IV. SEMI-LINEARLY-DECODABLE CODES

In this section, we show thatminrk2(G) is a lower bound on
the minimum length ofsemi-linearly-decodableINDEX codes
for arbitrary graphsG.

Let C be an INDEX code forG. Let D1, . . . , Dn be then
decoding functions ofC. Fix a codewordc ∈ C, and for each
index i ∈ [n], we denote byDc

i the function induced by fixing
c as input toDi: Dc

i (x[N(i)]) = Di(c, x[N(i)]). AlthoughDc
i

is applied only to the side information bitsx[N(i)], it will be
convenient for us to view it as acting on the whole inputx with
the restriction that it depends only3 on the set of coordinates
N(i). Thus, from now on,Dc

i : {0, 1}n → {0, 1}.
An INDEX codeC is said to bek-linearly-decodable, if for

every codewordc ∈ C, at leastk of the decoding functions
Dc

1, . . . , D
c
n are linear. Note that the smallerk is, the less

restricted is the class ofk-linearly-decodable codes. Whenk =
n, these codes are simply calledlinearly-decodable, while 0-
linearly-decodable are unrestricted codes. Our upper bound
(Theorem5) is a linearly-decodableINDEX code (and thus
alsok-linearly-decodable, for anyk).

Our goal is to obtain lower bounds on the length ofk-
linearly-decodable codes for a value ofk as small as possible.

3A function f : {0, 1}n → {0, 1} is said todepend onlyon a set of
coordinatesS ⊆ [n], if for every two inputsx, y with x[S] = y[S], f(x) =
f(y).

Theorem 6 (restated) For any graphG, and for anyk ≥
n− 2, the length of anyk-linearly-decodableINDEX code for
G is at leastminrk2(G).

A. Kernel size

To prove the lower bound, we introduce the notion ofkernel.
The kernel of a Boolean functionf : {0, 1}n → {0, 1} is
the set of inputs it maps to 0:ker(f) = {x | f(x) = 0}.
By extension, the kernel of a family of Boolean functions
F = 〈fi | i ∈ T 〉 (T is some index set) is the set of inputs
that are mapped to 0 by all of the functions in the family:
ker(F) = {x | fi(x) = 0 ∀i}. We next show a connection
between the length ofINDEX codes and the size of the kernel
of a suitably chosen family of functions.

Note thatDc
i (x) = xi for every x whose encodingE(x)

equalsc. This can be also written asDc
i (x)+ ei ·x = 0. If we

view the vectorei as a linear function operating over{0, 1}n,
then we can say thatx belongs to the kernel of the function
Dc

i + ei, i.e., (Dc
i + ei)(x) = 0. As this holds for everyi, we

conclude the following:

Proposition 10. For every codewordc, {x | E(x) = c} ⊆
ker(Dc

1 + e1, . . . , D
c
n + en) = {x | Dc

i (x) = xi ∀i}.

We obtain as an immediate corollary the following lower
bound on the length ofINDEX codes in terms of kernel size:

Proposition 11. If | ker(Dc
1 + e1, . . . , D

c
n + en)| ≤ M for

every codewordc ∈ C, then len(C) ≥ dn− log Me.

Proof: Consider any codewordc ∈ C. Let E−1(c) = {x |
E(x) = c} be the set of inputs whose corresponding codeword
is c. By Proposition10, |E−1(c)| ≤ M . Hence, the number of
distinct codewords inC is at least2n/M , and thus its length
must be at leastdn− log Me.

Thus, to prove Theorem6, it suffices to prove the following:

Theorem 12. Let c be a codeword in ak-linearly-decodable
codeC with side information graphG, wherek ≥ n−2. Then,
| ker(Dc

1 + e1, . . . , D
c
n + en)| ≤ 2n−minrk2(G).

We will in fact prove a more general version of Theorem12.
To state this more general form, we first need to extend the
notion of fitting.

Fix a graphG on n nodes. We say that a functionf :
{0, 1}n → {0, 1} fits an indexi ∈ [n], if f = g + ei for some
function g that depends only onN(i) (g is not necessarily
linear). Note thatf(x) = g(x) + xi. Extending the definition,
we say that a family of (not necessarily distinct) functions
〈fj : {0, 1}n → {0, 1} | j ∈ T 〉 fits a subsetT of the indices
in [n], if fj fits j for every j ∈ T .

Every linear functionf : {0, 1}n → {0, 1} corresponds to
a vectorv so thatf(x) = v ·x. Therefore,f fits indexi if and
only if v can be written asv = d + ei, whered is a vector
whose value in every coordinatej /∈ N(i) equals 0. A matrix
A fits [n] (or, G), if the i-th row of A, for everyi, fits indexi.
As the value of this row must be 1 in thei-th coordinate and 0
in every coordinatej 6∈ N(i)∪{i}, this definition is consistent
with our earlier definition for a matrix fitting a graph.

Fix an INDEX code C for G and a codewordc ∈ C. Let
Dc

1, . . . , D
c
n be then decoding functions associated withc.
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Note that each functionDc
i +ei fits indexi, for all i, and thus

the family 〈Dc
1 + e1, . . . , D

c
n + en〉 fits [n].

We say that a family of functions〈fj | j ∈ T 〉 is k-linear, if
at leastk of the functions in the family are linear. Note that ifC

is k-linearly-decodable, then the family〈Dc
1+e1, . . . , D

c
n+en〉

is k-linear.
The stronger version of Theorem12 we will prove is the

following:

Theorem 13. Let G be a graph onn nodes and letk ≥ n−2.
Then, for anyk-linear family F = 〈fj | j ∈ [n]〉 of Boolean
functions that fits[n], | ker(F)| ≤ 2n−minrk2(G).

Theorem12 follows by settingfj = Dc
j + ej for every j.

The rest of this section is devoted to the proof of Theorem13.

B. Maximum dimension

In this section we explore a new notion—themaximum
dimension—which is dual to the minrank and plays a key role
in the proof of Theorem13.

To motivate the proof, consider the following simple ar-
gument for the casek = n (i.e., all the functionsfj are
linear). Sincefj is linear and fits indexj, it is associated
with a vectorvj so thatfj(x) = vj · x. Let A be then × n
Boolean matrix whose rows arev1, . . . , vn. Sincefj fits index
j, it follows that A fits G, so rk2(A) ≥ minrk2(G). Next,
observe thatker(F) is exactly the kernel of the matrixA.
By standard linear algebra, the dimension of this kernel is
n − rk2(A) ≤ n − minrk2(G), and therefore the size of the
kernel is at most2n−minrk2(G).

To deal with the casek < n, we would like to generalize
the above argument. When some of the functions inF are
not linear,ker(F) is no longer a linear space and thus does
not have a properly defined dimension. In order to address this
difficulty, we introduce the new notion ofmaximum dimension.

Let S be any subset of[n] and letHS = 〈hj | j ∈ S〉 be
any family of linear functions that fitsS. Let T ⊆ [n] \ S.
For any familyHT = 〈hj | j ∈ T 〉 of (not necessarily linear)
functions that fitsT , we denote byHS∪T the union of the
two families: 〈hj | j ∈ S ∪ T 〉. WhenHT is also a family of
linear functions,ker(HS∪T ) is a linear space and thus has a
dimension. We define themaximum dimension ofT relative
to HS , denotedmaxdim2(T |HS), to be the maximum value
of dim(ker(HS∪T )), where the maximum is taken over all
families HT of linear functions that fitT . Note that when
S = ∅, T = [n], maxdim2(T |∅) = n−minrk2(G), and thus
the maximum dimension can be viewed as dual to the minrank.
The following are basic facts about the maximum dimension
that will be used later in our analysis:

Proposition 14. Fix any setS ⊆ [n], any familyHS of linear
functions that fitsS, and any setT ⊆ [n]\S. For simplicity, we
shorthandmaxdim2(T ) for maxdim2(T |HS). The following
are properties ofmaxdim2(T ):

1) maxdim2(∅) = dim(ker(HS)).
2) For any i ∈ T , maxdim2(T ) ≤ maxdim2(T \ {i}) ≤

maxdim2(T ) + 1.
3) More generally, maxdim2(T ) ≤ maxdim2(T ′) ≤

maxdim2(T ) + |T | − |T ′| for any T ′ ⊆ T .

4) dim(ker(HS))−|T | ≤ maxdim2(T ) ≤ dim(ker(HS)).
5) If maxdim2(T ) = dim(ker(HS)) − |T |, then

maxdim2(T ′) = dim(ker(HS)) − |T ′| for everyT ′ ⊆
T .

6) Supposemaxdim2({j}) = dim(ker(HS)) for everyj ∈
T . Thenmaxdim2(T ) = dim(ker(HS)) as well.

7) Let T = [n] \S. Then,maxdim2(T ) ≤ n−minrk2(G).

Proof: Part1 follows simply by definition. Part2 follows
from the standard linear algebra fact that adding a single
constraint to any subspace can only decrease its dimension,
but by at most 1; an inductive argument yields Part3. Setting
T ′ = ∅ in Part3 and then using Part1 yields Part4.

For Part5, note that Part4 implies thatmaxdim2(T ′) ≥
dim(ker(HS)) − |T ′|. By Part 3, maxdim2(T ′) ≤
maxdim2(T ) + |T | − |T ′| = dim(ker(HS)) − |T ′|, us-
ing the premise of Part5. Therefore, maxdim2(T ′) =
dim(ker(HS))− |T ′| as well.

For Part6, the premise says that there exist linear func-
tions hj for all j ∈ T such that hj(x) = 0 for all
x ∈ ker(HS). Define the family HT = 〈hj : j ∈
T 〉. It can be seen thatker(HS∪T ) = ker(HS) and thus
dim(ker(HS∪T )) = dim(ker(HS)), which is the maximum
value thatmaxdim2(T ) can attain by Part4.

Finally, for Part7, let HT be the family of linear functions
such that dim(ker(HS∪T )) = maxdim2(T ). Recall that
HS∪T fits S ∪ T = [n], so let A be the matrix whose
rows consist of the vectors that correspond to the functions
in HS∪T . It follows that A fits G. Since its kernel equals
ker(HS∪T ), we conclude:

dim(ker(HS∪T )) = n− rk2(A) ≤ n−minrk2(G).

The following lemma is the main technical result that will
be used to prove Theorem13.

Lemma 15. Let G be a graph onn nodes. Then, for any
S ⊆ [n], any familyHS of linear functions that fitsS, anyT ⊆
[n] \ S with |T | ≤ 2, and any familyHT of (not necessarily
linear) functions that fitsT , | ker(HS∪T )| ≤ 2maxdim2(T |HS).

To derive Theorem13, we chooseS to be the set of indices
of thek linear functions inF, HS to be these linear functions,
T = [n] \ S, and HT to be the rest of the functions in
F. Note that F = HS∪T . By Proposition14, Part 7, we
havemaxdim2(T |HS) ≤ n−minrk2(G), which immediately
yields Theorem13.

Note that the restriction we have onk (k ≥ n − 2) in
Theorems6, 12, and13 derives from the restriction we have
in Lemma15 on |T | (|T | ≤ 2). It remains an open problem
to find the largest value of|T | (and thus the smallest value of
k) for which the bound holds.

We first prove a stronger version of Lemma15 for the
special case whenmaxdim2(T |HS) has the smallest possible
valuedim(ker(HS))− |T | (Proposition14, Part4), in which
case the bound given by Lemma15 is achieved for everyT
(even|T | > 2).

Lemma 16. Let G, S, HS , T , and HT be as defined above
(except that|T | need not be at most 2). Ifmaxdim2(T |HS) =
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dim(ker(HS))− |T |, then| ker(HS∪T )| = 2dim(ker(HS))−|T |.

Proof: As we will see below, proving the lemma for the
caseHT is a family of linear functions is easy (follows from
standard dimension arguments). To extend the proof to hold
for unrestricted functions, we will use a “Balance Lemma”,
which is proved in the next section via Fourier analysis.

The lemma will be proved by gradually moving from a
family HT of linear functions to a familyHT of unrestricted
functions. Formally, we will show the following:

Claim 17. Let G, S, HS , T , and HT be as de-
fined in Lemma 16. Let ` ≤ |T |. If HT is `-
linear and maxdim2(T |HS) = dim(ker(HS)) − |T |, then
| ker(HS∪T )| = 2dim(ker(HS))−|T |.

Applying Claim 17 with ` = 0 will yield Lemma 16. We
prove the claim by a double induction: an outer induction on
|T | and an inner induction on|T | − `.

The base case of the outer induction,|T | = 0, follows from
standard linear algebra, because| ker(HS)| = 2dim(ker(HS)).
For the base case of the inner induction,` = |T |, note that
HT is a linear family of functions. Therefore,ker(HS∪T ) is
a linear space anddim(ker(HS∪T )) ≤ maxdim2(T |HS) =
dim(ker(HS)) − |T |. On the other hand,ker(HS∪T ) ≥
dim(HS) − |T |, because each constraint added to a linear
sub-space can reduce its dimension by at most 1. Hence,
ker(HS∪T ) = dim(HS) − |T |. Now, defineS′ = S ∪ T
and T ′ = ∅. As all the functions inHS′ are linear and as
maxdim2(T ′|HS′) = dim(ker(HS′)) (Proposition14, Part1),
then we can apply the base case of the outer induction to
conclude that

| ker(HS∪T )| = | ker(HS′)| = 2dim(ker(HS′ ))

= 2dim(ker(HS))−|T |.

Let 1 ≤ t ≤ n and let0 ≤ ` ≤ t − 1. For the induction
step, assume that the claim holds for the following cases: (1)
every T with |T | < t and every familyHT that fits T (no
linearity restrictions onHT ); (2) everyT with |T | = t and
every `′-linear family HT that fits T , where`′ > `. We will
show that the claim holds also for the case|T | = t and HT

is `-linear.
Let HT be any`-linear family of functions that fitsT . At

least ` of the functions inHT are linear. IfHT has ` + 1
linear functions or more, then it is in fact(` + 1)-linear, and
therefore the statement of the claim follows in this case from
the induction hypothesis. So suppose exactly` of the functions
in HT are linear. As̀ < |T |, HT has at least one non-linear
function. Lethi, wherei ∈ T , be one such function.

Let T−i = T \ {i} and letHT−i
be the family of functions

obtained by removinghi from HT . We will prove that
| ker(HS∪T )| = 2ker(HS)−|T | in two steps. First, we will show
that | ker(HS∪T−i

)| = 2ker(HS)−|T |+1. Then, we will prove
that hi is balancedon the setker(HS∪T−i

):

Definition 18 (Balanced function). A Boolean functionf :
{0, 1}n → {0, 1} is said to bebalancedon a subsetU of its
domain, if it is 0 on half of the inputs inU and it is 1 on the
other half. That is,| ker(f) ∩ U | = |U |/2.

Having proved that| ker(HS∪T−i
)| = 2ker(HS)−|T |+1 and

thathi is balanced onker(HS∪T−i), we will obtain the desired
equality:

| ker(HS∪T )| = | ker(hi) ∩ ker(HS∪T−i)| =

=
1
2
| ker(HS∪T−i

)| = 2ker(HS)−|T |.

We start by showing that | ker(HS∪T−i)| =
2ker(HS)−|T |+1. Using Proposition 14, Part 5, since
maxdim2(T |HS) = dim(ker(HS)) − |T |, then
maxdim2(T−i|HS) = dim(ker(HS)− |T |+ 1. As |T−i| < t,
we can apply the induction hypothesis and obtain what we
wanted:

| ker(HS∪T−i
)| = 2ker(HS)−|T |+1. (1)

Showing thathi is balanced onker(HS∪T−i
) is harder. To this

end, we first prove that everylinear function that fits indexi
must be balanced onker(HS∪T−i

). We then prove a Balance
Lemma, which shows that every function that fits indexi, hi

included, must be balanced onker(HS∪T−i).
Let us start by proving that every linear function that fits

index i is balanced onker(HS∪T−i
). Let gi be any such linear

function and letH′
T = HT−i

∪{gi}. Note thatH′
T fits T and

that it is (`+1)-linear. LetH′
S = HS . Applying the induction

hypothesis we obtain:

| ker(H′
S∪T )| = 2ker(H′

S)−|T | = 2ker(HS)−|T |. (2)

We can rewriteker(H′
S∪T ) as follows:

ker(H′
S∪T ) = ker(gi)∩ker(H′

S∪T−i
) = ker(gi)∩ker(HS∪T−i

).
(3)

Combining Equations1, 2, and3, we have:

| ker(gi) ∩ ker(HS∪T−i)| =
1
2
| ker(HS∪T−i)|. (4)

Equation 4 implies that the functiongi is balanced on
ker(HS∪T−i). As all we used is the linearity ofgi and the
fact it fits index i, we conclude that every linear function
that fits indexi is balanced onker(HS∪T−i

). The following
Balance Lemma, which is proved in the next section, shows
that every function that fits indexi, whether linear or not, must
be balanced onker(HS∪T−i).

Lemma 19 (Balance Lemma).Let G be a graph onn nodes,
let i ∈ [n], and letU ⊆ {0, 1}n. If every linear function that
fits indexi is balanced onU , then every function that fits index
i (whether linear or not) is balanced onU .

We conclude that in particularhi is balanced on
ker(HS∪T−i

), which is what we wanted. Claim17 and
Lemma16 follow.

We can now prove Lemma15:
Proof of Lemma15: For brevity of notation, throughout

this proof we shorthandmaxdim2(T ) for maxdim2(T |HS).
We prove the lemma by induction on the size ofT . The

case|T | = 0, meaningT = ∅, follows simply from the fact
that maxdim2(∅) = dim(HS) (Proposition14, Part1):

| ker(HS∪T )| = | ker(HS)| = 2dim(HS) = 2maxdim2(T ).
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Let t ∈ {1, 2}. Assume that the statement of the lemma holds
for all T such that|T | < t. We will prove it for |T | = t.

For i ∈ T , let T−i = T \ {i}. By Proposition 14,
Part 2, for every i ∈ T , maxdim2(T−i) ∈
{maxdim2(T ),maxdim2(T ) + 1}. We split our analysis into
two cases.

Case 1:For somei ∈ T , maxdim2(T−i) = maxdim2(T ). In
this case

| ker(HS∪T )| ≤ | ker(HS∪T−i)| ≤ 2maxdim2(T−i) = 2maxdim2(T ),

where the second inequality follows from the induction
hypothesis and the last equality follows from our assumption
in Case 1.

Case 2:For all i ∈ T , maxdim2(T−i) = maxdim2(T ) + 1.
This is the case we know how to handle only for|T | = 1, 2.
Suppose, first, that|T | = 1. Then, by the assumption of this
case,maxdim2(∅) = maxdim2(T )+1. Sincemaxdim2(∅) =
dim(ker(HS)) (Proposition14, Part1), we rearrange and ob-
tain maxdim2(T ) = dim(ker(HS))−1. Hence, the statement
follows in this case from Lemma16.

Consider now the case|T | = 2 and let T = {i, j}. By
the premise of Case 2,maxdim2({i}) = maxdim2({j}) =
maxdim2({i, j}) + 1. By Proposition14, Part 2, either both
maxdim2({i}) and maxdim2({j}) equal maxdim2(∅) =
dim(ker(HS)) or both are 1 less thandim(ker(HS)). The
first case is impossible because by Proposition14, Part 6,
maxdim2({i, j}) = dim(HS) as well, violating the premise
of Case 2. Therefore,maxdim2({i}) = maxdim2({j}) =
dim(HS)−1 implying thatmaxdim2({i, j}) = dim(HS)−2.
Hence, the statement follows in this case once again from
Lemma16.

C. Proof of the Balance Lemma

We next prove the Balance Lemma used in the proof of the
lower bound for semi-linearly-decodable codes:

Lemma 19 (restated) Let G be a graph onn nodes, let
i ∈ [n], and letU ⊆ {0, 1}n. If every linear function that fits
index i is balanced onU , then every function that fits indexi
(whether linear or not) is balanced onU .

The proof of the lemma relies on a simple principle: under
the mapping0 7→ 1 and 1 7→ −1, a Boolean functionf
is balanced on the setU if and only if

∑
x∈U f(x) = 0.

The linear Boolean functions in the±1 world are exactly
the characters of the groupZn

2 and thus the lemma tells
us that each of these characters sums to 0 onU . Fourier
transform allows us to write any Boolean functionf as a linear
combination of characters. Therefore, if all characters sum to 0
on U , then alsof must sum to 0 onU , and thusf is balanced.

To prove the lemma, we need to prepare some machinery
from Fourier analysis of Boolean functions. Consider the
groupZn

2 , whose elements are the vectors{0, 1}n. By mapping
the standard 0 to 1, the standard 1 to -1, and theXOR

operation to multiplication, we view the elements of the group
as vectors in{−1, 1}n, where coordinate-wise multiplication

is the group operation. A complex functionf : Zn
2 → C

over this group can be viewed as a vector inC2n

. The inner
product between two functionsf, g ∈ C2n

is defined as
〈f, g〉 = 1

2n

∑
x∈Zn

2
f(x)g(x).

Zn
2 has2n characters. Each subsetS ⊆ [n] is associated

with the characterχS defined as:χS(x) =
∏

i∈S xi. The
characters form an orthonormal basis ofC2n

. The expansion
of a functionf ∈ C2n

in this basis is itsFourier Transform.
The coefficient ofχS in this expansion isf̂(S) = 〈f, χS〉.
Thus,

f =
∑

S⊆[n]

f̂(S)χS .

A Boolean functionis a functionf : {−1, 1}n → {−1, 1}
(recall the mapping0 7→ 1 and 1 7→ −1). The kernel of a
Boolean functionf is the set of inputs that is maps to 1:
ker(f) = {x|f(x) = 1}. It is easy to verify that the characters
of Zn

2 are exactly the set of all Boolean linear functions on
Zn

2 .
To prove Lemma19, we show two simple properties of

Boolean functions.

Proposition 20. Let f : {−1, 1}n → {−1, 1} be a Boolean
function that depends only on a setS ⊆ [n]. Then, the Fourier
transform off has non-zero coefficients only for characters
χT with T ⊆ S.

Proof: Let T be any subset of the coordinates that is not
contained inS. We show thatf̂(T ) = 0.

SinceT 6⊆ S, there exists a coordinatei ∈ T \ S. For each
vectorx ∈ Zn

2 , let x(i) denote the vector obtained fromx by
flipping its i-th bit (from 1 to -1 or vice versa). LetZ1 be
the set of vectors inZn

2 that have 1 at thei-th coordinate, and
let Z−1 be the set of vectors inZn

2 that have -1 at thei-th
coordinate. The mappingx 7→ x(i) induces a perfect matching
of vectors inZ1 with vectors inZ−1.

Note that for a pair(x, x(i)), f(x) = f(x(i)), because the
two inputs differ only outside the setS. However,χT (x) 6=
χT (x(i)) becausex andx(i) differ only at thei-th coordinate
and i ∈ T .

Consider now the coefficient f̂(T ): f̂(T ) =
1
2n

∑
x∈Zn

2
f(x)χT (x). We reorder the terms

in the sum according to the above matching:
f̂(T ) = 1

2n

∑
x∈Z1(f(x)χT (x) + f(x(i))χT (x(i)). Since

f(x) = f(x(i)) and sinceχT (x) 6= χT (x(i)), each of the
terms in the above sum is 0. Therefore,f̂(T ) = 0, as desired.

Next, we characterize the set of Boolean linear functions
that depend only on a setS:

Proposition 21. The set of Boolean linear functions that
depend only onS is exactly the set of characters{χT }T⊆S .

Proof: SupposeT ⊆ S. We show thatχT depends only
on S. Let x, x′ ∈ {−1, 1}n be two inputs s.t.x[S] = x′[S].
SinceT ⊆ S, it follows that alsox[T ] = x′[T ]. Therefore,∏

i∈T xi =
∏

i∈T x′i, implying χT (x) = χT (x′).
For the other direction, supposeT 6⊆ S. Let i ∈ T \ S. Let

1 be the all-one input (corresponding to the all-zero input in
the 0-1 world) and letei be the standard unit vector (ei is 1
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in every coordinate, except for thei-th coordinate in which
it is -1). Since i 6∈ S, 1[S] = ei[S]. Clearly, χT (1) = 1.
Since there is a single coordinate inT in which ei is -1, then
χT (ei) = −1. Thus,χT (1) 6= χT (ei), implying χT does not
depend only onS.

We can now prove Lemma19:
Proof of Lemma19: A Boolean functionf : {−1, 1}n →

{−1, 1} is balanced onU if and only if the number of inputs
that it maps to 1 equals the number of inputs that it maps to
-1. This in turn happens if and only if

∑
x∈U f(x) = 0.

By Proposition21, the set of linear Boolean functions that
depend only onN(i) is the family of characters{χT }T⊆N(i).
Therefore, the set of linear functions that fit indexi are of
the form{χT · ei}T⊆N(i). (Since we moved to the±1 world,
summation is mapped to multiplication, and the standard unit
vector ei is the all-one vector, except for thei-th coordinate
which is -1.) The premise given in Lemma19 implies that
all these functions are balanced onU . That is, for everyT ⊆
N(i),

∑
x∈U χT (x) · xi = 0.

Let f be any function (not necessarily linear) that fits index
i. We can writef = g · ei, whereg is a function that depends
only onN(i). By Proposition20, g is a linear combination of
the characters{χT }T⊆N(i). Therefore,

∑
x∈U

f(x) =
∑
x∈U

g(x) · xi =
∑
x∈U

∑
T⊆S

ĝ(T )χT (x)

 · xi

=
∑
x∈U

∑
T⊆S

ĝ(T )(χT (x) · xi)

=
∑
T⊆S

ĝ(T )
∑
x∈U

χT (x) · xi

=
∑
T⊆S

ĝ(T ) · 0 = 0.

Therefore, alsof is balanced onU .

V. GENERAL CODES

In this section, we prove lower bounds for the class of
general randomizedINDEX codes. Let us first formally define
these codes.

Definition 22 (Randomized INDEX codes). Let 0 ≤ δ < 1.
A δ-error randomizedINDEX code C for {0, 1}n with side
information graphG on n nodes is a set of codewords in
{0, 1}` together with:

1) A public random stringR for both encoding and decod-
ing.

2) A private random stringRE for encoding.
3) n private random stringsRD1 , . . . , RDn for decoding.
4) An encoding functionE that given a source inputx in

{0, 1}n maps the triple(x, R,RE) into a codeword.
5) A set of decoding functionsD1, D2, . . . Dn. For eachi,

Di maps the quadruple(E(x,R,RE), x[N(i)], R, RDi
)

into a bit, satisfying the following:

Pr(Di(E(x,R,RE), x[N(i)], R, RDi
) 6= xi) ≤ δ.

The probability is over the three random stringsR, RE ,
andRDi

.

The n + 2 random stringsR,RE , RD1 , . . . , RDn
have finite

domains and are mutually independent of each other. Usually
these are uniformly distributed strings of some fixed length.

The distributions of the private random strings are known
in advance to all parties (the sender and the receivers), yet
the specific instances chosen are known only to the respective
parties. Therefore, the encoding functionE may depend on
the distributions ofRD1 , . . . , RDn , but not on the specific
instances chosen. Similarly,Di may depend on the distribution
of RE , but not on the specific instance. As usual, the graphG
is known in advance to the sender and the receivers and thus
the encoding and decoding functions can depend onG. The
lengthof C, denoted bylen(C), is defined to bè .

The main technical statement of this section is a direct-sum
result for theinformation costof a randomizedINDEX code.
A corollary of this result will be the lower bound on the length
of randomizedINDEX codes. We start with a brief overview of
the information theory notions and facts used in this section
(See [25] for a more extensive background).

A. Information theory background

In the following X ∼ µX , Y ∼ µY , Z ∼ µZ are random
variables on domainsX,Y,Z, respectively.
Entropy and mutual information The entropy of X (or,
equivalently, ofµX ) is H(X) =

∑
x∈X µX(x) log 1

µX(x) . The
binary entropy functionH2(p) is the entropy of a Bernoulli
random variable with probability of successp.

The joint entropyof X and Y is the entropy of the joint
distribution(µX , µY ). Theconditional entropyof X given an
eventA, denotedH(X|A), is the entropy of the conditional
distribution of µX given A. The conditional entropyof X
given Y is H(X|Y ) =

∑
y∈Y µY (y)H(X|Y = y).

The mutual informationbetweenX and Y is I(X ; Y ) =
H(X) − H(X|Y ). The conditional mutual informationbe-
tween X and Y given Z is I(X ; Y |Z) = H(X|Z) −
H(X|Y, Z).

The following are basic facts about entropy and mutual
information.

Proposition 23 (Entropy bound). Let X be any random
variable and letsupp(X) be the support ofX. Then,H(X) ≤
log |supp(X)|. Equality iff X is uniform onsupp(X).

Proposition 24 (Chain rule conditional mutual informa-
tion). For any sequence of random variablesX1, . . . , Xn,

I(X1, . . . , Xn ; Y ) =
n∑

i=1

I(Xi ; Y |X1, . . . , Xi−1).

Fano’s inequality Fano’s inequality [26] gives a lower bound
on the error probability of predicting the value of a random
variableX from the observation of another random variableY .
We consider a special case whereX is uniformly distributed
over a binary domain.

Theorem 25 (Fano’s inequality). Let Y be a random vari-
able and let X be uniformly distributed over{0, 1}. Let
g(Y ) ∈ {0, 1} be a function whose prediction error probability
Pr(g(Y ) 6= X) ≤ δ ≤ 1/2. Then,I(X ; Y ) ≥ 1−H2(δ).
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B. Direct sum for information cost

SupposeG′ is a vertex-induced subgraph ofG. An INDEX

code forG easily yields anINDEX code forG′ of the same
length by arbitrarily fixing the bits ofV (G) \ V (G′). Thus,

Proposition 26. If G′ is a vertex-induced subgraph ofG, then
the optimal length of anINDEX code forG′ is no more than
that of G.

What about the other direction? Suppose we can splitG
into k mutually disjoint vertex-induced subgraphsG1, . . . , Gk

and suppose we havek INDEX codesC1, . . . ,Ck for these
subgraphs. Clearly, by concatenatingC1, . . . ,Ck we can obtain
an INDEX code forG whose length is

∑k
i=1 len(Ci). But is

this always the optimal length code forG?
In general, it looks like one could obtain shorterINDEX

codes forG, by exploiting the edges connecting the different
subgraphsG1, . . . , Gk. But what if these graphs are discon-
nected from each other? In this case, it seems that the optimal
length of theINDEX code forG must equal the sum of the
optimal lengths of theINDEX codes forG1, . . . , Gk. In other
words, the optimal length ofINDEX codes should admit a
direct sum property. Nevertheless, proving this property for
the measure of code length is elusive. The techniques of Feder
et al. [15] yield a weaker result, which incurs a loss of an
additive term that depends linearly onk. We are able to prove
the direct sum property not directly for code length, but rather
for the “information cost” of codes:

Definition 27 (Information Cost). Let C be a randomized
index code forG. Let R denote the public random string of
C, and letE(x,R) denote the encoding ofx in C.4 Let X be
uniformly distributed in{0, 1}n. The information costof C,
denoted byicost(C), equalsI(X ; E(X, R) | R).

As the information cost of a code is always at most the
entropy of the codewords, the entropy bound (Proposition23)
implies that information cost is a lower bound on the code
length.

We prove that the information cost of anINDEX code
admits a direct sum property. The property holds not only
whenG1, . . . , Gk are totally disconnected from each other; it
suffices that there are no edges directed fromGi to Gj for all
i < j:

Theorem 28. Let G1, G2, . . . , Gk be vertex-induced sub-
graphs of a directed graphG such that:

1) The vertices ofG1, G2, . . . , Gk partition the vertices of
G.

2) For anyi < j and verticesvi ∈ V (Gi) andvj ∈ V (Gj),
there is no directed edge inG from vi to vj .

Let C be a δ-error randomizedINDEX code for G. Then,
there existδ-error randomizedINDEX codesC1,C2, . . . ,Ck

for G1, G2, . . . , Gk such thaticost(C) ≥
∑

j icost(Cj).

Proof: For j = 1 . . . k, defineVj = V (Gj) and Uj =⋃j
i=1 Vi.

4The dependence ofE on the sender’s private randomness is suppressed
for ease of presentation.

Let E(x,R) be the encoding function of theINDEX codeC

and letX be uniformly distributed on{0, 1}n. By definition,
icost(C) = I(X ; E(X, R) | R). Using the chain rule for
conditional mutual information,

I(X ; E(X, R) | R) =
k∑

j=1

I(X[Vj ] ; E(X, R) | X[Uj−1], R).

(Slightly abusing notation,U0 = ∅ and x[U0] is an empty
string.) To complete the proof of the theorem, it suffices to
show the following claim:

Claim 29. For everyj, there is aδ-error randomizedINDEX

codeCj for Gj such that

icost(Cj) = I(X[Vj ] ; E(X, R) | X[Uj−1], R).

Proof: The proof is based on a reduction lemma proven
in [17]. Fix a value of j and we will constructCj using C

as follows. Leta ∈ {0, 1}|Vj | denote the source input. As we
want to useC, we need to transforma into some inputx for
C. The transformation will be randomized. That is,x will be a
random string, created froma, from the public random string,
and from the private random string of the encoder.

x will be equal toa in the coordinates corresponding to ver-
tices inGj . The other coordinates ofx will be filled randomly
as follows. LetB have the same distribution asX[V \Uj ] and
let C be independent ofB and have the same distribution as
X[Uj−1]. The public random string forCj consists of(R,C)
while B will be part of the private randomness of the sender.
The random inputx will be defined to be the tuple〈C, a,B〉.
The encoding ofa is then E(〈C, a,B〉, R). Note that this
encoding is a function ofa, of the sender’s private random
string, and of the public random string.

Let i ∈ Vj be any coordinate. When applying the decoding
function Di of C in order to recoverai, the receiver needs to
know the bits ofx corresponding to neighbors ofi in the graph
G. By the property ofGj , it can be seen that the neighbors
of i in G are either among the neighbors ofi in Vj or belong
to Uj−1. Now, the values for the former are part of the side
information for coordinatei while the values for the latter can
be found in the public random stringC.

For any instantiation ofB and C, the decoding error is
simply the error ofC on the inputx obtained froma and
from the instantiations ofB and C. As this error is at most
δ, then also averaging over all choices ofB andC, the error
of Cj on a is at mostδ.

Next, we calculate the information cost ofCj as follows. Let
A be uniformly distributed over{0, 1}|Vj | and be independent
of B andC. Then,

icost(Cj) = I(A ; E(〈C,A, B〉, R) | C,R)
= I(X[Vj ] ; E(X, R) | X[Uj−1], R),

completing the proof of the claim.
Applying the above claim for allj completes the proof of

the theorem.
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C. Lower bound for randomized codes

Theorem7 can now be shown as a simple application of
the above Theorem28.

Theorem 7 (restated) The length of anyδ-error randomized
INDEX code forG is at leastMAIS(G) · (1 − H2(δ)), where
MAIS(G) is the size of the maximum acyclic induced subgraph
of G and H2(·) is the binary entropy function.

Proof: Let G′ be a maximal acyclic induced subgraph of
G. By Proposition26, it suffices to consider anyINDEX code
C for G′. Let u1, u2, . . . , uk denote the vertices ofG′ such
that there is no edge fromui to uj wheneveri < j. Apply
Theorem28 with G = G′ and whereGj is a graph with
a single vertexuj . We haveicost(C) ≥

∑
j icost(Cj). Now,

sinceCj is a INDEX code for a single vertex graph, therefore,
it encodes just a single bit that can be decoded with probability
of error at mostδ. By Fano’s inequality, it must have at least
1−H2(δ) bits of information.

VI. L OWER BOUNDS FOR RESTRICTED GRAPHS

In this section we show that for certain natural classes
of graphs, the minrank bound is tight w.r.t.arbitrary INDEX

codes.

Theorem 8 (restated) Let G be any graph, which is either a
DAG, a perfect graph, an odd hole, or an odd anti-hole. Then,
the length of anyINDEX code forG is at leastminrk2(G).

A. Directed acyclic graphs

A directed acyclic graph(DAG) is one without directed
cycles.

Proposition 30. Let G be any DAG onn nodes. Then, the
length of anyINDEX code forG is at leastminrk2(G).

Proof: Let C be any INDEX code for G. SinceG is a
DAG, thenMAIS(G) = n. Hence, by Theorem7, len(C) ≥ n.
Clearly, minrk2(G) ≤ n, and thuslen(C) ≥ minrk2(G).

B. Perfect graphs

An undirected graphG is calledperfect, if for any induced
subgraphG′ of G, ω(G′) = χ(G′).

Proposition 31. LetG be any perfect graph onn nodes. Then,
the length of anyINDEX code forG is at leastminrk2(G).

Proof: Let C be anyINDEX code forG. By Theorem7,
len(C) ≥ MAIS(G). SinceG is undirected, thenMAIS(G) =
α(G), i.e., the independence number ofG. Clearly, α(G) =
ω(G), implying that len(C) ≥ ω(G).

Lovász [27] proved in 1972 the “Perfect Graph Theorem”,
stating that a graphG is perfect if and only if its complement
is perfect. Now, sinceG is perfect, then by this theorem
also G is perfect, implying that in particularω(G) = χ(G).
Hence,len(C) ≥ χ(G). However, by the sandwich property
of minrank (Proposition4), minrk2(G) ≤ χ(G) and thus
len(C) ≥ minrk2(G).

C. Odd holes

Before we prove the lower bound for odd holes, we first
characterize their minrank:

Theorem 32. Let G be an odd hole of length2n+1 (n ≥ 2).
Then,minrk2(G) = n + 1.

Note that since for an odd holeG, ω(G) = n, odd holes
are examples of graphs for whichω(G) < minrk2(G).

Proof: As χ(G) = n+1 for an odd hole of length2n+1
and asminrk2(G) ≤ χ(G) (Proposition4), it suffices to prove
that minrk(G) ≥ n + 1.

Fix any matrixA that fitsG. For convenience, we number
the rows and columns ofA as 0, 1, . . . , 2n and make all the
index arithmetic below modulo2n. Let A0, . . . , A2n be the
2n + 1 rows of A. A has the following three properties, for
every i,

1) Ai[i] = 1.
2) Ai[i− 1], Ai[i + 1] ∈ {0, 1}.
3) Ai[j] = 0, for j 6∈ {i− 1, i, i + 1}.

For a rowAi, we call the rowsA0, . . . , Ai−1 the “predecessors
of Ai”. Note thatA0 has no predecessors. We next prove the
following two claims:

Claim 33. For i = 1, . . . , 2n − 2, either Ai is linearly inde-
pendent of its predecessors orAi+1 is linearly independent of
its predecessors.

Proof: Suppose, to reach a contradiction, that the claim
is false. Hence, there exists somei ∈ {1, . . . , 2n−2} s.t. both
Ai andAi+1 linearly depend on their predecessors. It follows
that bothAi andAi+1 linearly depend onA0, . . . , Ai−1. Since
A0[i+1] = · · · = Ai−1[i+1] = 0 (using Property 3 ofA and
the facti+1 < 2n), then alsoAi[i+1] = 0 andAi+1[i+1] = 0.
This contradicts the factAi+1[i + 1] = 1 (Property 1 ofA).

Claim 34. At least one amongA1, A2n−1, A2n is linearly
independent of its predecessors.

Proof: If at least one ofA2n−1, A2n is independent of
its predecessors, then we are done. So suppose both depend
on their predecessors. As argued above, this means that
A2n−1, A2n both depend onA0, . . . , A2n−2.

By Property 1 ofA, A2n[2n] = 1. The only vector among
A0, . . . , A2n−2 that can have a 1 at the2n-th coordinate is
A0. Thus, we must have:A0[2n] = 1. By Property 3 ofA,
A1[2n] = 0. Hence,A1 cannot depend on its sole predecessor,
A0. We thus obtained thatA1 is linearly independent of its
predecessors.

Note that in Claim34 we implicitly use the factn ≥ 2,
because we assume the indices1, 2n− 1, 2n are distinct.

We next use the above two claims to count the number of
rows ofA that must be linearly independent of their predeces-
sors. For eachi, let Zi = 1 if the i-th row is independent of
its predecessors andZi = 0 otherwise. The number of rows
that are linearly independent of their predecessors is

∑2n
i=0 Zi.

Note that this number is exactly the 2-rank of the matrixA.
We know the following three facts about the sequence

Z0, . . . , Z2n:
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1) Z0 = 1, becauseA0 simply does not have any prede-
cessors.

2) For eachi = 1, . . . , n− 3, Zi + Zi+1 ≥ 1 (Claim 33).
3) Z1 + Z2n−1 + Z2n ≥ 1 (Claim 34).

We now write the sum2
∑2n

i=0 Zi as follows:

2
2n∑
i=0

Zi = 2Z0 + Z1 +
2n−2∑
i=1

(Zi + Zi+1) + Z2n−1 + 2Z2n.

Using the above three facts, we have:

2
2n∑
i=0

Zi ≥ 2 + 2n− 2 + 1 + Z2n ≥ 2n + 1.

Therefore,
∑2n

i=0 Zi ≥ (2n + 1)/2. However, since
∑2n

i=0 Zi

is an integer we have the stronger bound:

2n∑
i=0

Zi ≥ d(2n + 1)/2e = n + 1.

Hence,rk2(A) =
∑2n

i=0 Zi ≥ n + 1. As this holds for anyA
that fitsG, alsominrk2(G) ≥ n + 1.

The lower bound for odd holes is then the following:

Theorem 35. Let G be an odd hole on2n + 1 nodes
(n ≥ 2). Then, the length of anyINDEX code for G is at
leastminrk2(G) = n + 1.

As for an odd holeG, MAIS(G) = ω(G) = n <
minrk2(G), this theorem implies that our lower bound for
generalINDEX codes (Theorem7) is not tight.

The proof of this lower bound is considerably harder than
the proofs for DAGs and perfect graphs. To this end, we need
to study some combinatorial properties of theconfusion graph
associated withINDEX coding.

Definition 36 (Confusion graph). Theconfusion graphC(G)
associated withINDEX coding for a directed graphG (abbre-
viated “confusion graph forG”) is an undirectedgraph on
{0, 1}n such thatx and x′ are connected by an edge if for
somei, we havex[N(i)] = x′[N(i)] but xi 6= x′i.

If x and x′ are connected by an edge inC(G), then no
INDEX codeC for G can mapx andx′ to the same codeword,
implying log χ(C(G)) is a lower bound onlen(C).
Notation. Let 0 and1 denote, respectively, the all-zero and
the all-one vectors. Let1S denotes the characteristic vector of
a setS ⊆ [n].

Lemma 37. Let G be an undirected graph onn nodes and let
C(G) be the confusion graph corresponding toINDEX coding
for G. Then,

1) If S is a vertex cover ofG, then any two inputs
x, x′ ∈ {0, 1}n that agree onS (i.e., x[S] = x′[S])
are connected by an edge inC(G).

2) If S is an independent set inG, then the setXS = {1T |
T ⊆ S} forms a clique inC(G).

3) If S, T are two disjoint and independent sets inG, and
there exists somei ∈ S that has no neighbors inT or
somej ∈ T that has no neighbors inS, then the inputs
1S and 1T are connected by an edge inC(G).

Proof of Part 1:: Sincex 6= x′, there exists some index
i ∈ [n] s.t.xi 6= x′i. This means thati 6∈ S. If a node does not
belong to a vertex cover, then all its neighbors must belong
to the vertex cover. We conclude thatN(i) ⊆ S and thus
x[N(i)] = x′[N(i)]. This implies thatx andx′ are connected
by an edge in the confusion graph.

Proof of Part 2:: Define U = [n] \ S. SinceS is an
independent set inG, thenU is a vertex cover. Note that any
two inputx, x′ ∈ XS agree onU , and thus by Part 1 must be
connected by an edge in the confusion graph.

Proof of Part 3:: Suppose, for example, there isi ∈ S
that has no neighbors inT . SinceS, T are disjoint,1S and
1T disagree on thei-th coordinate. SinceS is independent,
N(i) ⊆ [n] \ S, and thus1S [N(i)] = 0. SinceN(i) ∩ T =
∅, then also1T [N(i)] = 0. This implies that1S [N(i)] =
1T [N(i)] and therefore1S ,1T must be connected by an edge
in the confusion graph.

We can now prove Theorem35:
Proof of Theorem35: Let G be an odd hole on2n + 1

nodes (n ≥ 2). Let C be any INDEX code for G. We will
prove that|C|, the number of codewords inC, is greater than
2n, implying that len(C) ≥ n + 1 = minrk2(G).

Consider the following coloring ofG: S1 = {1, 3, . . . , 2n−
1}, S2 = {2, 4, . . . , 2n} and S3 = {2n + 1}. For eachi ∈
{1, 2, 3}, sinceSi is an independent set, then by Part 2 of
Lemma 37, C must use2|Si| different codewords to encode
inputs in XSi . Since |S1| = |S2| = n, this already implies
|C| ≥ 2n. Assume, to the contradiction, that|C| = 2n.

Since S1, S2, S3 are pairwise disjoint, then the sets
XS1 , XS2 , XS3 have only 0 as a common input and are
otherwise pairwise disjoint. Since|C| = 2n, and no codeword
can encode two different inputs inXSi

(i = 1, 2, 3), then there
must be at least one codeword encoding a nonzero input from
XS1 , a nonzero input fromXS2 , and a nonzero input from
XS3 . We call these inputsx1, x2, x3.

We view x1, x2, x3 as characteristic vectors of sets
T1, T2, T3 ⊆ [n]. Sincex1, x2, x3 6= 0, then T1, T2, T3 6= ∅.
Furthermore, they are all independent and pairwise disjoint.
Since the only nonzero vector inXS3 is e2n+1, T3 = {2n+1}.

Sincex1, x2, x3 are encoded by the same codeword, no two
of them can be connected by an edge in the confusion graph.
Consider anyi ∈ T1. By Part 3 of Lemma37, i must have a
neighborj ∈ T2. Similarly, bothi andj must have neighbors
in T3. SinceT3 = {2n+1}, both are neighbors of2n+1. We
conclude that(i, j, 2n+1) forms a triangle inG. However, all
odd holes are triangle-free. This is a contradiction, and thus
|C| > 2n.

The above theorem provides a tight lower bound on the
lengthof INDEX codes for odd holes, but not on theirsize. Our
upper bound (Theorem5) gives a code whose size is2n+1,
while the above proof only shows a lower bound of|C| > 2n.
Optimal code size lower bounds are important for deriving
lower bounds on the average encoding length and on the
information cost. Resorting to a more involved combinatorial
argument, we are able to prove tight bounds (i.e.,2n+1) on
the size ofINDEX codes for odd holes of length at least 7:

Theorem 38. Let G be an odd hole on2n+1 nodes (n ≥ 3).
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Then, the size of anyINDEX code forG is at least2minrk(G) =
2n+1.

The proof of this theorem appears in AppendixA.
Dealing with the pentagon (a hole of length 5) turns out to

be very tricky. The difficulty of handling the pentagon stems
from the fact that the corresponding confusion graph has a
rather peculiar property. In most cases, one can obtain tight
lower bounds on the chromatic number of the confusion graph
by obtaining tight upper bounds on the graph’s independence
number. It turns out that this approach fails for the pentagon.
The size of the pentagon’s confusion graph is 32 and its
chromatic number is 8. Yet, the code we show below for the
pentagon demonstrates that the independence number of its
confusion graph is 5, implying that32/5 < 8 is not a tight
lower bound on the chromatic number.

Codeword Inputs
C1 00000, 00110, 10001, 11101, 11110
C2 11111, 11001, 01110, 00010, 00001
C3 01010, 01100, 11011, 10111, 10100
C4 00100, 01011, 10010, 10101
C5 00111, 01001, 10110, 11010
C6 01000, 01111, 10000, 10011
C7 00011, 00101, 11000
C8 01101, 11100

By applying arguments from the proof of theorem38 we
can obtain a lower bound of 7 on the size of codes for
the pentagon, one short of the upper bound of 8. By the
same arguments, anyINDEX code of size 7 for the pentagon
must adhere to certain structural constraints. By a brute force
exhaustive search over such codes, we verified that 8 is the
tight lower bound.

D. Odd anti-holes

Recall that an odd anti-hole is the complement graph of
an odd hole. We prove a tight lower bound on the minimum
length of codes for odd anti-holes. This bound does not give
a tight lower bound on the size of codes for odd anti-holes.
Unfortunately, we could not prove tight bounds on the size.

Theorem 39. Let G be an odd anti-hole on2n + 1 nodes
(n ≥ 2). Then, the length of anyINDEX code forG is at least
minrk(G) = 3.

Proof: We use the same notation and propositions as in
the proof for odd holes. LetC be any INDEX code for G.
We would like to show that|C| ≥ 5. That would imply that
len(C) ≥ 3.

An odd anti-hole of length2n + 1 is (n + 1)-colorable.
Consider the following coloring ofG: S1 = {1}, S2 =
{2, 3}, . . . , Sn+1 = {2n, 2n + 1}. Let XS1 , . . . , XSn+1 be
the input sets corresponding toS1, . . . , Sn+1. Note that these
sets share a single input (the all-zero input) and are otherwise
pairwise disjoint.

For i = 2, . . . , n + 1, |XSi | = 4, and thus by Part 2 of
Lemma 37, C must use4 different codewords for each of
these sets. Assume, to reach a contradiction, that|C| = 4.
Therefore, there must be a single codeword that encodes a

nonzero input fromXSi
, for eachi = 1, . . . , n + 1. Let us

denote these inputs byx1, . . . , xn+1. We view x1, . . . , xn+1

as characteristic vectors of setsT1, . . . , Tn+1. These sets are
all independent and pairwise disjoint. Furthermore,T1 = {1},
because the only nonzero input inXS1 is e1.

Sincex1, . . . , xn+1 are all encoded by a single input, they
must form an independent set in the confusion graphC(G).
We next prove by induction that for everyi = 1, . . . , n + 1,
Ti must be the set{2i− 1}.

For i = 1, we already know thatT1 = {1}. Assume
correctness fori. We will show correctness fori+1. Sincexi

andxi+1 are not connected by an edge in the confusion graph,
then by Part 3 of Lemma37, every node inTi must have a
neighbor inTi+1 and vice versa. SinceTi = {2i−1} and since
the only neighbor of2i− 1 in the setSi+1 = {2i, 2i + 1} is
2i + 1, thenTi+1 must be{2i + 1}.

It follows that Tn+1 = {2n + 1}. However, since nodes1
and2n+1 are not neighbors inG, it follows that no node inT1

has neighbors inTn+1. Thus, by Part 3 of Lemma37, x1 and
xn+1 must be connected by an edge in the confusion graph,
in contradiction to the factx1, . . . , xn+1 is an independent set
in the confusion graph. Therefore,|C| ≥ 5.

VII. C ONCLUSIONS

In this paper, we explored upper and lower bounds on the
length ofINDEX codes for{0, 1}n with side information graph
G. We identified a measure on graphs, theminrank, which
we showed to characterize the length ofINDEX codes for
natural classes of graphs (DAGs, perfect graphs, odd holes,
and odd anti-holes). We also proved that minrank characterizes
the minimum length of natural types ofINDEX codes (linear,
linearly-decodable, and semi-linearly-decodable) forarbitrary
graphs. For general codes and general graphs, we were able
to obtain a weaker bound in terms of the maximum acyclic
induced subgraph. Finally, we proved a direct sum theorem for
the information cost ofINDEX codes with side information.

As Lubetzky and Stav [24] have recently shown, the min-
rank is not a tight lower bound on the length of a general
INDEX code for arbitrary graphs. Characterizing the optimal
length of INDEX codes for arbitrary graphs therefore remains
an open problem. It is nonetheless important to note that
virtually all codes presently in use are linear, and for those
our bounds are tight.

The minrank by itself is an interesting subject of study. We
know that for undirected graphs, it is bounded from below
by the Shannon capacity and from above by the chromatic
number of the complement graph. It would be interesting to
explore further properties of minrank with respect to other
graph measures such as the Lovász Theta function.

Finally, a practical conclusion is that keeping “junk” (un-
needed information) may be beneficial, as it can serve as side
information and save communication. This is particularly true
in view of the declining cost of storage space.
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APPENDIX A
SIZE LOWER BOUND FOR ODD HOLES

Theorem 38 (restated) Let G be an odd hole on2n + 1
nodes (n ≥ 3). Then, the size of anyINDEX code forG is at
least2minrk(G) = 2n+1.

Proof: Our strategy for proving the theorem will be
by showing that the independence number of the confusion
graph C(G) is at most2n. Since |C(G)| = 22n+1, it will
immediately follow thatχ(C(G)) ≥ 2n+1, giving us the
desired lower bound on the size of theINDEX code.

In the derivations below, we assume the nodes ofG are
numbered0, 1, 2, . . . , 2n. All the index arithmetics are done
modulo2n.

Let X be any independent set of inputs in the confusion
graph. We would like to prove that|X| ≤ 2n. For any set
S ⊆ [n] of coordinates, defineX[S] to be the set obtained
by projecting all the inputs inX on the coordinates inS:
X[S] = {x[S] | x ∈ X}. (When S is a sequence of
indices{i1, . . . , ik}, we writeX[i1, . . . , ik] as a shorthand for
X[{i1, . . . , ik}].)

As an immediate corollary of Part 1 of Lemma37, we obtain
the following:

Proposition 40. Let G be an undirected graph onn nodes,
and let X ⊆ {0, 1}n be an independent set in the confusion
graph C(G) for G. Then, for any vertex coverS ⊆ [n] of G,
|X| ≤ |X[S]|.

It is possible to strengthen Proposition40. Given an undi-
rected graphG on n nodes and a subsetT of its vertices, we
say that a subsetS of T is a vertex cover ofT , if for every
nodev ∈ T , eitherv ∈ S or N(v) ⊆ S (whereN(v) is the
set of all the neighbors ofv in G). For example, ifG is a
cycle, andT = {i, i+1, i+2}, thenS = {i, i+2} is a vertex
cover ofT . The following is a straightforward generalization
of Proposition40:

Proposition 41. Let G be an undirected graph onn nodes,
and let X ⊆ {0, 1}n be an independent set in the confusion
graphC(G) for G. Then, for any subsetT ⊆ [n], and for any
vertex coverS of T , |X[T ]| ≤ |X[S]|.

Proof: Suppose, to reach a contradiction,|X[T ]| >
|X[S]|. Then, by the Pigeonhole Principle, there exist two
inputs x, x′ ∈ X s.t. x[S] = x′[S] but x[T ] 6= x′[T ]. That
is, there is somej ∈ T \S, s.t.x[j] 6= x′[j]. Yet, sincej 6∈ S,
N(j) ⊆ S, and thusx and x′ agree on all the neighbors of
j but disagree onj. This means thatx andx′ are connected
by an edge in the confusion graph, in contradiction to the
assumption they are both members of an independent set.

Now, in order to bound|X|, we consider three cases.
Case 1: ∃i ∈ [0, 2n] s.t. |X[i, i + 1]| ≤ 2.

Without loss of generality, assumei = 0. We construct a
vertex coverS of G as follows:S = {0, 1, 3, 5, 7, . . . , 2n−1}.
Note thatS is indeed a vertex cover ofG and that|S| =
n + 1. We split it into two parts:S1 = {0, 1} and S2 =
{3, 5, . . . , 2n− 1}. Clearly, |X[S]| ≤ |X[S1]| · |X[S2]|. Since
|S2| = n − 1, then |X[S2]| ≤ 2n−1. Therefore,|X[S]| ≤
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|X[S1]| · |X[S2]| ≤ 2 · 2n−1 ≤ 2n. Using Proposition40 we
have in this case:|X| ≤ 2n.
Case 2: ∃i ∈ [0, 2n] s.t. |X[i, i + 1]| = 4.

WLOG, assumei = 1. Hence,|X[1, 2]| = 4. Since{1, 3}
is a vertex cover of the set{1, 2, 3}, then by Proposition41,
|X[1, 2, 3]| ≤ |X[1, 3]| ≤ 4. On the other hand, since{1, 2}
is a subset of{1, 2, 3}, 4 = |X[1, 2]| ≤ |X[1, 2, 3]| ≤ 4.
Hence,|X[1, 2, 3]| = |X[1, 2]| = 4, and thus if any two inputs
x, x′ ∈ X agree on positions1 and2, they also must agree on
position3. Analogously, we have|X[0, 1, 2]| = |X[1, 2]| = 4,
and thus any two inputs that agree on positions1 and2 also
agree on position0. Now, since the bits at positions1 and2
completely determine the bits at positions0 and 3, we have:
|X[0, 1, 2, 3]| = 4.

Consider now the following vertex cover ofG: S =
{0, 1, 3, 5, 7, . . . , 2n − 1}. We split it into two parts:S1 =
{0, 1, 3} and S2 = {5, 7, . . . , 2n − 1}. We obtain:|X[S]| ≤
|X[S1]| · |X[S2]|. Since S1 ⊆ {0, 1, 2, 3}, |X[S1]| ≤
|X[0, 1, 2, 3]| = 4. Since |S2| = n − 2, |X[S2]| ≤ 2n−2.
Therefore,|X[S]| ≤ 4 · 2n−2 = 2n. Applying now Proposi-
tion 40, we have:|X| ≤ |X[S]| ≤ 2n.
Case 3: ∀i ∈ [0, 2n], |X[i, i + 1]| = 3. We split the analysis
of this case into two sub-cases.
Sub-case 3.1: n ≥ 4. That is,G is an odd hole of length at
least9. Our goal in this case is to show that|X[0, 1, . . . , 7]| ≤
16. If we do that, then we can construct a vertex cover of
G as follows:S = S1 ∪ S2, whereS1 = {0, 1, 3, 5, 7} and
S2 = {9, 11, . . . , 2n−1}. We obtain:|X| ≤ |X[S]| ≤ |X[S1]|·
|X[S2]| ≤ |X[0, 1, . . . , 7]| · 2|S2| ≤ 16 · 2n−4 = 2n.

In order to bound|X[0, 1, . . . , 7]|, we develop a recursive
expression for|X[0, 1, . . . , i + 1]|, for any i = 0, . . . , 2n− 1.

Fix somei ∈ [0, 2n − 1] and denote the three bitstrings in
X[i, i+1] by aibi, aibi, andaibi, whereai, bi ∈ {0, 1}. Note
that exactly two of these bitstrings agree on positioni and
exactly two agree on positioni + 1. ai is the majority bit at
positioni andbi is the majority bit at positioni + 1. We split
the setX[0, 1, . . . , i + 1] into three parts accordingly:

Ai = {x[0, 1, . . . , i + 1] | x ∈ X, x[i, i + 1] = aibi},
Bi = {x[0, 1, . . . , i + 1] | x ∈ X, x[i, i + 1] = aibi}, and

Ci = {x[0, 1, . . . , i + 1] | x ∈ X, x[i, i + 1] = aibi}.
Clearly, |X[0, 1, . . . , i + 1]| = |Ai| + |Bi| + |Ci|. We will
develop recursive expressions for|Ai|, |Bi|, |Ci| and use them
to bound|X[0, 1, . . . , i + 1]|.

Recall thataibi, aibi, andaibi are the three bitstrings con-
stituting X[i, i + 1]. We would like to explore next how these
bitstrings can be extended into bitstrings inX[i, i + 1, i + 2].

We next argue thataibi andaibi cannot be extended using
the same bit into bitstrings inX[i, i + 1, i + 2]. If there exists
a bit ci s.t. bothaibici and aibici belong toX[i, i + 1, i +
2], then there exist two inputsx, x′ ∈ X s.t. x[i, i + 1, i +
2] = aibici and x′[i, i + 1, i + 2] = aibici. That is, x[i +
1] 6= x′[i + 1], but x, x′ agree on the two neighbors ofi + 1.
Therefore,x, x′ are connected by an edge in the confusion
graphC(G), in contradiction to the assumption both belong
to an independent set. We conclude thataibi and aibi must
be extended by complementary bits into bitstrings inX[i, i +
1, i + 2].

The above implies there exists some bitci s.t.X[i, 1+1, i+
2] consists of the following bitstrings:

{ aibici, aibici, aibici }.

It may optionally contain also the following bitstring:

aibici.

(Note that it cannot consist only of the bitstrings
{aibici, aibici, aibici}, because then|X[i + 1, i + 2]| = 2.)

Since there is a single bitstrings inX[i, i+1, i+2] in which
bit i+1 is bi, bi must be the majority bit at positioni+1 w.r.t.
the bitstrings inX[i + 1, i + 2]. In other words,ai+1 = bi.
Similarly, it can be seen thatci must be the majority bit at
position i + 2 w.r.t. the bitstrings inX[i + 1, i + 2]. Hence,
bi+1 = ci.

We conclude the following:

1) If x ∈ X and x[i + 1, i + 2] = ai+1bi+1 = bici, then
necessarilyx[i, i + 1] = aibi. Therefore,|Ai+1| ≤ |Ci|.

2) If x ∈ X and x[i + 1, i + 2] = ai+1bi+1 = bici,
then x[i, i + 1] = aibi or x[i, i + 1] = aibi. Therefore,
|Bi+1| ≤ |Ai|+ |Ci|.

3) If x ∈ X and x[i + 1, i + 2] = ai+1bi+1 = bici, then
necessarilyx[i, i + 1] = aibi. Therefore,|Ci+1| ≤ |Bi|.

For i = 0, we have|A0| = |B0| = |C0| = 1. Hence,
Ai,Bi,Ci form Fibonacci-like series. Since we need the value
of the series only ati = 6, we expand their prefixes explicitly
in Table I.

i |Ai| |Bi| |Ci| |X[0, 1, . . . , i + 1]|
0 1 1 1 3
1 1 2 1 4
2 1 2 2 5
3 2 3 2 7
4 2 4 3 9
5 3 5 4 12
6 4 7 5 16

TABLE I
UPPER BOUNDS OBTAINED USING THE RECURSION.

The last row of the table gives our desired upper bound:
|X[0, 1, . . . , 7]| ≤ 16.
Sub-case 3.2: n = 3. That is,G is a hole of length 7. We
show that in this case|X[0, 1, . . . , 5]| ≤ 8. This would imply
that |X| ≤ |X[0, 1, 3, 5]| ≤ |X[0, 1, . . . , 5]| ≤ 8 = 2n.

By what we proved in the previous sub-case, we know
|X[0, 1, . . . , 5]| ≤ 9. We assume then, to reach a contradiction,
that |X[0, 1, . . . , 5] = 9. We partition X into three sets as
follows:

XA = {x ∈ X | x[0, 1] = a0b0},
XB = {x ∈ X | x[0, 1] = a0b0}, and

XC = {x ∈ X | x[0, 1] = a0b0}.

We will prove that if |X[0, 1, . . . , 5]| = 9, then
|XA[5]| = |XB[5]| = |XC[5]| = 2. That would im-
ply that |X[5, 6, 0, 1]| = |XA[5, 6, 0, 1]| + |XB[5, 6, 0, 1]| +
|XC[5, 6, 0, 1]| ≥ 2+2+2 = 6. By symmetry, the upper bound
we proved in the previous sub-case on|X[0, 1, 2, 3]| holds
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for any sequence of four consecutive positions. Therefore,
|X[5, 6, 0, 1]| ≤ 5, contradicting|X[5, 6, 0, 1]| ≥ 6.

So how do we prove|XA[5]| = |XB[5]| = |XC[5]| = 2?
Define, for anyi ∈ [0, 2n − 1], AR

i = XA[0, 1, . . . , i + 1],
BR

i = XB[0, 1, . . . , i+1], andCR
i = XC[0, 1, . . . , i+1]. Note

that:

AR
i = {x[0, 1, . . . , i + 1] | x ∈ X, x[0, 1] = a0b0},

BR
i = {x[0, 1, . . . , i + 1] | x ∈ X, x[0, 1] = a0b0}, and

CR
i = {x[0, 1, . . . , i + 1] | x ∈ X, x[0, 1] = a0b0}.

By reversing the order of indices and then applying the same
argument as in the proof of the previous sub-case, we can
obtain that:

1) The upper bound on|Ai| applies to|AR
i |.

2) The upper bound on|Bi| applies to|CR
i |.

3) The upper bound on|Ci| applies to|BR
i |.

Since |X[0, 1, . . . , 5]| = 9 meets its upper bound, then
also |AR

i |, |BR
i |, |CR

i | must meet their upper bounds fori =
0, 1, . . . , 4. We now show separately that|XA[5]| = |XB[5]| =
|XC[5]| = 2:

1) Using TableI, we have|AR
2 | = 1, while |AR

4 | = 2.
Therefore,|XA[3]| = 1 while |XA[3, 4, 5]| = 2. Since
{3, 5} is a vertex cover of{3, 4, 5}, then |XA[3, 5]| ≥
|XA[3, 4, 5]| = 2. However, since|XA[3]| = 1, then
|XA[5]| = 2.

2) Using TableI, we have|BR
3 | = 3 while |BR

4 | = 4.
Again, this must imply that|XB[5]| = 2.

3) Using TableI, we have|CR
3 | = 2 while |CR

4 | = 3. That
is, |XC[0, 1, 2, 3, 4]| = 2 while |XC[0, 1, 2, 3, 4, 5]| = 3.
This can happen only if|XC[5]| = 2.
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