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Abstract—Motivated by a problem of transmitting supplemen- about the other’s input. Witsenhausen showed that fixed-length
tal data over broadcast channels (Birk and Kol, INFOCOM sjde information codes are equivalent to colorings of a related
1998), we study the following coding problem: a sender communi- opiact called theconfusion graph and thus the logarithm
cates withn receiversRy, ..., R,. He holds an inputz € {0,1}" f the ch fi b f thi h tightly ch teri
and wishes to broadcast a single message so that each receifgr 0 e.c. romatic number 0_ IS graph tghtly characterizes
can recover the bitz;. Each R; has prior side informationabout the minimum number of bits needed to encode the source.
x, induced by a directed graphG on n nodes; R; knows the bits Further results by Alon and Orlitskyp] and Koulgi et al. [6]
of z in the positions {;j | (i,7) is an edge ofG}. G is known to  showed that graph-theoretic information measures could be
the sender and to the receivers. We call encoding schemes that,seq tg characterize both the average length of variable-length
achieve this goalINDEX codes for{0,1}" with side information . -
graph G. codes, as ngl as asymptotic rates of codes that simultaneously

In this paper we identify a measure on graphs, theminrank, €ncode multiple inputs drawn from the same source.
which exactly characterizes the minimum length of linear and In this paper, we study a new variant of source coding with
certain types of non-linearINDEX codes. We show that for natural - side information, first proposed by Birk and Kof][in the
classes of side information graphs, including directed acyclic ¢,ntext of a server that disseminates a set of data blocks over
graphs, perfect graphs, odd holes, and odd anti-holes, minrank a broadcast channel to a set of caching clients. Each client
is the optimal length of arbitrary INDEX codes. s g "

For arbitrary INDEX codes and arbitrary graphs, we obtain a POSSesses in its cache only a subset of the transmitted blocks,
lower bound in terms of the size of the maximum acyclic induced due to reception problems, limited storage space, rejection by
subgraph. This bound holds even for randomized codes, but is an interest filter, etc. The client needs a certain subset of the
shown not to be tight. data blocks, yet some of these blocks may be missing from its

Index Terms—Error correction coding, broadcast channels, cache. The client uses a backward channel to request blocks

code length, information cost. that it needs but has not cached and to advise the server of
the blocks it already has in its cache. The challenge is to
|. INTRODUCTION minimize the amount of supplemental information that must be

Source coding is one of the central areas of coding agﬂfjadcast by the server in order to enable every client to derive
information theory. Shannon’s famous source coding theor |ts| requJestedthqgks. Sfee iectibrﬁ%r moreddt:atalls .O? this d
states that the average number of bits necessary and suﬁicfﬂ'ﬂp em. In 7], t € ldea of coding on demand by an informe

to encode a source is equal (up to one bit) to the entro urce (ISCO,D) IS proposed. ar?d. explored.' .Specmcally, a
of the source. In many distributed applications, though, t uristic algorithm is used to judiciously partition the set of

receiver may have some prigide informationabout the clients into subsets, and the requests of the clients in each

source message, before it is sent. Source coding with Sﬂépset are handled using an erasure correcting code such that

information addresses encoding schemes that exploit the Si@sh member of any given subset is able to derive the union of

information in order to reduce the length of the code. Classic,tgle l:l)loclés reqhuesteq by tfhat sub:;et’s merglb?rs. Thl's ?pproach
results in this areal], [2], [3] describe how to achieve optimalIS related to the notion of a graph cover by “partial” cliques,

rates with respect to the joint entropy of the source and tﬁ@d is shown to generally not provide the optimal solution even
side information with an optimal partition. The paper first considers the case

Witsenhausen4] initiated the study of the zero-error Sidewherein each client requests a single, unique block, and then

information problem. For every source input € X, the shows a simple reduction that represents a client requesting
receiver gets an input € Y that gives some information aboutmultiple blocks as several single-reqqest clients. (Multiple
x. This is captured by restricting the paits, y) to belong to a requests for the same blOCk are prohibited.) . .
fixed setl C X x Y. Both the sender and the receiver knéw The above scenario is formalized as a source coding with

and thus each of them, given his own input, has informatioﬁj1de information pmt?'em as follows (cf7)). There is a sender
(server) who has an input (datafrom a source alphab&f =

An extended abstract of this paper appeared at the 47th IEEE Anndd), 1}™ (we assume here single bit blocks; see more details in
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Example 1. For an inputz € {0,1}", each receiveR; is Our contributions. In this paper we identify a graph func-
interested in the value; but knowsz;_1 as side information. tional, called minrank which we show to characterize the
(Abusing notation slightly, receiveR; knows z,.) The side minimum length ofINDEX codes, for natural types of codes
information graph is thus a directed cycle of lengthSince and for wide classes of side information graphs. Gebe a
x;_1 is “independent” ofz;, it may not be clear at first how directed graph om vertices without self-loops. We say that a
the sender can take advantage of the side information of B matrix A = (a;;) fits G if for all 4 andj: (i) a;; = 1, and
receivers to shorten the broadcast message. However, ther@)is:;; = 0 whenever(s, j) is not an edge ofG. Thus,A — I

a strategy in which the sender can save one bit: rather tharthe adjacency matrix of aedge subgraptof G, wherel
sending all the bits aof, the sender broadcasts the 1 parities denotes the identity matrix. Leks(-) denote the 2-rank of a
1 @ X9, 22 D x3,...,Tn—1 D z,. NOow, each receiveR; for 0-1 matrix, namely, its rank over the fieldF'(2).

i > 1 can recoverr; by taking the parity ofr; 1 @& x; with _ . A . .

x;_1. Finally, receiverR; xORs then — 1 parities broadcast Definition 3. minrky(G) = min {rky(4) : A fits G}.
by the sender together with, to recoverx;. The above measure famdirectedgraphs was considered
by Haemers §] in the context of proving bounds for the
Shannon capacit® of undirected graphs. For an undirected
graphG whose adjacency matrix &/, the 2-rank ofM + I

Definition 2 (INDEX codes). A deterministic INDEX code
C for {0,1}" with side information graphG on n nodes,

_abbreviaeted ash'NDE?(h(_:Ode forG”, is a set of codewords (which fits G) has also been studied in the algebraic graph
in {0,1}" together with: theory community. For example, Brouwer and van E§] [
1) An encoding functionE mapping inputs in{0,1}" to and Peetersi{] study this quantity for strongly regular and

codewords, and distance-regular graphs, respectively. It has been shown by
2) A set of decoding functionsD;, D,, ... D,, such that Peeters]1] that computingminrks(G) is NP-hard. Finally, it
D;(E(x),z[N(3)]) = =; for everyi. is known thatminrk, has the “sandwich property”, similar to

The graphG is known in advance to the sender and thather natural quantities such as the Bez Theta function:

receivers; thus the encoding and decoding functions typicalyfoposition 4 ( [12], [8]). For any undirected graphG,
depend onz. Thelengthof €, denoted bylen(C), is defined w(G@) < O(G) < minrky(G) < x(G), where G is the
to bel. complement of7 and w(-), ©(-), and x(-) are, respectively,

The above problem can also be cast in an equivalent settm clique number, the Shannon 'capacny,. anq thg chromatic
with a single receiver: The receiver is given an indeand nimber. Moreover, each of these inequalities is strict.
the side informationz[ N (i)] as inputs and wants to recover Our first result (see Sectiofil) shows thatminrks(G)
the valuez;. (The equivalence follows from the fact thecompletely characterizes the minimum lengtHioéar INDEX
sender does not know the indéxgiven to the receiver, and codes (i.e., ones whose encoding function is linear), for
thus has to use an encoding that enables the recoveryafiitrary directed side information graplG:
x;, for any ¢.) Using this equivalent form, we can contras L . .
our side ir):for)matiorﬁl probler(r]w with Witsenhausen’s zero-errjmfeorem 5. For any side information grapidy, there exists
side information problem. A first notable difference is tha I!near INDEX code for whqse length equalginrk,(G).
while in Witsenhausen’s setting thentire input z has to This bound is optimal for all linearNnDEX codes forG.
be recovered, in our setting only a single bit is needed.  This bound strictly improves a previous upper bound of
This allows significant savings in the encoding length, as tiBirk and Kol [7]. Birk and Kol showed a construction of a
following example demonstrates: suppose the side informatiimear INDEX code, whose length is the “cover cost” of the
graph is a perfect matching om nodes. Since the receiverside information graph (and showed that the construction is
has only a single bit of side information, then— 1 bits suboptimal). For undirected graphs, the cover cost is the same
are necessary to recover the entire input. If, however, ordg the chromatic number of the complement graph. Since the
a single bit is needed, then the sender can encode his inpiittrank can be strictly smaller than this chromatic number,
by the n/2 parities of pairs of matched bits. A secondt immediately follows that the minrank bound beats the Birk
difference from Witsenhausen’s setting is that the type @hd Kol bound. The lower bound for linear codes is of interest,
side information addressed in our problem is restricted to sigiice linear codes are possibly the most natural type of codes.
information graphs. This natural restriction emanates from tiv¢ fact, all the existingiNDEX codes (with or without side
broadcast application mentioned above and also imposes migfermation) we are aware of are linear.
structure that enables us to obtain an interesting combinatorialn Section|V we prove thatminrk,(G) characterizes not
characterization of the minimum length @fiDEX codes in only the optimal length of linear codes, but also the optimal
terms of the side information graphs. length of a wide class ofion-linear codes. AnINDEX code

We also consider in this paper randomizeabex codes, is called linearly-decodablg if all its n decoding functions
in which the encoding and decoding functions are alloweate linear. A linearly-decodable code need not be linearly
to be randomized and are even allowed to use a commamcodable. A simple argument shows that the length of a
public random string. Decoding needs to succeed only wilinearly-decodableNnDEx code for any graphG is at least
high probability, taken over the random choices made by theinrks(G). We relax the notion of linearly-decodable codes
encoding and decoding functions. to “semi-linearly-decodable” codes. AmMDEX code is k-



linearly-decodableif at least & of its decoding functions almost all our lower bounds hold not only for the length of
are linear. Note that-linearly-decodable codes are simplyNDEX codes but also for their information cost. This result is
linearly-decodable, whil@-linearly-decodable codes are unpresented in Sectiow.

restricted. We are able to prove thatnrk,(G) is the optimal Techniques. We resort to a multitude of techniques from

length of k-linearly-decodable codes whén> n — 2: linear algebra, information theory, Fourier analysis, and com-
binatorics to prove the results presented in this paper.

The lower bounds for linearly-encodable and linearly-
decodable codes are based on dimension arguments from lin-
ear algebra. To extend the lower bound for linearly-decodable

As our new linearINDEX code (proof of Theorenbin codes to semi-linearly-decodable codes, we used an intriguing
Sectionlll) is also linearly-decodable (and thuslinearly- “balance property” of Boolean functions: if all linear Boolean
decodable, for any), the bound in Theorer is tight. functions are “balanced” on some &t (i.e., get the same

Our third contribution is a lower bound that holds fomumber of O’'s and 1's on the set), then all Boolean func-
generalINDEX codes including deterministic and randomizetions (whether linear or not) are balanced bn To prove
INDEX codes. This result is presented in Section this property, we use Fourier analysis to represent arbitrary
Boolean functions as linear combinations of linear functions.
We then introduce the notion of “minimum dimension”, which
is dual to minrank, and explore its properties using the balance
property. This in turn allows us to extend the lower bound for
linearly-decodable codes {@ — 2)-linearly-decodable codes.

This lower bound immediately gives a tight bound for The lower bound for general (randomized) codes and the
directed acyclic graphs and undirected grapghshat satisfy direct sum theorem are proved via information theory argu-
w(G@) = minrks(G) = x(G). In particular, it holds for perfect ments. We extend previous arguments frdii[[ 18] to obtain
graphs. In SectionVI, we are able to prove that minranka direct sum theorem for thieformation costof codes.
characterizes the minimum length pfDEX codes, even for  Finally, our lower bounds for odd holes and odd anti-holes
non-perfect graphs, namebdd holes(undirected odd-length are purely combinatorial. We employ a connection between
cycles of length at least 5) aratld anti-holes(complements vertex covers of a grapts and the structure of the confusion
of odd holes). graph corresponding teiDEX codes forG. We note that deal-
ing with odd holes, and with the pentagon in particular, turned

Theorem 8. Let G be any graph, which is either a DAG, out to be very challenging, because the standard technique of
perfect graph, an odd hole, or an odd anti-hole. Then, tr]e Y ging, be qu

. . ower bounding the chromatic number of the corresponding
length of anyINDEX code forG is at leastminrks(G).

confusion graph via its independence number does not work.
This theorem implies that our lower bound for general cod&elated work. There are settings other than source coding

(Theorem?) is not tight. For odd holeayAis(G) is the size in which INDEX codes have been addressed. Ambaietis

of the largest independent set, i.e(G), which we show to al. [19] considered what they called “random access codes”,

be strictly smaller thaminrks(G). which are identical to randomizadbex codes without side
The Strong Perfect Graph Theorem (conjectured by Berggormation. Their main thrust was proving tight bounds on the

[13] and proved by Chudnovskst al. [14]) states that a graph length of the codes in the quantum setting, where inputs can be

is perfect if and only if it contains no (induced) odd hole oencoded by qubits rather than classical bits; their result applied

odd anti-hole. It follows that every undirected graph can ke the classical setting is a special case of our Theordor

partitioned into induced subgraphs, each of which is eithéhe case wheid is the empty graph.

perfect, an odd hole, or an odd anti-hole. This motivated usThe problem ofiNDEX coding with side information can

to study the following direct sum-type problem: if a graplalso be cast as @ane-way communication complexjiyoblem

G can be partitioned int@& induced sub-graph&,...,Gy, of the indexing function [20] (from which the termINDEX

then is the length of the bestDEX code forG equal to the codes was coined) with the additional twist of side infor-

sum of the lengths of the best codes ey, ..., Gr? While mation. Alice (the sender) is given an inputand sends a

we believe the answer to this general question to be negatisiigle message to Bob. Bob is given an indeand the side

we were able to prove it for the case wheréln, ..., G are information 2[N(¢)], and uses Alice’s message to learp

disconnected components (i.e., there is no edge conne&gtingAnother formulation ofiNDEX coding is in terms ofhetwork

and G;, for any i # j). A direct proof of this result seemscoding[21], [22]. As such, it represents a restricted case of a

to be elusive. In fact, an argument based on the techniquessipigle source, a single encoder and a single channel, but with

Federet al. [15] incurs a loss of an additive term that dependthe important addition of a special flavor of side information.

linearly onk. After lower bounding the length of a code by itsParts of this information are known to different decoders, and

information cosf16], [17], we are able to prove a tight directthe encoder is fully aware of this knowledge.

sum theorem w.r.t. the information cost measure. We note tl&aibsequent work. Following the publication of the extended
1Recall that an undirected gragh is calledperfect if for every induced abstract of this workZ3, Lubetzky and Stav34] were able

subgraph@’ of G, w(G7) = x(G7). Perfect graphs include a wide class of0 Make remarkable progress and prove that there could be

graphs such as trees, bipartite graphs, interval graphs, chordal graphs, e@@n unbounded gap betweetninrk,(G) and the length of an

Theorem 6. For any graphG, and for anyk > n — 2, the
length of anyk-linearly-decodableiINDEX code for G is at
leastminrks(G).

Theorem 7. The length of any-error randomizediNDEX
code forG is at leastMAIS(G) - (1 — H2(9)), whereMAIS(G)
is the size of the maximum acyclic induced subgrapy ahd
H,(+) is the binary entropy function.



optimal INDEX code forG. They achieved this by constructingeach client stores a substantial fraction of the transmitted data
a new family of Ramsey graphs. It thus remains an opevhile only requesting a single block, the probability that a
problem to find an exact characterization of the optimal lengpair of clients each have the block requested by the other is
of INDEX codes for general codes and arbitrary graphs. rtuch higher than the probability that they both request the
should nonetheless be noted that the commonly used codame block. This gave rise to the idea of using source coding
are linear, for which the bounds presented in the current pager this purpose.
are tight. Motivated by the above, Birk and Kol posed iff] [the
Notation. Throughout the paper, we use the following nofollowing coding problem. A server transmits a set of data
tations. Let[n] denote the se{1,2,...,n}. Let ¢; denote blocks over a broadcast channel to a set of caching clients.
the i-th standard basis vector. The dimension of this vect&ach client only stores a subset of the transmitted blocks.
is understood from the context. For a subsetC [n], we Each client needs a certain subset of the transmitted blocks,
denote byz[S] the projection of a vector. € {0,1}™ on the yet some of these blocks may be missing from its cache. The
coordinates inS. client can use a (slow) “upstream” channel to request blocks it
has not cached and to advise the server of the blocks it already
[I. MOTIVATING APPLICATION has in its cache. (By using large blocks, the amount of this

Many important data dissemination systems employ ngetadata information can be made negligible.) The challenge

broadcast channel at the physical level. Prominent exampReS€d was to design coding schemes that minimize the amount
include satellite, terrestrial wireless systems, and systefisSUPPlemental information that must be broadcast in order
employing coaxial cable. Broadcast channels are frequenﬁ%/e”able every client to denve_ all its reques_ted blocks. It is
used to disseminate high volumes of media-rich content, sU§iPortant to note that the goal is not to provide all blocks to

as movies, episodes of TV series and video clips, as well @€Y client. . .
text and images such as the daily newspaper (which may sooflocks are usually compressed before being transmitted, and

include video clips). thus we can assume their bits to be independent. Therefc_)re, a
The broadcast channel is extremely efficient for Se”digqe for blocks of sizé3 can be _constru_cted by concat_enatlng
the same data to a large number of receivers, but its Seinstances of a code for single bit blocks: an instance
for sending different data to different users is wasteful. F&hcoding the first bit of all requested blocks, an instance
the case wherein users (may) need the same data bufgoding the s_econd b!t of all requgstgd blocks, etc. Note that
different times (e.g., on-demand viewing of a “hot” movie)the mgtadata information for all bI.tS in a requested/cgchgd
service providers can speculatively “push” data to clients; up@}pck |s_the same, and thus the client can still transmit this
demand by a client, the already present data is presen'ﬂéfﬂ’rmat'_on once per block. The focus is thus on codes for
immediately, as if it were sent on demand. XTV by New§ingle bit blocks. Finally, both7 and the current paper
Data Systenisis an early example. assume that any given blopk is requested by at most one client
The above example demonstrates how abundant client s{dough others may have it, of course).
age capacity can be used in liew of true communication
capability in order to increase perceived communication- I1l. LINEAR CODES

related quality of service. With the rapid decline in the cost In this section we obtain a tight characterization of the

.Of .non-vollatlle storage (disk .d.nves and Flash me'rrjory)', I'éngth of linearINDEX codes for all side information graphs
is interesting to look for additional ways of exploiting its

abundance in order to reduce demand on less abundant or more

expensive resources. We next describe such an applicatibheorem 5 (restated) For any side information graplG,

which has motivated the current work. there exists a lineaINDEX code forG whose length equals
Despite the use of a broadcast channel, not all informatiominrks(G). This bound is optimal for all lineamDbEX codes

is received by all clients. This may result from intermittentor G.

connectivity due to bad weather, a power outage at some

receiver locations, intermittent reception by mobile receivers Proof: Let A be the matrix that fits/ whose 2-rank equals
' P y ninrke (G) 2 k. Assume without loss of generality that the

or due to equipment being temporarily switched off. Finall)é an of the firstk rows A,,.... A, equals the span of al

Eve.? fdatla ﬂllatfls recelvedbby a 9."’?” C|ItePI'E[ m:':ly be discard e rows of A. The encoding function is simply the bits
e it for lack of space or by an “interest filter”. bééAjmcforlgjgk.

Following the broadcast of various content, each client thu ecoding proceeds as follows. Fix a receier for some
typically has in its local storage some subset of the transmittedD g lp k 'f hoi B
data. As for the remainder of this data, a given client ma € ] ar_] et_A,- - Zj:l Ajd; for solzne choice _0 i S
request some of it while not being interested in the rest. Tﬂyé“? receiver first computesl; - = = > ;_, A;b; using the
question is then how to use a broadcast channel, which is v&fpit €ncoding ofz. Now, consider the vectar; = A; — e;,
effective at sending the same data to all recipients, in ordéperee: is thei-th standard basis vector. Observe that the
to efficiently send differensupplementatiata to the different only non-zero entries im; correspond to coordinates that are

clients. An important insight provided iff is that whenever 2M0ng the neighbors afin G. This means that the receiver
can compute; - x using the side information. Receiv&y; can

2www.nds.com now recovery; via (A; - x) — (¢; - z) = €; - = = x;.


www.nds.com

For the lower bound, supposkis an arbitrary linearNnDEx  Theorem 6 (restated) For any graphG, and for anyk >
code forG defined by the se$' = {uy,us,...,ux}, i.e.,x is n—2, the length of any:-linearly-decodableNnDex code for
encoded by the taking its inner product with each vectof.in G is at leastminrks(G).

Claim 9. For everyi, e; belongs to the span & U {e; : j € A Kernel size

N(%)}.

) To prove the lower bound, we introduce the notiorkefnel

Before we prove the claim, we show how to finish the prodfhe kernel of a Boolean functioif : {0,1}" — {0,1} is
of the lower bound. For each e [n], the claim shows that the set of inputs it maps to Ger(f) = {z | f(z) = 0}.
€ = Z§:1 Ajui+3 7 e Ny 1€, for some choice ok andy. By extension, the kernel of a family of Boolean functions
Rearranging, we havg;?:l Ajuj = ei_EjGN(i) i€ 2 4, F=(fi|ieT) (T is some index set) i; the .set of inpqts
It follows that A; has vaiue 0 in coordinates outsidgi)u{i}, that are mapped to O by all of the functions in the family:
A; has value 1 in its-th coordinate, and4; belongs to the ker(¥) = {z | fi(z) = 0 Vi}. We next show a connection
span ofS. Therefore, the matrix4 whose rows are given by between the length alNDEX codes and the size of the kernel
Ay, As, ..., A, fits G and has rank at mogt. We conclude Of a suitably chosen family of functions.
that k > rky(A) > minrks(G). Note thatD{(z) = x; for every x whose encoding®(x)

It remains to prove the claim. Fix ahand suppose to the €qualsc. This can be also written &8 (z) +¢; -z = 0. If we
contrary thate; is not in the subspacéV spanned by the VieW the vectore; as a linear function operating ovéd, 1},
vectors inS U {e; : j € N(i)}. Recall that thedual of W, then we can say that belongs to the kernel of the function
denoted byl’+, consists of the set of vectors orthogonal &5 + €, i-€., (Dj +¢;)(z) = 0. As this holds for every, we
every vector inW, i.e., W+ = {v: v-w = 0 for all w € W}. conclude the following:

It is well-known that/+ = W' Therefore, the assumptionproposition 10. For every codeword:, {z | E(z) = ¢} C
e; ¢ W implies that there is a vectar € W+ such that ker(D§ + e1, ..., DS +ey) = {z | D¢(x) = z; Vi}.

- e; 7 0. 0n the other hand, since WL,‘we have that  we obtain as an immediate corollary the following lower
z is orthogonal to every vector if U {e; : j € N(i)}. It pound on the length aiN\DEX codes in terms of kernel size:
follows that (i) the encoding fox equals0®, and (i) the side .

Proposition 11. If |ker(D§ + e1,..., D5 +e,)| < M for

information z; available to receive?; equals0 for all j
N(i). This violates the correctness of the encoding becau@¢ery codeword & €, thenlen(€) > [n —log M.

the input0™ also satisfies (i) and (i), yet Equation (*) shows  Proof: Consider any codeworde C. Let E~'(c) = {z |
that it differs fromx in coordinate:. B [F(x) = ¢} be the set of inputs whose corresponding codeword
is c. By Propositionl0, |E~!(¢)] < M. Hence, the number of
distinct codewords ir€ is at least2™ /M, and thus its length
must be at leasfn — log M. [ |
In this section, we show thatinrk, (G) is a lower bound on ~ Thus, to prove Theorer, it suffices to prove the following:
the minimum length osemi-linearly-decodablevDEx codes Thegrem 12. Let ¢ be a codeword in @-linearly-decodable
for arbitrary graphs. code@ with side information grapld/, wherek > n—2. Then,
Let C be anINDEX code forG. Let Dy,..., Dy be then |ker(DS 4 ey,..., DS +e,)| < 2n—minrka(G),
decoding functions of. Fix a codeword: € €, and for each o ]
indexi € [n], we denote byD¢ the function induced by fixing We will in fact prove a more general version of Theor&n
c as input toD;: D¢(z[N(i)]) = D;(c, [N (i)]). Although D¢ To state thl§ more general form, we first need to extend the
is applied only to the side information bitg N (i)], it will be ~ notion offitting. .
convenient for us to view it as acting on the whole inpwtith Fix a graphG on n .nodes. We say that a functiofi :
the restriction that it depends olpn the set of coordinates 10: 1} — {0, 1} fitsan indexi & [n], if f = g+ e; for some
N(i). Thus, from now onDS : {0,1}" — {0,1}. fpnctlon g that depends only oV (i) (g is not nece;;gnly
An INDEX codeC is said to bek-linearly-decodablgif for !In€ar). Note thatf(z) = g(x) + ;. Extending the definition,
every codeword: € C, at leastk of the decoding functions we say that a family qf (not _necessarlly dlst|nct)_fur_1ct|ons
D¢, .., D¢ are linear. Note that the smalldr is, the less (i * {0,1}" —{0,1} | j € T) fits a subsetl” of the indices
restricted is the class @flinearly-decodable codes. Whén= "M [n], if f; fits j for everyj € T'ﬂ
n, these codes are simply callédearly-decodablewhile 0- Every linear functionf : {0,1}" — {0, 1} cprrequnds to
linearly-decodable are unrestricted codes. Our upper bouhy€ctorv SO thatf(z) = v-=. Therefore f fits indexi if and

(Theoremb) is a linearly-decodableNDEX code (and thus only if v can _be written ay = 4+ ei,‘whered s a vecto_r
also k-linearly-decodable, for any). whose value in every coordinaje¢ N (i) equals 0. A matrix

Our goal is to obtain lower bounds on the length fof A fits [n] (or, G), if the i-th row of A, for everysi, fits indexi.

. .. As the value of this row must be 1 in thiéh coordinate and 0
linearly- | for a val mall ible." . . o .
early-decodable codes for a valuejoks small as possible in every coordinatg ¢ N (:)U{i}, this definition is consistent

3 . o with our earlier definition for a matrix fitting a graph.

A function f : {0,1}" — {0,1} is said todepend onlyon a set of -
coordinatess C [n], if for every two inputse, y with 2[S] = y[S], f(z) = Fix an INDEX code C for .G and a codeword:_ e C. L.et
f@). Ds, ..., D¢ be then decoding functions associated with

IV. SEMI-LINEARLY-DECODABLE CODES



Note that each functio®$ + e; fits indexs, for all ¢, and thus
the family (D§ + ey, ..., DS + e,,) fits [n].

We say that a family of function§f; | j € T') is k-linear, if
at leastt of the functions in the family are linear. Note thatif
is k-linearly-decodable, then the fami{yp$ +eq, . .., DS +ey)
is k-linear.

The stronger version of Theorefi?2 we will prove is the
following:

Theorem 13. Let G be a graph om nodes and lek > n—2.
Then, for anyk-linear family ¥ = (f; | j € [n]) of Boolean
functions that fitgn), | ker(F)| < 27— minrke (&),

Theorem12 follows by settingf; = D5 + e; for every j.
The rest of this section is devoted to the proof of Theofigin

B. Maximum dimension
In this section we explore a new notion—tmeaximum

4) dim(ker(Hsg)) —|7T| < maxdimy(7T") < dim(ker(Hg)).

5) If maxdimz(T) = dim(ker(Hg)) — |7, then
maxdimy(7") = dim(ker(Hg)) — |T”7| for everyT’ C
T.

6) Supposenaxdims({j}) = dim(ker(Hys)) for every;j €
T. Thenmaxdims(7T") = dim(ker(Hg)) as well.

7) LetT = [n]\ S. Then,maxdimy(7T) < n — minrks(G).

Proof: Part1 follows simply by definition. Par® follows
from the standard linear algebra fact that adding a single
constraint to any subspace can only decrease its dimension,
but by at most 1; an inductive argument yields FarSetting
T’ = () in Part3 and then using Patt yields Part4.

For Part5, note that Partl implies thatmaxdim,(7”)
dim(ker(Hg)) — |T7|. By Part 3, maxdimy(7”)
maxdimy(T) + |T] — |T’| = dim(ker(Hg)) — |T7|, u
ing the premise of Parb. Therefore, maxdims(7")
dim(ker(Hg)) — |T’| as well.
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dimensior—which is dual to the minrank and plays a key role For Part6, the premise says that there exist linear func-

in the proof of Theorem.3.

tions h; for all j € T such thath;(z) = 0 for all

To motivate the proof, consider the following simple arz € ker(Hg). Define the familyHr = (h; : j €

gument for the cas& = n (i.e., all the functionsf; are

T). It can be seen thaker(Hsur) = ker(Hg) and thus

linear). Sincef; is linear and fits indexj, it is associated dim(ker(Hgyr)) = dim(ker(Hg)), which is the maximum

with a vectorv; so thatf;(z) = v; - . Let A be then x n
Boolean matrix whose rows atg, . .., v,. Sincef; fits index
j, it follows that A fits G, sorks(A) > minrks(G). Next,
observe thatker(F) is exactly the kernel of the matrix.

value thatmaxdims(7") can attain by Pard.

Finally, for Part7, let Hr be the family of linear functions
such thatdim(ker(Hsyr)) = maxdims(7T). Recall that
Hsur fits SUT = [n], so let A be the matrix whose

By standard linear algebra, the dimension of this kernel isws consist of the vectors that correspond to the functions
n —1ky(A) < n — minrky(G), and therefore the size of thein Hg r. It follows that A fits G. Since its kernel equals

kernel is at mosp”—minrks (&)

To deal with the casé < n, we would like to generalize

the above argument. When some of the functionsFimre

ker(Hsur), we conclude:
dim(ker(Hsur)) = n — rka(A) < n — minrks(G).

not linear, ker(¥) is no longer a linear space and thus does m

not have a properly defined dimension. In order to address thisThe following lemma is the main technical result that will
difficulty, we introduce the new notion @fiaximum dimension pe used to prove Theorefi8.

Let S be any subset ofn] and letHgs = (h; | j € S) be
any family of linear functions that fitsS. Let T C [n] \ S.

For any familyd{y = (h; | j € T) of (not necessarily linear
functions that fitsT', we denote byH sy the union of the ]

two families: (h; | j € SUT). WhenJH is also a family of

Lemma 15. Let G be a graph onn nodes. Then, for any

) S C [n], any familyH s of linear functions that fits, anyT" C

\ S with |T'| < 2, and any familyH, of (not necessarily
linear) functions that fitsl", | ker(Hgur)| < 2maxdimz(T|ts),

linear functions ker(Hsur) is a linear space and thus has a To derive Theorem 3, we chooses to be the set of indices

dimension. We define thmaximum dimension df' relative

of the k linear functions inF, Hg to be these linear functions,

to Hs, denotedmaxdimy(T'Hs), to be the maximum value 77 = [n] \ S, and Hr to be the rest of the functions in
of dim(ker(3sur)), where the maximum is taken over all¥, Note thatF¥ = Hgur. By Proposition14, Part7, we
families H+ of linear functions that fitI". Note that when havemaxdims (T|Hg) < n—minrk,(G), which immediately

S =0, T = [n], maxdimz(T|}) = n — minrks(G), and thus

yields Theoreml3.

the maximum dimension can be viewed as dual to the minrank Note that the restriction we have dn (k > n — 2) in
The following are basic facts about the maximum dimensiorheoremss, 12, and 13 derives from the restriction we have

that will be used later in our analysis:

Proposition 14. Fix any setS C [n], any familyXHgs of linear
functions that fitsS, and any sef” C [n]\S. For simplicity, we
shorthandmaxdims (7") for maxdims(7'|Hg). The following
are properties ofmaxdims(7'):
1) maxdimy(0) = dim(ker(Hs)).
2) For anyi € T, maxdimz(T) < maxdimg (T \ {i})
maxdimy(7T) 4 1.
3) More generally, maxdimy (7)) < maxdimg(7T")
maxdimg(T) + |T| — |T7| for anyT' C T.

IA
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in Lemmal5on |T| (|T] < 2). It remains an open problem
to find the largest value dff’| (and thus the smallest value of
k) for which the bound holds.

We first prove a stronger version of Lemni® for the
special case whemaxdims(7T'|Hg) has the smallest possible
value dim(ker(Hg)) — |T'| (Proposition14, Part4), in which
case the bound given by Lemni® is achieved for every”
(even|T| > 2).

Lemma 16. Let G, S, Hg, T, and Hr be as defined above
(except thatT'| need not be at most 2). tiaxdims(T|Hg) =



dim(ker(Hs)) — | T, then|ker(Hsyr)| = 24imker(Fts)=IT1, Having proved that ker(Hsyur )| = 2k*(Fts)=ITI+1 and

Proof: As we will see below, proving the lemma for thethathi is balanced otker(Hsyr_, ), we will obtain the desired

caseH is a family of linear functions is easy (follows fromequa“ty'

standard dimension arguments). To extend the proof to h0|d|ker(ﬂ-CguT)|

for unrestricted functions, we will use a “Balance Lemma”, 1 Ker(%5)—[T|

which is proved in the next section via Fourier analysis. = plker(tsur ;)| = 277

The lemma will be proved by gradually moving from a .

family 7 of linear functions to a familyH{r of unrestricted V\}{e }CStf‘r} lby showing  that |ker(Hsur )| =

functions. Formally, we will show the following: gker@ts)=ITI+1. Using  Proposition 14, Part 5, since
maxdims (T|Hs) = dim(ker(Hg)) — |T], then

Claim 17. Let G, S, Hs, T, and Hrp be as de- maxdimy(T_;|Hs) = dim(ker(Hs) — |T| + 1. As |T_;| < t,

fined in Lemmal6. Let ¢ < [T]. If 3z is {- we can apply the induction hypothesis and obtain what we

linear and maxdims(T|Hg) = dim(ker(Hg)) — |T|, then wanted:

_ odim(ker(Hg))—|T
|k€r(j‘f$uT)| =2 (ker(3s))—| ‘ |ker(ijSUTﬂv)‘ _ 2kcr(ﬂ{5)f|T|+1' (1)

| ker(h;) Nker(Hsur_,)| =

Applying C_Ialm 17 with ¢ - 0 W'I! yield Lemm:?\ 16. We Showing thath; is balanced otker(Hsyr_,) is harder. To this
prove the claim by a double induction: an outer induction on fi h i f 5 hat fits | )
IT| and an inner induction ofi"| — . end, we first prove that evellinear function that fits index

. S must be balanced oker(Hsyur_,). We then prove a Balance
St;'nhdea?da Tiig:rs Zlggéhrz Og;igwgtﬁtglgg Fjéfﬂ?}ygrs(glo)?] Lemma, which shows that every function that fits index;

; . ; included, must be balanced dwar (3 )
For the base case of the inner inductidn= |T'|, note that H(Hsur.)

; : : . . Let us start by proving that every linear function that fits
Hr is a linear family of functions. Thereforé&er(Hgsur) is . . _ .
a linear space andim(ker(¥sLr)) < maxdima(T|Hs) = indexi is balanced otker(Hgsur_, ). Letg; be any such linear

) ;o ' S
dim(ker(Hs)) — |T|. On the other handker(¥s,r) > function and letl’, = Hy_, U{g;}. Note thatH/. fits T and

o _. . . . :
dim(Hg) — |T|, because each constraint added to a Iinethrat Itis (€+1) Ilnear. .LetJ{ Js. Applying the induction
pothesis we obtain:

sub-space can reduce its dimension by at most 1. Hencg
ker(Hsur) = dim(Hg) — |T|. Now, defineS’ = SuUT | ker(Hls )| = gker(3s)—=|T| _ gker(Hs)—|T| 2)
and T’ = (. As all the functions inHg. are linear and as
maxdimy (7"|Hg:) = dim(ker(Hs)) (PropositionL4, Partl), We can rewriteker(3(g, ;) as follows:
then we can apply the base case of the outer induction to _ | ,
conclude that ker(Hgr) = ker(g;)Nker(Hg 7_,) = ker(gi)ﬁker(%sugqé)).
|ker(Hsur)| = |ker(Hg )| = 2dimker(Fsr) Combining Equationd, 2, and3, we have:
2dim(ker(f}Cs))— |T| )

1
| ker(g;) Nker(Hsur_,)| = §| ker(Hsur._,)

N
Let1 <t <nandletd < /¢ <t— 1. For the induction ) o ) )
step, assume that the claim holds for the following cases: igguatlon 4 implies that the functiong; is balanced on
every T with |T| < ¢ and every family}(r that fits 7 (no  ker(¥sur,). As all we used is the linearity of; and the
linearity restrictions orf(z); (2) everyT with |T| = ¢ and fact it fits index ¢, we conclude that every linear function
every ¢'-linear family %, that fits 7, where? > ¢. We will that fits indexi is balanced orker(Hsur_,). The following
show that the claim holds also for the cdg& = t and H; Balance Lemma, which is proved in the next section, shows
is ¢-linear. that every function that fits index whether linear or not, must
Let % be any/-linear family of functions that fitg". At € balanced ofer(Hsur.,).

least¢ of the functions inJ(r are linear. IfJ{r hasf +1 | emma 19 (Balance Lemma).Let G be a graph om nodes,
linear functions or more, then it is in fa¢t 4 1)-linear, and gt ; ¢ [n], and letU C {0, 1}". If every linear function that

therefore the statement of the claim follows in this case frofis index; is balanced ori/, then every function that fits index
the induction hypothesis. So suppose exatth the functions ; (whether linear or not) is balanced ofi.

in Hr are linear. As/ < |T'|, Hr has at least one non-linear _ _ _

function. Leth;, wherei € T, be one such function. We conclude that in particularh; is balanced on
LetT_;, = T\ {i} and let¥ s be the family of functions ker(¥(sur_,), which is what we wanted. Claimi7 and

obtained by removingh; from ;. We will prove that Lemmalé follow. u

| ker(Hsur)| = 2kers)=IT1 in two steps. First, we will show ~ We can now prove Lemmas:
that | ker(Hgur )| = 2ker(G)=ITI+1 Then, we will prove Proof of Lemmal5: For brevity of notation, throughout

that h; is balancedon the Seiker(g_(SUT_i): this prOOf we ShOI’thanﬁhaxdin@(T) for maXdimQ(T|ﬂ-Cs).

o ) ) We prove the lemma by induction on the size ®f The
Definition 18 (Balanced function). A Boolean functionf : case|T| = 0, meaningT = 0, follows simply from the fact

{0,1}" — {0,1} is said to bebalancedon a subsel’ of itS  that maxdim, () = dim(3(s) (Proposition14, Part1):
domain, if it is O on half of the inputs iV and it is 1 on the

other half. That is|ker(f) NU| = |U|/2. | ker(Hsur)| = | ker(Hsg)| = 24ms) — gmaxdima (1)




Lett € {1,2}. Assume that the statement of the lemma holds the group operation. A complex functioh : Z3 — C
for all T such thayT'| < t. We will prove it for |T'| = t. over this group can be viewed as a vectorGf . The inner
Fori € T, let T_; = T\ {i}. By Proposition14, product between two functiong,g € C?" is defined as
Part 2, for every i € T, maxdimy(T_;) € (f.9)= vezy F(@)9(@).
{maxdimy(T"), maxdimy(7) + 1}. We split our analysis into 72 has2" characters Each subsef C [n] is associated
two cases. with the characterys defined as:xs(x) = [[;cg®i- The
characters form an orthonormal basis@t". The expansion
Case 1:For somei € T', maxdimy(7_;) = maxdimy(T'). In  of a function f € C?" in this basis is itsFourier Transform

this case The coefficient ofyg in this expansion isf(S) = (f,xs).

[ er(Hsor)| < [ker(Fsur )| < 2mestima(T) = gmastimg(r) THUS

f= Z f(S)XS«
where the second inequality follows from the induction 5C[n]
ir:]y[():oatzsslls and the last equality follows from our assumptl% Boolean functionis a function f : {—1,1}" — {—1,1}

(recall the mapping) — 1 and1 — —1). The kernel of a
Boolean functionf is the set of inputs that is maps to 1:
ker(f) = {z|f(z) = 1}. Itis easy to verify that the characters
of Z% are exactly the set of all Boolean linear functions on
7.

To prove Lemmal9, we show two simple properties of
Boolean functions.

Case 2:For all i € T, maxdimz(7_;) = maxdimy(7") + 1.
This is the case we know how to handle only @1 = 1,2.
Suppose, first, thal’| = 1. Then, by the assumption of this
casemaxdims () = maxdimy(7") + 1. Sincemaxdims (0) =
dim(ker(Hg)) (Propositionl4, Partl), we rearrange and ob-
tain maxdim,(7") = dim(ker(Hg)) — 1. Hence, the statement

follows in this case from Lemmaé. Proposition 20. Let f : {—1,1}" — {—1,1} be a Boolean
Consider now the casfl’| = 2 and letT = {i,j}. By function that depends only on a s&iC [n]. Then, the Fourier
the premise of Case 2naxdims({i}) = maxdims({j}) = transform of f has non-zero coefficients only for characters

maxdimy({%,j}) + 1. By Proposition14, Part2, either both Y with T C S.
maxdimy({¢}) and maxdims({;j}) equal maxdims()) =
dim(ker(Hg)) or both are 1 less thadim(ker(Hg)). The
first case is impossible because by Propositigh Part 6,
maxdims ({3, j}) = dim(Hs) as well, violating the premise
of Case 2. Thereforemaxdimy({i}) = maxdimy({j}) =
dim(Hg) —1 implying thatmaxdimsy ({4, j}) = dim(Hg)—2.
Hence, the statement follows in this case once again fr

Proof: Let T' be any subset of the coordinates that is not
contained inS. We show thatf(7') = 0.

SinceT ¢ S, there exists a coordinatec T'\ S. For each
vectorz € Z%, let () denote the vector obtained fromby
flipping its i-th bit (from 1 to -1 or vice versa). LeZ' be
tH1e set of vectors iZj that have 1 at the-th coordinate, and
et Z—! be the set of vectors i} that have -1 at the-th

Lemma16. coordinate. The mapping — z(*) induces a perfect matching
of vectors inZ! with vectors inZ 1.

C. Proof of the Balance Lemma Note that for a pair(z,z(?)), f(z) = f(z?), because the
We next prove the Balance Lemma used in the proof of tfi&o inputs differ only outside the sef. However,xr(z) #
lower bound for semi-linearly-decodable codes: xr(z?) becauser andz( differ only at thei-th coordinate

andi € T.
Lemma 19 (restated) Let G be a graph onn nodes, let Consider now the coefficient f(T): f(T) _

i € [n], and letU C {0,1}™. If every linear function that fits

. D . L 5w Y e [(@)xr (). We reorder the terms
index:i is balanced orlU, then every function that fits indeéx in the > sum according to the above matching:

(whether linear or not) is balanced afi. FT) = 25 cn(f@xr@) + f@D)yr(@®). Since
The proof of the lemma relies on a simple principle: undef(z) = f(z?) and sincexr(z) # xr(z(?), each of the

the mappingd — 1 and1 — —1, a Boolean functionf terms in the above sum is O. TherefoﬁT) =0, as desired.

is balanced on the sdt if and only if > _, f(z) = 0. u

The linear Boolean functions in the1 world are exactly = Next, we characterize the set of Boolean linear functions

the characters of the groug? and thus the lemma tellsthat depend only on a sét

us that each of these gharacters sums to _OUonFogner Proposition 21. The set of Boolean linear functions that

transform allows us to write any Boolean functifras a linear depend only or is exactly the set of charactefs;r}

combination of characters. Therefore, if all characters sum to il y y XT STCS-

on U, then alsof must sum to O o/, and thusf is balanced. Proof: Supposel’ C S. We show thaty; depends only
To prove the lemma, we need to prepare some machineny S. Let z, 2z’ € {—1,1}" be two inputs s.tz[S] = 2/[95].

from Fourier analysis of Boolean functions. Consider th8inceT C S, it follows that alsox[T] = 2'[T]. Therefore,

groupZy, whose elements are the vect¢ts 1}™. By mapping [[,c v = [[;cp @}, implying xr(z) = xr(2').

the standard O to 1, the standard 1 to -1, and XoR For the other direction, suppoge¢ S. Leti € T\ S. Let

operation to multiplication, we view the elements of the group be the all-one input (corresponding to the all-zero input in

as vectors in{—1,1}", where coordinate-wise multiplicationthe 0-1 world) and let; be the standard unit vectoe;(is 1



in every coordinate, except for theth coordinate in which The n + 2 random stringsRk, Rg, Rp,, ..., Rp, have finite
it is -1). Since: ¢ S, 1[S] = ¢;[S]. Clearly, xr(1) = 1. domains and are mutually independent of each other. Usually
Since there is a single coordinatedhin which ¢; is -1, then these are uniformly distributed strings of some fixed length.

xr(e;) = —1. Thus,xr(1) # xr(e;), implying xr does not  The distributions of the private random strings are known
depend only ors. B in advance to all parties (the sender and the receivers), yet
We can now prove Lemma9: the specific instances chosen are known only to the respective
Proof of Lemmadl9: A Boolean functionf : {—1,1}" — parties. Therefore, the encoding functiéh may depend on
{-1,1} is balanced ortJ if and only if the number of inputs the distributions ofRp,,...,Rp,, but not on the specific
that it maps to 1 equals the number of inputs that it maps ittstances chosen. Similarlf; may depend on the distribution
-1. This in turn happens if and only ¥ __,, f(x) = 0. of Rg, but not on the specific instance. As usual, the gré@ph
By Proposition21, the set of linear Boolean functions thais known in advance to the sender and the receivers and thus
depend only onV (i) is the family of character§xr}rcn(). the encoding and decoding functions can dependzorfhe

Therefore, the set of linear functions that fit indexare of lengthof €, denoted bylen(@), is defined to be.
the form{xr - e;}rcn(s). (Since we moved to the:-1 world,

AL N .. The main technical statement of this section is a direct-sum
summation is mapped to multiplication, and the standard unit . : :
. ) ; result for theinformation costof a randomizedNDEX code.
vectore; is the all-one vector, except for theth coordinate

o . : : L A corollary of this result will be the lower bound on the length
which is -1.) The premise given in Lemni implies that . ; . .
. . of randomizedNDEX codes. We start with a brief overview of
all these functions are balanced bn That is, for everyl’ C . . . . ) )
) the information theory notions and facts used in this section
N(i), 3 pep X1 (%) - 23 = 0.

Let f be any function (not necessarily linear) that fits inde§<See PS] for a more extensive background).
i. We can writef = ¢ - ¢;, whereg is a function that depends ]
only on N (7). By Proposition20, g is a linear combination of A Information theory background
the character§xr}rcn). Therefore, In the following X ~ ux, Y ~ py, Z ~ pz are random
variables on domain¥, Y, Z, respectively.
> f(x)

. Entropy and mutual information The entropy of X (or,
So@-a = 3 [ X o) | i Soron Py &

= = Z\= equivalently, ofuix) is H(X) = 3, pux () log =@ The _
binary entropy functiond,(p) is the entropy of a Bernoulli
= > > 9D (xr(x) - ) random variable with probability of success
z€U TCS The joint entropyof X andY is the entropy of the joint
= Z §(T) Z xr(®) - z; distribution (u.x, 1y ). The conditional entropyof X given an
TC8 Japrs event A, denotedH (X |A), is the entropy of the conditional
_ Z WT)-0 = 0 d?stributi.on of ux given A. The conditional entropyof X
2 ' givenY is H(X[Y) = 3,y pv () H(X]Y =1y).
= The mutual informationbetweenX andY is I(X;Y) =
Therefore, alsof is balanced or/. B H(X)— H(X|Y). The conditional mutual informatiorbe-
tween X and Y given Z is I(X;Y|Z) = H(X|Z) —
V. GENERAL CODES H(X|Y,Z).

In this section, we prove lower bounds for the class of The following are basic facts about entropy and mutual
general randomizethDEX codes. Let us first formally define information.
these codes. Proposition 23 (Entropy bound). Let X be any random

Definition 22 (Randomized INDEX codes).Let 0 < § < 1. Variable and letsupp(.X) be the support of. Then,H (X) <
A s-error randomizedNDEX code € for {0,1}" with side log|supp(X)|. Equality iff X is uniform onsupp(X).

information graphG; on n nodes is a set of codewords inprgposition 24 (Chain rule conditional mutual informa-

{0.1}* together with: tion). For any sequence of random variablés, ..., X,
1) A public random stringR for both encoding and decod- n
ing. I(X1,. . X V) =Y I(Xi; YIXy,.. o, Xioy).
2) A private random string?g for encoding. =
3) n private random string®p, , ..., Rp, for decoding.

Fano’s inequality Fano’s inequality 26] gives a lower bound
on the error probability of predicting the value of a random
variableX from the observation of another random variable
We consider a special case wheXeis uniformly distributed
over a binary domain.

4) An encoding functionE that given a source input in
{0,1}™ maps the triple(z, R, Rg) into a codeword.
5) A set of decoding function®, D», ... D,,. For eachi,
D; maps the quadrupleF (z, R, Rg), [N ()], R, Rp,)
into a bit, satisfying the following:
] Theorem 25 (Fano’s inequality). Let Y be a random vari-
Pr(Di(E(z, R, Rg), 2[N()], R, Rp,) # ;) < 6. able and let X be uniformly distributed over0,1}. Let
The probability is over the three random stringsR, 9(Y) € {0,1} be a function whose prediction error probability
andRp,. Pr(g(Y) # X) <6 <1/2. Then,I(X; Y) > 1 — H3(9).
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B. Direct sum for information cost Let E(x, R) be the encoding function of thebex codeC
Suppose( is a vertex-induced subgraph 6f An INDEX and letX be uniformly distributed o0, 1}". By definition,

code for@ easily yields anNDEX code forG’ of the same icosg(_e_) :I I(X; F.()f(’ R) | R). Using the chain rule for
length by arbitrarily fixing the bits of/ (G) \ V(G’). Thus, ~conditional mutual information,

Proposition 26. If G’ is a vertex-induced subgraph 6f, then k
the optimal length of anNDEX code forG" is no more than (X E(X,R) | R) =Y I(X[Vj]; E(X,R) | X[U;-1], R).

that of G. j=1

What about the other direction? Suppose we can €plit (Slightly abusing notation[/, = () and z[Uy] is an empty
into k£ mutually disjoint vertex-induced subgrapfis, ..., G, string.) To complete the proof of the theorem, it suffices to
and suppose we have INDEX codesCy,...,C, for these show the following claim:

subgraphs. Clearly, by concatenatityg . . . , G, we can obtain
an INDEX code forG whose length is;Zf:1 len(C;). But is
this always the optimal length code f6i?

In general, it looks like one could obtain shortemDEX
codes forGG, by exploiting the edges connecting the different
subgraphsy, ..., Gy. But what if these graphs are discon- ) )
nected from each other? In this case, it seems that the optimal Proof: The proof is based on a reduction lemma proven
length of theiNDEX code for G must equal the sum of the" [17]- Fix & value ofj and we will construct®; using €
optimal lengths of thenpex codes forGy, . .., Gy. In other @S follows. Leta € {0, 1}1Vi denote the source input. As we
words, the optimal length ofNDEX codes should admit a Want to useC, we need to transform into some inputz for
direct sum property Nevertheless, proving this property forC- The tran_sformatmn will be randomized. _Thataswnl be_a
the measure of code length is elusive. The techniques of Feffdom string, created from from the public random string,
et al. [15] yield a weaker result, which incurs a loss of and from the private random string of the encoder.
additive term that depends linearly &n\We are able to prove @ Will be equal toa in the coordinates corresponding to ver-

the direct sum property not directly for code length, but rath&f€s inG;. The other coordinates ofwill be filled randomly
for the “information cost” of codes: as follows. LetB have the same distribution as[V'\U,] and

let C' be independent oB and have the same distribution as
Definition 27 (Information Cost). Let G.be a randomized X[U,_4]. The public random string fo€; consists of(R, C)
index code forG:. Let R denote the public random string ofwhile B will be part of the private randomness of the sender.
¢, and letE(x, R) denote the encoding of in C.* Let X be  The random input: will be defined to be the tupléC, a, B).
uniformly distributed in{0,1}". The information costof €, The encoding ofa is then E((C,a, B), R). Note that this
denoted byicost(C), equals/ (X ; E(X, R) | R). encoding is a function of., of the sender’s private random

As the information cost of a code is always at most th&"ing, and of the public random string.
entropy of the codewords, the entropy bound (Propositign L€t i € V; be any coordinate. When applying the decoding
implies that information cost is a lower bound on the cod&nction D; of € in order to recover;, the receiver needs to
length. know the bits ofz corresponding to neighbors ofn the graph
We prove that the information cost of ampex code G- By the property ofG;, it can be seen that the neighbors
admits a direct sum property. The property holds not onff ¢ in G are either among the neighborsiah V; or belong

Claim 29. For everyj, there is ad-error randomizedNDEX
codeC; for G; such that

icost(€;) = I(X[V;]5 B(X, R) | X[U;_1], R).

whenGy, ..., G, are totally disconnected from each other; it Uj-1- Now, the values for the former are part of the side
suffices that there are no edges directed fi@nto G for all information for coordinaté while the values for the latter can
i<j: ' be found in the public random string.

For any instantiation ofB and C, the decoding error is

Theorem 28. Let Gy, Gy, ..., Gy be vertex-induced sub-gimply the error ofC on the inputz obtained froma and
graphs of a directed grapki- such that: from the instantiations of3 and C.. As this error is at most
1) The vertices of71, Gs, ..., G}, partition the vertices of §, then also averaging over all choices Bfand C, the error

G. of C; ona is at mosts.
2) Foranyi < j and vertices); € V(G;) andv; € V(Gj),  Next, we calculate the information cost@f as follows. Let
there is no directed edge i&¥ from v; to v;. A be uniformly distributed ovef0, 1}Vi| and be independent
Let € be a §-error randomizediNDEX code for G. Then, of B andC. Then,
there existd-error randomizediNDEX codesCq, Co, ..., Ck
for G1,Ga, ..., Gy such thaticost(C) > > icost(C;). icost(C;) = I(A; E((C,A,B),R)|C,R)
~ Proof: For j = 1...k, defineV; = V(G;) andU; = = I(X[Vj]; E(X, R) | X[Uj-1], R),
J
=1 Vi completing the proof of the claim. ]

4The dependence oF on the sender’s private randomness is suppressed Applying the above claim for alj completes the proof of
for ease of presentation. the theorem. [ |
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C. Lower bound for randomized codes C. Odd holes

Theorem7 can now be shown as a simple application of Before we prove the lower bound for odd holes, we first
the above Theoreri8. characterize their minrank:

Theorem 7 (restated) The length of any-error randomized Theorem 32. Let G be an odd hole of lengthn +1 (n > 2).
INDEX code forG is at leastMAIS(G) - (1 — H(d)), where Then,minrky(G) =n + 1.

MAIS(G) is the size of the maximum acyclic induced subgraph Note that since for an odd holé, w(G) — n, odd holes
of G and Hy(+) is the binary entropy function. are examples of graphs for which(G) < minrks(G).

Proof: Let G’ be a maximal acyclic induced subgraph of ~ Proof: As x(G) = n+1 for an odd hole of lengtln + 1
G. By Proposition26, it suffices to consider anWbpeEx code and asminrks(G) < x(G) (Propositiord), it suffices to prove

C for G'. Let uy,us,...,u; denote the vertices of’ such thatminrk(G) > n+ 1.

that there is no edge from; to u; wheneveri < j. Apply Fix any matrix A that fits G. For convenience, we number
Theorem28 with G = G’ and whereG; is a graph with the rows and columns aofl as0,1,...,2n and make all the
a single vertexu;. We haveicost(€) > - icost(C;). Now, index arithmetic below modul@n. Let Ay,..., Ay, be the

sinceC; is aINDEX code for a single vertex graph, therefore2n + 1 rows of A. A has the following three properties, for
it encodes just a single bit that can be decoded with probabilgyery,
of error at mos®. By Fano's inequality, it must have at least 1) A,[i] = 1.

1 — H5(0) bits of information. ] 2) Ali —1], Asli +1] € {0,1}.
3) A;[j]=0,forj & {i—1,i,i+1}.
VI. LOWER BOUNDS FOR RESTRICTED GRAPHS For arowA;, we call the rowsAy, . .., A;_ the “predecessors

of A;”. Note that Ay has no predecessors. We next prove the

In this section we show that for certain natural Class?gllowing o claims:

of graphs, the minrank bound is tight w.ratbitrary INDEX
codes. Claim 33. Fori=1,...,2n — 2, either A; is linearly inde-

L pendent of its predecessors 4t is linearly independent of
Theorem 8 (restated) Let G be any graph, which is either a its predecessors.

DAG, a perfect graph, an odd hole, or an odd anti-hole. Then,
the length of anyNDEX code forG is at leastminrks(G). Proof: Suppose, to reach a contradiction, that the claim
is false. Hence, there exists somne {1,...,2n —2} s.t. both
A; and A, linearly depend on their predecessors. It follows

A. Directed acyclic graphs that bothA; and A;,; linearly depend oy, ..., A;_;. Since

A directed acyclic graph(DAG) is one without directed Ag[i+1]=--- = A;_1[i+ 1] = 0 (using Property 3 ofd and
cycles. the facti+1 < 2n), then alsa4;[i+1] = 0 and A4, [i+1] = 0.
This contradicts the factl;,1[i + 1] = 1 (Property 1 ofA).

Proposition 30. Let G be any DAG onmn nhodes. Then, the -
length of anyINDEX code forG is at leastminrks(G).
Claim 34. At least one among;, Az, _1, Aa, is linearly

Proof: Let € be anyINDEX code forG. SinceG is a independent of its predecessors.

DAG, thenmAIsS(G) = n. Hence, by Theorert, len(C) > n.
Clearly, minrky(G) < n, and thuslen(C) > minrks,(G). = Proof: If at least one ofAs,_1, A2, is independent of
its predecessors, then we are done. So suppose both depend
on their predecessors. As argued above, this means that

B. Perfect graphs Aon_1, Asp, both depend omly, . . ., Aon_o.
An undirected graplt? is calledperfect if for any induced By Property 1 ofA, A5,[2n] = 1. The only vector among
subgraphG’ of G, w(G’) = x(G"). Ag,...,As, o that can have a 1 at then-th coordinate is

Ag. Thus, we must havedy[2n] = 1. By Property 3 ofA,
A1[2n] = 0. Hence,A; cannot depend on its sole predecessor,
Ag. We thus obtained thatl; is linearly independent of its

Proposition 31. Let G be any perfect graph on nodes. Then,
the length of anyNDEX code forG is at leastminrky(G).

Proof: Let C be anyINDEX code forG. By Theorem?7, predecessors. [ |
len(€) > MAIS(G). SinceG is undirected, themais(G) = Note that in Claim34 we implicitly use the factn > 2,
a(@G), i.e., the independence number Gf Clearly, «(G) = because we assume the indide&n — 1, 2n are distinct.

w(G), implying thatlen(C) > w(G). We next use the above two claims to count the number of

Lovasz R7] proved in 1972 the “Perfect Graph Theorem”rows of A that must be linearly independent of their predeces-
stating that a graply is perfect if and only if its complement sors. For each, let Z; = 1 if the i-th row is independent of
is perfect. Now, sincelG is perfect, then by this theoremits predecessors and; = 0 otherwise. The number of rows
also G is perfect, implying that in particular(G) = x(G). that are linearly independent of their predecessos 1§, Z;.

Hence,len(C) > x(G). However, by the sandwich propertyNote that this number is exactly the 2-rank of the maix

of minrank (Propositiond), minrks(G) < x(G) and thus  We know the following three facts about the sequence
len(€) > minrks(G). B Z,..., 72
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1) Zy = 1, becaused, simply does not have any prede- Proof of Part 1:: Sincex # a2/, there exists some index

cessors. i € [n] s.t.x; # «}. This means that ¢ S. If a node does not
2) Foreachi =1,...,n—3, Z; + Z;41 > 1 (Claim 33).  belong to a vertex cover, then all its neighbors must belong
3) Z1 + Zoy_1 + Zy, > 1 (Claim 34). to the vertex cover. We conclude thai(i) € S and thus
We now write the sun® Z?Zo Z; as follows: x[N(#)] = '[N (¢)]. This implies thatz andz’ are connected
. s by an edge in the confusion graph. [ ]
22& 90+ 7y + Z (Zi+ Zis1) + Zomr + 2700, Proof of Part 2:: DefineU = [n] \ S. Since S is an

independent set id7, thenU is a vertex cover. Note that any

=0 =t two inputz, 2’ € X agree onl/, and thus by Part 1 must be

Using the above three facts, we have:

connected by an edge in the confusion graph. ]
2n Proof of Part 3:: Suppose, for example, thereiss S
2 Z Zi 2242n =241+ Zop, > 2n+ 1. that has no neighbors ifi. Since S, T are disjoint,1s and
i=0 17 disagree on theé-th coordinate. Since' is independent,
Therefore,>"2", Z; > (2n + 1)/2. However, sinces"2", z; V(i) € [n]\ S, and thusls[N(i)] = 0. SinceN(i) N T" =
is an integer we have the stronger bound: 0, then alsol7[N(i)] = 0. This implies thatls[N(i)] =
17[N(4)] and thereford g, 1, must be connected by an edge
2 in the confusion graph. [ |

> Ziz[@2n+1)/2] =n+1.

— We can now prove Theorelb:
1=

Proof of Theoren85: Let G be an odd hole odn + 1

Hence,rka(A) = 322" Z; > n + 1. As this holds for anyA nodes ¢ > 2). Let C be anyINDEX code for G. We will
that fits G, alsominrks (G) > n + 1. B prove that/C|, the number of codewords i@, is greater than

The lower bound for odd holes is then the following: 27, implying thatlen(C) > n + 1 = minrky(G).

Consider the following coloring of: S; = {1,3,...,2n—
1}, So = {2,4,...,2n} and S3 = {2n + 1}. For eachi €
{1,2,3}, since S; is an independent set, then by Part 2 of
Lemma37, C must use2!S:! different codewords to encode

Theorem 35. Let G be an odd hole or2n + 1 nodes
(n > 2). Then, the length of anyNDEX code for G is at
leastminrks(G) = n + 1.

As for an odd holeG, MAIS(G) = w(G) = n < inputs in Xg,. Since|S;| = |S2| = n, this already implies
minrks(G), this theorem implies that our lower bound foqe| > 2", Assume, to the contradiction, thid| = 2".
generaliNDEX codes (Theoren) is not tight. Since Si,S5,,S5; are pairwise disjoint, then the sets

The proof of this lower bound is considerably harder thaXsl,ng,X& have only 0 as a common input and are
the proofs for DAGs and perfect graphs. To this end, we neggherwise pairwise disjoint. Sind€| = 2", and no codeword
to study some combinatorial properties of t@nfusion graph can encode two different inputs iKig, (i = 1,2, 3), then there
associated withNDEX coding. must be at least one codeword encoding a nonzero input from

Definition 36 (Confusion graph). Theconfusion graptC/(G) -Xsi» & nonzero input fromX's,, and a nonzero input from
associated withnDEx coding for a directed grapt' (abbre- Xss- We call these inputs, x5, 3.
viated “confusion graph foG”) is an undirectedgraph on  We View xy,x5,23 as characteristic vectors of sets

{0,1}" such thatr and =’ are connected by an edge if for/1, 12,73 C [n]. Sincexy, xa,z3 # 0, thenTy, T5, Ts # 0.
somei, we havez[N ()] = /[N (i)] but z; # . Furthermore, they are all independent and pairwise disjoint.

Since the only nonzero vector Xg, is eay, 1, T3 = {2n+1}.

If z and 2’ are connected by an edge (G), then N0  gjncey,, 2y, 25 are encoded by the same codeword, no two
INDEX codeC for G can mapz andz’ to the same codeword, of them can be connected by an edge in the confusion graph.
implying log x(C(G)) is a lower bound onen(C). Consider anyi € T;. By Part 3 of Lemma37, i must have a
Notation. Let 0 and1 denote, respectively, the_ a_ll-zero a”(ﬁeighborj € T». Similarly, bothi andj must have neighbors
the all-one vectors. Lets denotes the characteristic vector ofy, 7, Sincer; = {2n+1}, both are neighbors dfn + 1. We
a setS C [n]. conclude thati, j, 2n+1) forms a triangle inG. However, all

Lemma 37. Let G be an undirected graph on nodes and let 0dd holes are triangle-free. This is a contradiction, and thus

C(G) be the confusion graph correspondingik®EX coding €] > 27, u
for G. Then, The above theorem provides a tight lower bound on the

1) If S is a vertex cover ofG, then any two inputs lengthof INDEX codes for ogd holes, but not on theize Our
z,2' € {0,1}" that agree onS (i.e., z[S] = #'[9]) upper bound (Theorer) gives a code whose size &1,
are connected by an edge @(G). wh|lle the above.proof only shows a Iower bound|ef > 2n.

2) If S is an independent set ifi, then the sefs = {17 | Optimal code size lower bounds are important for deriving
T C S} forms a clique inC(G). lower bounds on the average encoding length and on the

) information cost. Resorting to a more involved combinatorial
argument, we are able to prove tight bounds (i2&1!) on
the size ofiINDEX codes for odd holes of length at least 7:

3) If S,T are two disjoint and independent sets@h and
there exists some e S that has no neighbors ifi" or
somej € T that has no neighbors i§, then the inputs

1s and 11 are connected by an edge @(G). Theorem 38. Let G be an odd hole on + 1 nodes § > 3).



13

Then, the size of anwDEX code forG is at leas2™**%(%) =  nonzero input fromXg,, for eachi = 1,...,n + 1. Let us
ol denote these inputs by, ..., xn+1. We Viewzy, ..., Ty
as characteristic vectors of séfs, ..., T,.1. These sets are

The _proof_of this theorem appears in Appendix all independent and pairwise disjoint. Furthermdre~= {1},
Dealing with the pentagon (a hole of length 5) turns out tgecause the only nonzero input K. is e
1 1-

be very tricky. The difficulty of handling the pentagon stems .. . .
from the fact that the corresponding confusion graph has aSlncezl, ++»Znp1 &€ all encoded by a single input, they
rather peculiar property. In mF:)st cages one cangokftain ti st form an independent set in the confusion grai).
P property. . ' X e next prove by induction that for evety=1,...,n + 1,
lower bounds on the chromatic number of the confusion gra .
T s . must be the sef2i — 1}.
by obtaining tight upper bounds on the graph’s independenc C .
number. It turns out that this approach fails for the pentago ori = 1, we already know thafy = {l}. Assume
u S u ', PP . : ) P 9 orrectness foi. We will show correctness far+ 1. Sincez;
The size of the pentagon’s confusion graph is 32 and 1|

S ; .
) ) ndz,.; are not connected by an edge in the confusion graph,
chromatic number is 8. Yet, the code we show below for t Tit1 y 9 grap
pentagon demonstrates that the independence number o

ﬁgn by Part 3 of Lemma&7, every node inl; must have a
g ; : . ; ; n'ezlsghbor inT;4+, and vice versa. SincE, = {2i—1} and since

confusion graph is 5, implying tha&2/5 < 8 is not a tight o

lower bound on the chromatic number.

the only neighbor oRi — 1 in the setS;; = {2¢,2i + 1} is
2i + 1, thenT;41 must be{2i + 1}.

Codeword| Inputs It follows that T}, = {2n + 1}. However, since nodes
Cy 00000, 00110, 10001, 11101, 11110 and2n+1 are not neighbors if, it follows that no node iy
C 11111, 11001, 01110, 00010, 00001 has neighbors iff}, ;. Thus, by Part 3 of Lemma7, z;, and
Cs 01010, 01100, 11011, 10111, 10100 rn4+1 Must be connected by an edge in the confusion graph,
Cy 00100, 01011, 10010, 10101 in contradiction to the fact,, ..., z,,; is an independent set
Cs 00111, 01001, 10110, 11010 in the confusion graph. Thereforgg| > 5. [ ]
Cs 01000, 01111, 10000, 10011
07 00011, 00101, 11000 VIlI. CONCLUSIONS
Cs 01101, 11100 In this paper, we explored upper and lower bounds on the

By applying arguments from the proof of theores we length ofINDEX codes for{0, 1}" with side information graph
can obtain a lower bound of 7 on the size of codes fa¥. We identified a measure on graphs, tménrank which
the pentagon, one short of the upper bound of 8. By tlve showed to characterize the length iI6fDEX codes for
same arguments, anWDEX code of size 7 for the pentagonnatural classes of graphs (DAGs, perfect graphs, odd holes,
must adhere to certain structural constraints. By a brute forard odd anti-holes). We also proved that minrank characterizes
exhaustive search over such codes, we verified that 8 is the minimum length of natural types afiDEX codes (linear,

tight lower bound. linearly-decodable, and semi-linearly-decodable)dditrary
graphs. For general codes and general graphs, we were able
D. Odd anti-holes to obtain a weaker bound in terms of the maximum acyclic

. ) induced subgraph. Finally, we proved a direct sum theorem for
Recall that an odd anti-hole is the complement graph gfe information cost ofnDEX codes with side information.
an odd hole. We prove a tight lower bound on the minimum ag | ypetzky and Stav2{4] have recently shown, the min-
length of codes for odd anti-holes. This bound does not giygnk is not a tight lower bound on the length of a general
a tight lower bound on the size of codes for odd anti-holegypex code for arbitrary graphs. Characterizing the optimal
Unfortunately, we could not prove tight bounds on the sizejgngih of INDEX codes for arbitrary graphs therefore remains

Theorem 39. Let G be an odd anti-hole or2n + 1 nodes an open problem. It is nonetheless important to note that
(n > 2). Then, the length of anwDEX code forG is at least Virtually all codes presently in use are linear, and for those
minrk(G) = 3. our bounds are tight.
) N ~ The minrank by itself is an interesting subject of study. We
Proof: We use the same notation and propositions as idow that for undirected graphs, it is bounded from below
the proof for odd holes. Le€ be anyINDEX code forG. py the Shannon capacity and from above by the chromatic
We would like to show thatC| > 5. That would imply that nymper of the complement graph. It would be interesting to
len(€) > 3. explore further properties of minrank with respect to other
An odd anti-hole of lengtten + 1 is (n + 1)-colorable. graph measures such as the &se Theta function.
Consider the following coloring ofG: S = {1},5; = Finally, a practical conclusion is that keeping “junk” (un-
{2,3}, -, Snpr = {2n,2n + 1}. Let Xg,,..., Xg,,, b€ needed information) may be beneficial, as it can serve as side
the input sets corresponding £, . . ., Sn+1. Note that these information and save communication. This is particularly true
sets share a single input (the all-zero input) and are otherwjs&,iew of the declining cost of storage space.
pairwise disjoint.
Fori = 2,...,n+ 1, |Xg,| = 4, and thus by Part 2 of REEERENCES
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I. Kremer, N. Nisan, and D. Ron, “On randomized one-round communjX [S]|. Then, by the Pigeonhole Principle, there exist two

cation complexity,"Computational Complexityol. 8, no. 1, pp. 21-49, ; / — ’
ey inputs =, 2’ € X s.t. x[S] = 2'[S] but z[T] # «/[T]. That

R. W. Yeung and Z. Zhang, “Distributed source coding for satellit!>’ there is somg € T'\ 5, S'E'I[J] # a'[]]. Yet, sincey ¢5,
communications,IEEE Transactions on Information Theoryol. 45, N (j) € S, and thusz and 2’ agree on all the neighbors of
pp. 1111-1120, 1999. 4 but disagree ony. This means that andz’ are connected

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network informa- ; ; ; P

tion flow,” IEEE Trans. Inform. Theorwol. 46, pp. 1204-1216, 2000. by an que in the confusion graph, n cqntradlctlon to the
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15

| X[S1]] - | X[S2]| < 2-2771 < 2" Using Propositior0 we The above implies there exists somedis.t. X[i, 1+1,i+

have in this case:X| < 2™. 2] consists of the following bitstrings:
Case 2: 3i € [0,2n] s.t. | X[i,i + 1]| = 4. -
WLOG, assume = 1. Hence,|X|[1,2]| = 4. Since{1,3} { aibici, aibici, aibic; }.

is a vertex cover of the sdtl, 2,3}, then by Propositiort1,
|X[1,2,3]| <|X[1,3]|] < 4. On the other hand, sincgl, 2}
is a subset 0f{1,2,3}, 4 = |X[1,2]] < |X[1,2,3]] < 4. a;bic;.
Hence,| X[1, 2, 3]| = | X1, 2]| = 4, and thus if any two inputs ) . o
z,7' € X agree on positions and2, they also must agree on(Note that it cannot consist only of the bitstrings
position3. Analogously, we havex [0, 1,2]| = |X[1,2]| = 4, {aibici, aibiCi, @;bic;}, because thepX[i +1,i + 2] = 2.)
and thus any two inputs that agree on positierend2 also  Since there is a single bitstrings #[i, i +1, i+ 2] in which
agree on posmom) NOW, since the bits at position‘B and?2 bit Z+1 is bl‘, bz must be the majority bit at pOSItIOzHJrl W.I.T.
completely determine the bits at positiosand 3, we have: the bitstrings inXT[i 4 1,7 + 2]. In other words,ai1 = b;.
1X[0,1,2,3]| = 4. Similarly, it can be seen that; must be the majority bit at
Consider now the following vertex cover of: S positioni + 2 w.r.t. the bitstrings inX[i + 1,i + 2]. Hence,
{0,1,3,5,7,...,2n — 1}. We split it into two parts.S; bi+1 =7¢;.

It may optionally contain also the following bitstring:

{0,1,3} and Sy = {5,7,...,2n — 1}. We obtain:| X[5]| < We conclude the following:

|X[S1]| - |X[S2]|. Since 51 € {0,1,2,3}, |X[Si]] < 1) If z € X andz[i 4+ 1,i + 2] = a;y1bit1 = bici, then
1X1[0,1,2,3]| = 4. Since |Ss| = n — 2, |X[Sy]| < 272 necessarilyz[i,i + 1] = @;b;. Therefore,[A; 1| < |€y).

Therefore,| X [S]| < 4272 = 2", Applying now Proposi- 2) If z € X and zfi + 1,0 + 2] = ai1bis1 = bici,

tion 40, we have] X| < | X[9]| < 2™. thenx[i,i + 1] = a;b; or x[i,i + 1] = a;b;. Therefore,
Case 3: Vi € [0,2n], | X[i,i + 1]| = 3. We split the analysis |Bis1] < [Ail + €.

of this case into two sub-cases. 3) If z € X andxfi + 1,i + 2] = @4 1bi1 = bic;, then
Sub-case 3.1: n > 4. That is,G is an odd hole of length at necessarilyz[i,i + 1] = a;b;. Therefore,|C; 1] < |B,].

least9. Our goal in this case is to show tHa&f [0, 1,...,7]| < Fori = 0, we have|Ao| = |Bo| = |G| = 1. Hence,

16. If we do that, then we can construct a vertex cover of. . e, form Fibonacci-like series. Since we need the value

G as follows: S = 5; U Sy, where S, = {0,1,3,5,7} and ¢ yhe series only at = 6, we expand their prefixes explicitly
Sy =1{9,11,...,2n—1}. We obtain| X | < |X[S]| < |X[S1]l" in Tablel.

1X[S2]] < 1X][0,1,...,7]|- 221 <1627~ = 2n,

In order to bound X[0,1,...,7]|, we develop a recursive i | Al B 1G] | 1X[0,1,...,i+1]|
expression fof X[0,1,...,s+ 1]|, for any: = 0,...,2n — 1. o] 1 1 1 3
Fix somei € [0,2n — 1] and denote the three bitstrings in ; 1 g % g
X[Z', 7+ 1] by a;b;, a;b;, anda;b;, wherea;, b; € {0, 1} Note 3 2 3 2 7
that exactly two of these bitstrings agree on positioand 41 2 4 3 9
exactly two agree on position+ 1. a; is the majority bit at g i ? g ig
positioni andb; is the majority bit at position + 1. We split TABLE |
the SetX[O, 1’ Tt i + 1] intO three parts accordingly: UPPER BOUNDS OBTAINED USING THE RECURSION
A = A{z[0,1,...;i+1] |z € X, z[i,i + 1] = a;b;},
B; = {z[0,1,...,i+1]|x € X,z[i,i+ 1] = a;b;}, and The last  the table di desired bound
. . _ e last row of the table gives our desired upper bound:
C; = {z[0,1,...,i+ 1] |z € X,x[i,i + 1] = a;b;}. IX[0,1,...,7] < 16.
Clearly, | X[0,1,...,i + 1]| = |A;| + |Bs| + |C;|. We will Sub-case 3.2: n = 3. That is,G is a hole of length 7. We
develop recursive expressions fat;|, |B;/,|C;| and use them show that in this caseX[0,1,...,5]| < 8. This would imply
to bound|X10,1,...,i+ 1]]. that | X| < |X][0,1,3,5]| <|X]0,1,...,5]|] <8=2".
Recall thata;b;, a;b;, anda;b; are the three bitstrings con- By what we proved in the previous sub-case, we know
stituting X[4,7 + 1]. We would like to explore next how these| X0, 1, ..., 5]| < 9. We assume then, to reach a contradiction,

bitstrings can be extended into bitstringsXiji,i + 1,7+ 2].  that |X[0,1,...,5] = 9. We partition X into three sets as
We next argue thad;b; anda;b; cannot be extended usingfollows:
the same bit into bitstrings iX[i, i + 1,7+ 2]. If there exists

a bit ¢; s.t. bothab;c; and a;b;c; belong to X[i,i + 1,i + Xa = {zeX|[z[0,1] = agbo},

2], then there exist two inputs,z’ € X s.t. z[i,i + 1,7 + Xy = {xe X |2z[0,1] =agh}, and

2] = ai'bici and 2'[i,i + 1,7 + 2] = a;bic;. That IS,{E[Z + Xe = {reX|z[0,1]=daobo}.

1] # 2'[i + 1], butxz, 2’ agree on the two neighbors oft 1.

Therefore,z, 2’ are connected by an edge in the confusiowe will prove that if |X]0,1,...,5]] = 9, then
graphC(G), in contradiction to the assumption both belon¢gX 4[5]] = |Xz[5]] = |Xe[5]| = 2. That would im-

to an independent set. We conclude that; and a;b; must ply that | X[5,6,0,1]| = |X4]5,6,0,1]| + |X5[5,6,0,1]| +
be extended by complementary bits into bitstrings\ifi,i + |X¢[5,6,0,1]| > 2+2+2 = 6. By symmetry, the upper bound
1,7+ 2]. we proved in the previous sub-case P[0, 1,2,3]| holds



for any sequence of four consecutive positions. Therefore,
|X[5,6,0,1]| <5, contradicting| X [5, 6,0, 1]| > 6.

So how do we proveX 4[5]| = |Xz[5]| = |Xe[5]] = 2?
Define, for anyi € [0,2n — 1], AR = X4[0,1,...,i + 1],
BE = X4[0,1,...,i+1], andCE = Xe[0,1,...,i+1]. Note
that:

AR = {2[0,1,...,i+1] |2 € X,2[0,1] = agbo},
BE = {z[0,1,...,i+1] |z € X,z[0,1] = agho}, and
CE = {z0,1,...,i+1] |z € X,z[0,1] = @obo}.

By reversing the order of indices and then applying the same
argument as in the proof of the previous sub-case, we can
obtain that:

1) The upper bound ohA;| applies to|A%|.

2) The upper bound ofB;| applies to|CE|.

3) The upper bound ofC;| applies to|BE|.

Since |X[0,1,...,5]] = 9 meets its upper bound, then
also |AZ|,|BE|, |C| must meet their upper bounds for=
0,1,...,4. We now show separately thaf 4 [5]| = | Xz[5]| =

[ Xe[5]] = 2:

1) Using Tablel, we have|AZ| = 1, while |Af| = 2.
Therefore,| X 4[3]| = 1 while | X 4[3,4,5]| = 2. Since
{3,5} is a vertex cover of3,4,5}, then|X4][3,5]| >
|X4[3,4,5]] = 2. However, sincelX4[3]| = 1, then
X al5]] = 2.

2) Using Tablel, we have|B%| = 3 while |Bf| = 4.
Again, this must imply thatXz[5]| = 2.

3) Using Tablel, we have|C¥| = 2 while |CF| = 3. That
is, | Xe[0,1,2,3,4]| = 2 while [X¢[0,1,2,3,4,5]| = 3.
This can happen only ifXe[5]] = 2.

|
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