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ABSTRACT
RaWMS is a novel lightweight random membership service for ad
hoc networks. The service provides each node with a partial uni-
formly chosen view of network nodes. Such a membership ser-
vice is useful, e.g., in data dissemination algorithms, lookup and
discovery services, peer sampling services, and complete member-
ship construction. The design of RaWMS is based on a novel re-
verse random walk (RW) sampling technique. The paper includes
a formal analysis of both the reverse RW sampling technique and
RaWMS and verifies it through a detailed simulation study. In addi-
tion, RaWMS is compared with a number of other known methods
such as flooding and gossip-based techniques.

Categories and Subject Descriptors:
C.2.1 [Comp.-Communication Networks]: Network Architecture
and Design—Wireless communication; C.2.4 [Comp.-Communica-
tion Networks]: Distributed Systems—Distributed applications

General Terms: Algorithms, Design.

Keywords: Ad Hoc Networks, Membership service, Random Walk

1. INTRODUCTION

Context of this study. Membership servicesserve as essential
building blocks in a variety of other services and applications in ad
hoc networks. A membership service provides each node with a
viewregarding who are the other nodes in the network.

In traditional membership services [9], the view of each pro-
cess approximates the entire membership. Moreover, views must
be consistent, and changes to views must be coordinated among all
their members. This complete and strongly consistent approach
works well in wired LANs. However, generally speaking, it is
not suitable for large networks and mobile ad hoc networks. This
is because maintaining such membership information consumes a
lot of memory and requires large message and computational over-
heads for each membership change. In contrast, in mobile ad hoc
networks, nodes often have limited memory capacities. The dy-
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namic nature of the system implies frequent changes to the network
membership. Additionally, wireless multi-hop networks are more
sensitive to high message loads than wired LANs, and the energy
consumption associated with sending and receiving many messages
could quickly drain the batteries of mobile devices.

Interestingly, many applications do not need complete member-
ship information. Instead, they only require each member to hold
a partial random view of the network membership. Examples of
such applications are probabilistic reliable dissemination of data
and events [5, 11, 21], peer sampling services [20], location ser-
vices and uniform quorums [19], random overlay constructions [25],
DHTs [29], etc. Therefore, it makes sense to offer an optimized
membership service that indeed only provides nodes with partial
random views. Such optimized services are the focus of this paper.

Contributions of this work. We start by introducing a novel re-
verserandom walk(RW) technique for peer sampling with an adap-
tation to ad hoc networks along with a formal analysis of this tech-
nique. Next, we present theRAndom Walk based Membership Ser-
vice(RaWMS), which provides a random uniformly chosen partial
membership view based on random walks. In particular, the peers
in the view of every node look like they were picked from random
uniformly chosen locations in the network.

Unlike many gossip-based algorithms, our service posses five
important properties. These include (i) proven uniform random-
ness of the constructed views, (ii) analytically proven bounds on
the load of an individual node (view size), (iii) enabling each node
to set its view size independently of other nodes without any impli-
cations on the randomness of the views’ content, (iv) a low chance
of partition in the knowledge graph induced by the views, and (v)
self healing from partitions when they do occur. Another important
characteristic of our algorithm is that it does not require multiple-
hop routing. Also, its sole assumption about the network’s topology
is that the network will be connected.

In the implementation of RaWMS, we seek to obtain a good
tradeoff between the communication overhead incurred by our pro-
tocol vs. its memory consumption. To deal with this issue, our
protocol allows every node to choose the target size of its view, in-
dependently and without any correlation with other nodes. More-
over, a node can adjust its view size on-the-fly according to its cur-
rently available memory. In a small or medium size network, or if a
node has plenty of memory, it may wish to maintain a large or even
complete membership knowledge. On the other hand, in a sensor
network or a very large ad hoc network, nodes may wish to save
memory and only maintain a partial membership view. In case that
at some point a node with a small view requires knowledge of the
entire membership, e.g., due to its application’s demand, our ser-
vice can reactively increase its view in a fast and efficient manner.

We provide a detailed formal analysis of our implementation of



RaWMS. We then analytically compare RaWMS with other mem-
bership construction techniques, such as lpbcast [11], Shuffling [14]
and flooding. Finally, we study the performance of RaWMS by
simulations, evaluating its properties and comparing it to lpbcast.
These measurements largely confirm our theoretical analysis.

2. SYSTEM MODEL
Consider a set of nodes spread across a geographical area and

communicating by exchanging messages using a wireless medium.
A node in the system is a device owning an omni-directional an-
tenna that enables wireless communication. Each nodev may send
messages that can be received by all other nodes within its trans-
mission rangerv. A nodeu is aneighborof another nodev if u is
located within the transmission range ofv. The transmission disk
of nodev is a disk centered onv with radiusrv. The combination
of the nodes and the transitive closure of their transmission disks
forms a wireless ad hoc network. The network described above
can also be modeled as a graphG = (V, E) whereV is the set of
network nodes andE models the one-to-one neighboring relations.

The network connectivity graph of an ad hoc network is a spe-
cial case of aRandom Geometric Graph(RGG). Ad-dimensional
RGG, denotedGd(n, r), is obtained by placingn nodes uniformly
at random on the surface of ad-dimensional unit torus, and con-
necting nodes within Euclidean distancer of each other [28]. RGGs
have been studied in the context of random walks, and thus we
can utilize some of these results for our purposes. Specifically, the
G2(n, r) graph, also known as theUnit Disk graph, is often used
to model the network connectivity graph of 2-dimensional wireless
ad hoc networks and sensor networks [16].

We assume that nodes do not know their position and we do not
use any geographic knowledge in our algorithms. Each node has
a unique identifier that is used for sending messages to that node.
The membership knowledge of a node, defined as theviewof this
node, is a list of identifiers of other network nodes known to this
node. In addition to the view structure, we assume that each node
knows all of its direct neighbors, whose addresses are stored in the
node’sneighbors list. This list can be constructed, e.g., by a simple
heartbeat mechanism that is present in any case in most routing
algorithms for ad hoc networks. A node can communicate with
its neighbors directly. Additionally, a node can communicate with
other distant nodes whose address is present in its view by applying
a routing algorithm to route messages to these nodes.

Nodes can physically move across the network; new nodes may
join and existing nodes may leave the network at any time, either
gracefully or by suffering a crash failure. Nodes that crash or leave
the network may rejoin it later.

3. RANDOM WALK TECHNIQUES

Simple random walks. Let G = (V, E) be an undirected graph,
n = |V |. Let dv denote the degree of a vertexv ∈ V . A simple
random walkon G is a stochastic process in which a “token” is
repeatedly forwarded from a node to a randomly chosen neighbor.
Formally, the random walk is specified by ann×n probability tran-
sition matrixP , wherePv,u = 1/dv, if (v, u) ∈ E, andPv,u = 0
otherwise. For every time stept ≥ 0, φt is a probability distri-
bution over the vertex setV . It specifies, for eachv ∈ V , the
probability that the token is placed on vertexv at stept. The ini-
tial distributionφ0 specifies the vertex at which the random walk is
started. For everyt ≥ 1, φt = φ0P

t.
If the graph is connected and non-bipartite, then the sequence of

distributionsφ0, φ1, φ2, . . . is guaranteed to converge to a unique

limit distributionπ, which isindependentof the initial distribution.
π is also astationarydistribution ofP , that is,πP = π.

A simple analysis (cf. [22]) shows that the stationary distribu-
tion of the simple random walk has a limit distribution that assigns
probabilities to nodes proportionally to their degree:π(v) = dv

2|E| ,
for everyv ∈ V . Therefore, a stationary distribution of a simple
random walk on a graph is uniform if and only if the graph isreg-
ular, i.e., all nodes have the same degree. Later in the section we
will present theMaximum Degreerandom walk, whose stationary
distribution is uniform even for non-regular graphs.

RW-based sampling. The following algorithm uses a random
walk onG to sample nodes from the limit distributionπ:

sample (p,T )
1) start a RW fromp;
2) run the RW forT steps;
3) return the node in which the RW was stopped

If π happens to be the uniform distribution, then the algorithm gen-
erates uniform sample nodes. The idea of the algorithm is very
simple: it starts the random walk at some start vertexp and runs it
for T steps. The node reached afterT steps is returned as a sam-
ple. If T is sufficiently large, then the distributionφT of the node
returned is close to the limit distributionπ.

Notice that this sampling technique does not require a priori
knowledge of all network nodes and does not use multi-hop rout-
ing. A node must only be aware of its neighbors. This makes RW-
based sampling attractive for ad hoc networks.

The main question to be addressed is how to setT to guarantee
thatφT is close toπ. To this end, we define themixing timeof a
random walk:

DEFINITION 1. For every nodev ∈ V , let φv
0 be the initial

distribution concentrated onv. For every stept ≥ 0, the total
variation distance betweenφv

0P t andπ is defined as:

Mv (t) =
1

2

∑

u∈V

|φv
0(u)− π(u)|.

For everyε > 0, theε-mixing timeof the random walk is:

Tmix(ε) = max
v∈V

min{t |Mv (t′) ≤ ε,∀t′ ≥ t}.

Intuitively, the mixing time of a RW is the minimum number of
stepst required to guarantee that, regardless of the start vertex of
the random walk, the probability distribution reached aftert steps is
ε-close to the stationary distribution. Throughout this paper, when
the parameterε is omitted, we refer to mixing time withε = Θ( 1

n
).

A popular method for bounding the mixing time of a random
walk is via thespectral gapof its transition matrix. Letλ1, λ2,
. . . , λn be then eigenvalues ofP ordered in decreasing absolute
value. It can be shown that all these eigenvalues must be real and
lie in the interval[−1, 1], where the principal eigenvalue,λ1 = 1.
If G is connected and non-bipartite, then|λ2| < 1. The difference
1− |λ2| is called thespectral gapof P and turns out to determine
the mixing time of the random walk (cf. [17]):

THEOREM 1. The mixing time of a random walk with transition
matrixP is upper bounded as follows:

Tmix(ε) ≤ ln π−1
min + ln ε−1

1− |λ2|
,

whereπmin = min{π(v) | v ∈ V }.
Note that whenπ is the uniform distribution thenπmin = 1/n.

Theorem 1 provides the means for setting the parameterT in
the sampling algorithm. Given a bound on the spectral gap ofP



(which is typically derived by analyzing combinatorial properties
of the graphG) and given the desired accuracy parameterε, we can
use the above formula to calculateT .

The Maximum Degree RW. As mentioned above, the simple RW
on a graph converges to a uniform limit distribution if and only
if the graph is regular. Ad hoc network graphs are typically non-
regular, and thus we cannot use the simple RW directly to obtain
uniform sampling of network nodes. Instead, we use a different
RW, called theMaximum Degree(MD) random walk, which has
been used before in various contexts [22, 3, 6, 7] to achieve uniform
sampling.

Let G = (V, E) be an undirected, connected, and non-bipartite
graph, which is not necessarily regular. Suppose we have an upper
boundD ondmax, the maximum degree ofG. (We show how to get
such a bound below.) We useD to transformG into a regular graph
G′. To this end, we add to each nodev of G a weighted self loop
(i.e., multiple edges fromv to itself). The weight of the self loop
of v is set to beD − dv. The degrees of all nodes in the resulting
graphG′ are the same and equalD. The Maximum Degree random
walk onG is the simple random walk onG′. The transition matrix
of this random walk is then the following:

Pv,u =





1/D, if (v, u) ∈ E, v 6= u,

0, if (v, u) /∈ E,

1−∑
u′ 6=u Pu′,u if v = u.

If G is connected, thenG′ is connected and non-bipartite, and
hence the MD random walk has a limit distribution. Furthermore,
sinceG′ is regular, this distribution is uniform.

Many of the steps performed in a MD random walk are self loop
steps. In many applications, including ours, self loop steps are
“free”: they can be executed in zero time and require no communi-
cation. Thus, it makes sense to define theactual mixing timeof a
random walk, denotedTactual mix, which is the expected number of
actual steps (i.e., non-self loop steps) needed for the random walk
to approach its limit distribution.

As we shall see later, an overestimate ofD may increase the
mixing time of the MD random walk, but typically does not affect
the actual mixing time. This is because an inflatedD increases the
mixing time at the same rate it increases the fraction of self loop
steps, leaving the number of actual steps intact.

Random walks on ad hoc networks. Wireless ad hoc and sen-
sor networks are typically modelled asRandom Geometric Graphs
(RGG). We show that for an appropriate choice of the radius pa-
rameterr, a random geometric graphG2(n, r) is with high prob-
ability undirected and connected. Hence, the MD random walk on
G2(n, r) is likely to converge to a uniform limit distribution.

Undirectedness.Recall that two nodesu, v ∈ G2(n, r) are con-
nected by an edge if and only if the Euclidean distance between
them is at mostr. Since Euclidean distance is symmetric,G2(n, r)
must be undirected.1

Connectivity. The connectivity ofG2(n, r) was extensively stud-
ied in the context of the minimal transmission power necessary to
ensure that with high probability a given ad hoc network graph is

1The symmetry assumed in the theoretical model of RGGs is not always
valid in real ad hoc networks and the transmission range does not behave
exactly as a disk due to various physical phenomena. In practice, it is pos-
sible that a nodev receives messages sent from nodeu, but not vice versa.
Yet, such phenomena are rare and on the other hand, those assumptions
greatly simplify the formal model. At any event, our theoretical results
were verified through an extensive simulation with real transmission range
behavior including distortions, background noise, unidirectional links, etc.

still connected as the number of nodes in the network grows to in-
finity. Gupta and Kumar [16] have shown that ifn nodes are placed
on a unit disk and each node transmits at a power level that covers
an area ofπr2 = log n+c(n)

n
, then the resulting network is asymp-

totically connected with probability one, if and only ifc(n) → ∞
asn →∞. In [27], the authors obtain a similar result when nodes
are distributed in the unit square[0, 1]2.

Throughout this paper we assume a radiusr =
√

C ln n
n

for the

transmission range, whereC is a constant. ForC > 1/π, this ra-
dius satisfies the connectivity condition of Gupta and Kumar. Thus,
we can assume w.h.p. that the ad hoc network graph is connected.

For technical reasons, we also assume the radiusr is not too
large (r ≤ 1/2). If the radius is greater than1/2, then the resulting
graph is a clique or close to a clique, and thus the random walk on
this graph mixes very quickly.

Setting the maximum degree bound.We now prove an upper bound
on the maximum degree of the random graphG2(n, r). This bound
can be useful in setting the parameterD of the MD RW.

PROPOSITION 1. Supposer ≤ 1/2. Fix any 0 < αd < 1

and letδd =
√

3
πr2(n−1)

· ln 2n
αd

. Let davg, dmax, anddmin be,

respectively, the average, maximum, and minimum degree of the
random geometric graphG2(n, r). Then,

(1) E(davg) = πr2(n− 1)
(2) with probability at least1−αd, dmin ≥ (1−δd) ·πr2(n−1)

anddmax ≤ (1 + δd) · πr2(n− 1)

PROOF. Fix any i ∈ {1, . . . , n}. For eachj 6= i, let Xj be a
0-1 random variable indicating whether thej-th node ofG2(n, r)
is a neighbor of thei-th node ofG2(n, r) or not. Since two nodes
are neighbors if and only if they are at distance at mostr from each
other, thenE(Xj) = Pr(Xj = 1) = πr2. (Here we use the
fact r ≤ 1/2. Otherwise, a disk of radiusr centered at thei-th
node “wraps around” itself, and thus contains multiple “copies” of
the same points on the surface of the unit torus. In particular, this
means that the probability to have thej-th node as a neighbor the
i-th node is lower thanπr2.)

LetYi =
∑

j 6=i Xj be the degree of thei-th node. By linearity of

expectation,E(Yi) = πr2(n − 1). Note thatdavg = 1
n

∑n
i=1 Yi.

Thus, using linearity of expectation again,E(davg) = πr2(n− 1).
By Chernoff bounds

Pr(|Yi − E(Yi)| > δdE(Yi)) ≤ 2 · exp(− δ2
dE(Yi)

3
).

SubstitutingE(Yi) = πr2(n− 1) and the value ofδd, we have:

Pr(|Yi − πr2(n− 1)| > δd · πr2(n− 1)) ≤ αd

n
.

Using the union bound, the probability that there is a node whose
degree is less thanπr2(n− 1) · (1− δd) or more thanπr2(n− 1) ·
(1 + δd) is at mostαd.

As shown by the proposition, the average degree of every node
in G2(n, r) is (n− 1)πr2. For example, forC = 1 andαd = 0.1,
the average degree is aroundπ ln n and the maximum degree is
at most a factor(1 +

√
1 + 3/ ln n) ∼ 2 away from the average

degree with probability 0.9.

Mixing time. Next, we analyze the mixing time of the Maximum
Degree random walk onG2(n, r). Avin and Recal [2] and Boyd
et al. [7] analyze the mixing time of the simple random walk on
G2(n, r) and show it equalsΘ(r−2 log n). Boyd et al. [7] mention
in their paper that a similar analysis can show the same bound on



the mixing time of the MD random walk. Yet, they do not give
this analysis explicitly. Furthermore, the analysis provided in these
papers is asymptotic, and does not include the exact constants.

We follow the footsteps of Boyd et al. and provide a rigorous
analysis of the mixing time of the MD RW. We show that:

THEOREM 2. Supposer ≤ 1/2 andn ≥ 10. LetG2(n, r) be a
random geometric graph chosen withn nodes and radiusr. LetD
be any value that upper bounds the maximum degree ofG2(n, r).
Let Tmix(ε) be the mixing time of the MD random walk on this
graph, when applied with the valueD. Let Tactual mix(ε) be the
actual mixing time of this random walk (i.e., excluding self loop

steps). For anyC > 49, if r =
√

C ln n
n

, then with probability at

least2/3 (over the choice of the graph),

Tmix(ε) ≤ 30

(1− 7√
C

)2
· D

n
· 1

r4
· (ln n + ln ε−1).

Tactual mix(ε) ≤ 120

(1− 7√
C

)2
· 1

r2
· (ln n + ln ε−1).

Tactual mix(ε) ≤ dmax

D
· Tmix(ε).

The proof of Theorem 2 is rather involved. Due to lack of space,
it is omitted from this version of the paper. It appears in the full
version, available as a technical report [4]. The proof relies on
Sinclair’s canonical paths method [31] for bounding the spectral
gap of a random walk. The construction and the analysis of these
canonical paths are done via partitioning of the torus into a square
grid, and defining “square paths” on this grid. Several additional
remarks are in order.

(1) If dmax ≈ πr2n (as guaranteed w.h.p. by Proposition 1) and
if we chooseD to be close todmax, then the mixing time of the
MD random walk isTmix(ε) = O(r−2(ln n + ln ε−1)). For our
choice ofr, if C is a constant, then this mixing time isTmix(ε) =

O(n(1 + ln ε−1

ln n
)). On the other hand, ifD is a gross overestimate

of dmax, Tmix can get higher.
(2) As opposed to the standard mixing time, which can get large

if D is an overestimate ofdmax, the actual mixing time is not af-
fected by the difference betweenD anddmax. That is,Tactual mix(ε) =
O(r−2(ln n + ln ε−1)) always, regardless of the value ofD. For
constantC, we have

Tactual mix(ε) = O(n(1 +
ln ε−1

ln n
)).

(3) The theorem exhibits a tradeoff between the mixing time and
the radiusr: the larger isr, the smaller is the mixing time. This
is to be expected, since a large transmission range improves the
connectivity of the graph, which results in a faster mixing time. On
the other hand, large transmission range increases the number of
transmission collisions, reducing the quality of the wireless link.

(4) The minimum network size, for which the above theorem
gives a non-trivial result is obtained by settingC = 50, in which
casen ≥ 1, 060. For smaller networks, the lower bound onr
impliesr > 1/2, which means that the graphG2(n, r) is a clique.
In cliques (with self loops), the random walk mixes in a single step.

(5) The theorem shows that the asymptotic behavior of the ran-
dom walk is linear. The fact that the bounds provide non-trivial
results only for sufficiently large networks and that Theorem 2 is
applicable only for quite large radiuses (C > 49) are artifacts of
the involved theoretical analysis and not of the algorithm itself. We
believe that in practice the RW mixes quickly for much smaller
transmission ranges and for small networks as well. This is sup-
ported by our experimental results, in which we have experienced
with C = 1 and observed almost uniform quality of the RW sam-
pling for Tmix(ε) = n/2.

3.1 Reverse RW-based uniform sampling in
ad hoc networks

The näıve, direct, approach for applying the MD random walk
for generating uniform samples in an ad hoc network is the follow-
ing. Every nodev starts the sampling algorithm described above
using the MD random walk, passing its own id and the random
walk’s mixing time as parameters. The last node reached in the
random walk notifiesv of its id. This id represents a uniformly
sampled node from the network. The notification can be done either
by using the reverse path of the RW or by applying unicast routing.
Both introduce significant additional communication overhead.

To solve this problem, we propose using areverse sampling tech-
nique. That is, instead of informing the source nodev about a sam-
pled destination nodeu, the destinationu is informed about the
sourcev. We claim that this constitutes a random sample of source
nodes. Using symmetry arguments, the destination nodeu can use
the sourcev as if v was sampled byu directly. This way, there is
no additional routing overhead for notifying the result of the RW to
its initiating node. Since every node can initiate a number of RWs
with its id simultaneously, we can use this technique to construct
for each node a random sample ofs (1 ≤ s ≤ n) other nodes.

Below, we prove that reverse sampling indeed results in a uni-
form sample of nodes. (For simplicity of analysis, we assume in
the proof that each RW produces a truly-uniform node and not a
nearly-uniform node. The extension to deal with nearly-uniform
samples is rather straightforward.)

LEMMA 1. Suppose every nodev in a network chooses (via a
random walk) a random nodeXv. For everyu, let Zu be the set of
nodes that selectedu (the RWs started by them have stopped atu):
Zu = {v | Xv = u}. Then, given that the size ofZu is k, Zu is a
random subset of the vertex set of sizek.

PROOF. To prove the lemma, we need to show that∀u ∈ V ,
∀1 ≤ k ≤ n, and for setS of k distinct nodes,Pr(Zu = S |
|Zu| = k) = 1/

(
n
k

)
.

Fix anyu, anyk ∈ {1, . . . , n}, and any setS = {v1, . . . , vk}
of k nodes. By Bayes rule,

Pr(Zu = S | |Zu| = k) =

= Pr(|Zu| = k | Zu = S) · Pr(Zu = S)

Pr(|Zu| = k)
. (1)

We next analyze each of the three terms on the RHS of Equation
1. For the first term, we havePr(|Zu| = k | Zu = S) = 1.
RegardingPr(Zu = S), note thatZu = S = {v1, . . . , vk} iff
Xv1 = u, Xv2 = u, . . . , Xvk = u, and for everyv /∈ S, Xv 6= u.
The events{Xv = u}v∈V are independent of each other (because
the random walks are independent). Furthermore, for everyv,
Pr(Xv = u) = 1

n
. Therefore,Pr(Zu = S) = ( 1

n
)k · (1− 1

n
)n−k.

RegardingPr(|Zu| = k), |Zu| has a binomial distribution with
n trials and a probability of success1

n
. Therefore,Pr(|Zu| = k) =(

n
k

)·( 1
n
)k·(1− 1

n
)n−k. Substituting the three terms into Equation 1,

we have the desired result.

4. RANDOM WALK BASED MEMBERSHIP
SERVICE

In RaWMS, aViewat a nodev is defined as a set of node descrip-
tors, where each descriptor consists of<NodeIdentifier,LastTime>.
NodeIdentifieris the unique identifier of a given nodeu andLast-
Time is the last time thatv has “heard” fromu. Every nodev
advertises itself every∆ time units by starting a reverse sampling
process, as described in Section 3.1. In other words, each∆ time
units,v starts a Maximum Degree RW, whose messages carryv’s



identifier. Each of these RWs traverses the network for a number of
steps that is equal to the mixing time and stops at some nodeu. If u
already has a descriptor corresponding tov in its view,u refreshes
the last time it heard fromv and discards the RW. Otherwise,u
stores the identifier ofv in its view. We propose two methods for
removal of nodes from the view:size-basedandtime-based.

In the size-based method, a node maintains a hard limit on its
view size. Each node may choose the target size of its view inde-
pendently and without any correlation with other nodes. In case
that node’su view exceeds its limit upon storing a new identifier,u
discards a descriptor with the oldestLastTimefrom its view.

In the time-based method, every node discards nodes’ descrip-
tors according to a predefined timeout. The descriptor of node
v is removed from node’su view, if u has not heard fromv for
Timeouttime units. Each node may choose the value ofTimeout
independently and without any correlation to other nodes. A node
can probabilistically adjust its view size by setting theTimeoutpro-
portionally to the mixing time and∆. Both methods automatically
deal with purging descriptors of nodes that already left the network.
The difference between the methods is the probabilistic versus de-
terministic guarantee of the view size.

The general structure of RaWMS is presented in Figure 1. The
protocol consists of two threads: an active thread that initiates a
new RW every∆ time units and a passive thread waiting for incom-
ing messages. ThediscardExpiredFromView (View, Time-
out) function discards all descriptors from the view that the node
has not heard from in the lastTimeoutperiod;discardOldest-
FromView (View) discards the oldest descriptor from the view;
refreshInView (View,addr) refreshes theLastTimeattribute of
a given descriptor in the view;storeInView (View,addr) stores
a new descriptor corresponding to a given address and the current
time in the view.pickNextNode picks either one of the neigh-
boring nodes or a self-loop (of the current node) according to the
RW transition matrix probabilities. Also, in the actual implementa-
tion, if a nodev does not succeed to forward a RW message to the
neighbor chosen in a given step,v makes a new attempt to send this
message to another random neighbor within the same step. This
way, RWs never get lost.

4.1 Formal performance analysis
For the purpose of analysis of RaWMS, we assume that all nodes

start the algorithm simultaneously with initial empty views and all
nodes have the same target view size, denoteds(n). Notice that
these assumptions are only required for the formal performance
analysis of RaWMS. On the other hand, the correctness of the re-
verse sampling (and RaWMS) does rely on the fact that all nodes
advertise themselves at the same average rate1/∆. Otherwise, a
bias towards more frequently advertising nodes will be created.

We define theconvergence timeto be the number of protocol
steps required until all views reach their target size. The period
from the beginning of the protocol run until the convergence time
has passed is theconvergence period. In order to evaluate the per-
formance of RaWMS, we study the time and the communication
complexity of the protocol throughout the convergence period. Ob-
viously, the target view size, that can be picked by each node inde-
pendently from other network nodes by enforcing a view size limit
or by using an aging timeout, has a direct impact on the memory
consumption of the node, as well as on the time and the commu-
nication complexity of the convergence process. Intuitively, the
larger the target view size is, the more messages should be sent and
the more time the view construction takes.

Intuitively, if each random walk started by some nodev would
have reached a different node, then in order to obtain a view of size

do forever
wait(∆ time units);
// start a new RW
ttl ← MixingTime;
handleRW (myAddress,ttl);
if timeoutBasedMethodthen

discardExpiredFromView (View,Timeout)
endif;

enddo

upon receive (RW message<addr,ttl>) from u do
// resend the RW to the next node
ttl ← ttl-1;
handleRW (addr,ttl) enddo

handleRW (addr,ttl)
while ttl> 0 do

next← pickNextNode ();
if next!= v then

send (RW message<addr,ttl> to next;
return

else
ttl ← ttl-1 // self-loop step, only count ttl

endif
enddo
publish (addr)

publish (addr)
if addr∈ Viewthen

refreshInView (View,addr)
else

storeInView (View,addr)
endif
if sizeBasedMethodand ViewIsFullthen

discardOldestFromView (View)
endif

Figure 1: RaWMS - code for nodev

s(n), it would have been enough to starts(n) RWs at each node
during the convergence period. However, two random walks started
at the same nodev have a non-negligible probability of reaching
the same nodeu. Thus, in order to obtain the target view sizes(n),
each node should start a larger number of RWs, which we denote
by r(n). Once we computer(n), we can immediately compute the
communication and time complexity to reach convergence.

The average value ofr(n). In order to calculater(n), we refer to
the famousbins and ballsprobabilistic problem: how many balls
should be placed randomly inton bins in order to have at least one
ball in s bins. In our case, we wish to calculate the numberr(n)
of random trials (the “balls”) that are required untils(n) different
destination nodes (the “bins”) are picked. Each random trial corre-
sponds to a single RW. (For simplicity of analysis, we assume be-
low that each RW chooses a truly uniform node from the network,
i.e.,ε = 0). We prove the following:

LEMMA 2. Let 1 ≤ s = s(n) ≤ n and let r = r(n) be
the random variable specifying the number of balls needed to be
randomly placed inn bins untils of the bins are non-empty. Then,

E(r) = n(Hn −Hn−s) ≤
{

n ln n
n−s

, s < n,

n ln n + O(1), s = n.

whereHk =
∑k

i=1
1
i

is thek-th harmonic number (H0 = 0).

Note that using the inequality1 + x < ex, which holds for all
x > 0, we have:

n ln
n

n− s
= n ln(1 +

s

n− s
) <

ns

n− s
.



This gives a tight bound onE(r) for s ¿ n.

PROOF. We view the balls as being placed in the bins sequen-
tially, one by one. The first ball is inserted into an empty bin. The
second ball is placed into an empty bin with probabilityn−1

n
and

into a non empty bin with probability1
n

. Using the independence
assumption, the expected number of balls required to have a sec-
ond non empty bin is a geometric random variable with parameter
p = n−1

n
and mean1

p
= n

n−1
. The additional number of balls

required to get the third non empty bin is a geometric random vari-
able with parameterp = n−2

n
and mean1

p
= n

n−2
. This process

goes on untils bins have at least one ball.r is the number of balls
used in this process and is therefore a sum of geometric random
variables. By linearity of expectation, we have:

E(r) = 1 +
n

n− 1
+

n

n− 2
+ · · ·+ n

n− s + 1

= n(
1

n
+

1

n− 1
+

1

n− 2
+ · · ·+ 1

n− s + 1
)

= n(Hn −Hn−s).

In order to bound the differenceHn−Hn−s, we use the follow-
ing well-known bounds on the harmonic number:

ln n + γ +
1

2(n + 1)
≤ Hn ≤ ln n + γ +

1

2n
,

whereγ is a constant. The cases = n immediately follows from
the above bound onHn. Fors < n,

n(Hn −Hn−s) ≤ n

(
ln n +

1

2n
− ln(n− s)− 1

2(n− s + 1)

)

≤ n(ln n− ln(n− s)) = n ln
n

n− s
.

Note that nodes start new RW every∆ time units and do not have
to be aware ofr(n) or make any use of it in RaWMS.r(n) is used
here only for the performance estimation of the algorithm.

However,r(n) can be exploited by nodes working in thetime-
basedmethod in order to adjust their average view size. A node
that wishes to maintain an average view size ofs(n) can calculate
the correspondingr(n) independently based on itss(n) and use
the valuer(n) ·∆ as theTimeoutfor purging old descriptors out of
its view. According to this strategy, no identifier stays in a node’s
view for more thanr(n) · ∆ time units on average without being
refreshed by a new RW. Thus, an important property of RaWMS
is that every view is refreshed to contain a completely new set of
identifiers everyr(n) ·∆ time units on average.

Communication and time complexity for convergence. The
communication complexity during the convergence period is de-
termined by the number of random walks each node should start,
i.e., the valuer(n) calculated above, multiplied by the length of
each random walk. Thus, the total communication complexity dur-
ing the convergence period isn ·r(n) ·Tactual mix = Θ(n2 ·r(n)).
The time complexity isr(n) ·∆+Tactual mix, i.e., the time to start
r(n) RWs and for the last RW to reach its destination.

For the special case ofs(n) =
√

n, we getr(n) ≈ ns
n−s

≈
√

n.
This means that for relatively small view sizes, there is a very little
chance of getting collisions. The convergence time in this case
is about

√
n · ∆ + Tactual mix = Θ(

√
n · ∆ + n) and the total

communication complexity isn · √n · Tactual mix = Θ(n2√n).

Join, leave, and maintenance. When a new node joins the net-
work it starts the same algorithm as any other node, i.e., it starts

advertising itself by initiating multiple RWs. After a convergence
period, a new node will produce enough advertisements so that its
identifier will be uniformly distributed across the network. There-
fore, the time and communication complexities of a join process
arer(n) ·∆ + Tactual mix andr(n) · Tactual mix, respectively.

The algorithm purges the identifiers of failed or departed nodes
automatically, without relying on any action on their side. In the
time-based method, a failed node’s identifier will be purged from
the views of all other nodes preciselyTimeouttime units after its
departure. In the size-based method, this will occur on average
afterr(n) ·∆ time units.

The maintenance complexity of RaWMS is constant: all nodes
keep advertising themselves at an average rate of1/∆ advertise-
ments per time unit. The value of∆ can be tuned to tradeoff
communication complexity with the time it takes to react to node
leaves/failures and to purge their identifiers from all views.

4.2 Service properties
In our evaluation, we consider several properties of the generated

random views, that are important to the envisioned applications dis-
cussed in the introduction. The properties are best described using
a graph-theoretic view [20] as follows. Define theknowledge graph
as a directed graph, whose vertices are the network nodes, and that
contains an edge fromv to u if and only if u’s identifier is in the
view of v. If the views are truly uniform, then the graph induced
by the views is actually a random graph. This framework allows us
to study theconnectivityof the knowledge graph and theload of an
individual node (out-degree).

Uniformity of the views. A nice feature of RaWMS, compared
to other probabilistic methods like [1, 20], is that the uniformity
of the views (nodes in the views are picked from random uniformly
chosen locations in the network) is guaranteed by construction. The
regularization of the graph guarantees that the reverse RW sampling
produces uniform samples. The sample accuracy is controlled by
the RW length and is probabilistically guaranteed to differ by up to
ε = Θ( 1

n
) from the uniform distribution.

Connectivity of the knowledge graph. By using the same analy-
sis of connectivity probability applied in [11], we can deduce that
since the knowledge graph induced by the views is truly uniform,
it has a very low chance of partitioning. Another property exhib-
ited by RaWMS is aself healingfrom partitions. Since in RaWMS
nodes are not restricted to communicate only with nodes in their
views, even if partition in the knowledge graph does occur at some
time, it will be fixed by itself after a short period of time.

Load-balancing the view sizes.As we have already shown, aver-
age view size can be set independently by every node. We now take
a closer look at the view size of a given node at the end of the con-
vergence period when using thetime-basedmethod. Fix some node
v out of then nodes. LetXv be the random variable specifying the
size ofv’s view at the end of the convergence period. Each of then
nodes advertises itself tos(n) uniformly chosen nodes. Thus, each
node has a probability ofs(n)/n to advertise itself tov. Since ad-
vertisements of different nodes are independent of each other,Xv

has a binomial distribution with parametersn ands(n)/n.
We conclude that the expectation ofXv is s(n), as expected by

our construction. In order to investigate the possible deviation of
Xv from its mean, we use Chernoff bounds ([26]). We viewXv as
the sum ofn independent Bernoulli random variablesY1, . . . , Yn,
whereYi is 1 if and only if thei-th network node advertises itself
to v. By Chernoff bounds, for any0 < δ < 1,

Pr [|Xv − s(n)| > δs(n)] < 2 · exp(−s(n)δ2/3).



For example, for a value ofδ = 0.5, the probability for a given
node to have a view size larger than1.5 · s(n) or smaller than0.5 ·
s(n) is less than2/es(n)/12.

By the union bound, the probability for any node to have a view
size that differs from the average size by a factor ofδ is:

Pr [∃v : |Xv − s(n)| > δs(n)] < 2 · exp(−s(n)δ2/3).

Conclusion. The view constructed by RaWMS in every node con-
tains a random sample of nodes. Moreover, the probability that any
view will deviate from the mean view size is very low (exponen-
tially small with the average view size).

4.3 Reactive extension of the view
It is possible that a node will wish to extend its local view to a

larger one upon its application’s demand. Increasing the desired
view size,s(n), is a good long term solution, since it does not
incur any additional communication and relies on existing adver-
tisements. The drawback is that it may take a significant amount
of time until the new target size is reached (increasing a view size
by s(n) will take r(n) · ∆ time units). On the other hand, main-
taining a large view size all the time may be wasteful in case such
a large view is typically not required or may even be impossible, if
the node’s memory is limited.

We propose an on demand RW-based method for extending the
views, which allows to control the exact number of nodes that must
be contacted in order to construct a larger view without knowing
any network property. A nodev requesting to extend its view up to
a size ofes(n), starts a RW including its current view and the target
view size,es(n). Every nodeu that receives this message adds its
view to the message while removing duplicates. If the combined
view is smaller thanes(n), u sends the combined view to one of
its neighbors picked at random. Once a combined view reaches the
target size, it is sent back tov on the reverse path of the RW.

4.4 Network size estimation
RaWMS assumes that the number of nodes in the networkn is

known. This is required in order to determine the length of the RW
in the reverse sampling procedure (the mixing time). There are a
number of methods for obtaining a loose upper bound on the net-
work size, e.g., [12, 30]. Once we have such a loose upper bound,
we can use the birthday paradox principle to obtain a much tighter
bound in the following manner. We have shown that according to
the reverse sampling technique, every time RW stops at nodeu, it
has the effect of havingu pick uniformly at random a node identi-
fier out of alln nodes. According to the famous birthday paradox,
it is well-known that afterm =

√
2n random trials such that each

trial picks uniformly one ofn distinct values, the probability to pick
m distinct values is at most1

e
and it drops rapidly asm increases

([26]). Therefore, every node can calculate the first time it receives
the same advertisement again (denoted bym) and use this number
to estimaten according ton = m2

2
. This process is repeated con-

stantly and averaged across a number of measurements. In order
to deal with accumulating errors, the loose upper bound should be
re-used periodically and the tight bound estimation be restarted.

5. GOSSIP-BASED MEMBERSHIP

lpbcast. In each round of lpbcast [11], every nodev sends its view
to F (fanout) nodes, chosen randomly fromv’s view. In order to
send such a message, some routing algorithm must be employed.
The number of rounds is logarithmic in the network size. The main
drawbacks of lpbcast is that it relies on costly routing, and accord-
ing to [20], lpbcast may fail to provide uniform views.

Shuffling. Shuffling was first introduced in the context of sensor
networks and originally used for information dissemination [14].
Yet, shuffling can also be used for construction of random views,
by disseminating nodes identifiers. In shuffling, a node communi-
cates only with its direct neighbors. Every round each node ran-
domly picksX identifiers out of its view and shuffles them with
its randomly chosen neighbor. Unlike other gossiping algorithms,
Shuffling avoids loss of data during items exchange. This is accom-
plished by having the peers agree on which data items will be kept
by each of them after the exchange takes place. Any two nodes that
engage in a shuffle essentially swap a number of items. In doing
so, they “move” this data around in a seemingly random fashion.
We provide a performance analysis of shuffling by adapting some
RW techniques to it in the full version of this paper [4].

Flooding. Flooding can be used to implement a membership ser-
vice by having each node flood the network with its identifier. An
efficient implementation of flooding requires memory which is lin-
ear in the number of nodes in the system. That is, in order to prevent
a node from delivering (and retransmitting) the same message more
than once, a node should remember the identifiers of the last few
broadcast messages initiated by every other node. Since the imple-
mentation of flooding itself requires linear memory space, there is
no point in limiting the view to include fewer thann identifiers.

5.1 Probabilistic starvation
One of the main usages of partial membership services is in

gossip-based probabilistic multicast algorithms. Specifically, these
algorithms attempt to deliver every message to almost every node
with high probability. The percent of nodes that receive a message
is called thereliability factor. However, those algorithms usually
make no attempt to provide reliability for a single node. When the
views are not truly random, there is a possibility that while most
nodes receive all messages, a small number of nodes do not receive
messages at all or receive only a small fraction of all messages. In
particular, if there are some nodes (e.g., low degree nodes) that are
not uniformly distributed among other nodes’ views, those nodes
will be constantly denied messages and thus suffer fromprobabilis-
tic starvation. On the other hand, views constructed by RaWMS
are proven to be uniform and therefore any probabilistic multicast
algorithm built a top of it will not suffer from such a phenomenon.

5.2 Comparison
An asymptotic comparison of all the methods mentioned above

appears in Table 1. Note that when nodes are mobile, there is an ad-
ditional cost due to routing. In particular, lpbcast is highly affected
by mobility since it relies heavily on unicast routing. When nodes
move, routes break and must then be reestablished or repaired. In
contrast, neither RaWMS nor shuffling suffer due to mobility, since
they do not use multi-hop routing. In fact, in these two approaches,
nodes’ mobility can actually facilitate faster and more random dis-
semination of membership information.

6. SIMULATIONS

Model. The simulations were performed on the JiST/SWANS sim-
ulator [32] from Cornell university. Nodes use two-ray ground ra-
dio propagation model with IEEE 802.11 MAC protocol and 1Mb/sec
throughput. The multi-hop routing protocol used by lpbcast is AODV
(recall that RaWMS does not use routing at all). The mobility pat-
tern was the Random Waypoint model with the speed of movement
ranging from 0.5-2 m/s, which corresponds to walking and running
speeds, and an average pause time of 30s. All simulations were run
on networks of 10, 50, 100, 200, 400 and 800 nodes. We have used
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Table 1: Comparing RaWMS with gossip-based membership and flooding

the default Java pseudo random number generator, initialized with
the current system time in milliseconds as a seed.

The nodes were placed at uniformly random locations in a square
universe. The transmission range was fixed for all network sizes
and all simulations at 200m. The size of the simulation area was
scaled in order to comply with the analytical results of Gupta and
Kumar [16] regarding the critical transmission range. For a square

areaa2 the radius of the transmission range isr = a
√

C ln n
n

,

r ∈ [0, a]. The average number of nodes in the transmission range
of any node was set todavg = 3 ln n. This means that the simu-

lation areaa2 for n nodes was picked such thatdavg = πr2n
a2 =

πa2 C ln n
n

n

a2 = πC ln n = 3 ln n, resulting ina2 = π2002n
3 ln n

and
C ≈ 1. By proposition 1, for such a radiusdmax ≈ 2davg.

Each simulation lasted 1,000 seconds (of simulation time) and
each data point was generated as an average of 10 simulation runs.
Simulations started after a 60 seconds initialization period, which
was enough to construct one hop neighborhood information. The
neighbors discovery protocol was running throughout the entire
simulation period in all scenarios. RaWMS was run with atime-
basedmethod; the node’s descriptor timeout in the view was set so
that the average view size will be

√
n. In each scenario of RaWMS,

each node startedr(n) RWs, calculated out of the expected view
size of

√
n as described in Section 4.1. These advertisements were

spread over the whole simulation period.

Uniformness of RaWMS. The first measure we used to evaluate
RaWMS is the uniformness of the locations of nodes appearing in
the views. To this end, we used aχ2 statistical test to compare the
distribution of nodes in the view of every node at the end of the con-
vergence period with the desired uniform distribution. Namely, we
have partitioned all nodes into a number of bins according to their
distance from the tested node. For every nodev we have calculated

the following score:Scorev =
∑#bins

j=1

(Actualv,j−Expectedv,j)2

Expectedv,j
,

Actualv,j being the actual number of nodes from distancej found
in the view of nodev andExpectedv,j is the number of nodes from
distancej that are expected to be found in the view of nodev. The
total network scoreTotalScore corresponds to the average of all
Scorevs. ThusTotalScore is a statistical test for the difference
between the distribution of paths lengths obtained by simulations
and the assumed uniform distribution.

The results of the path length distribution test for static networks
are depicted in Figure 2(a). The simulations were run with 5 differ-
ent lengths of the random walk, corresponding to 5 different can-
didates for the mixing time,Tmix. Clearly, the longer the walk
is, the closer is the distribution reached by the RW to the uniform

stationary distribution, since a long walk has a “better” chance to
reach a random node. We can see that for lengths ofn andn/2 the
TotalScore is relatively low and almost does not change as the
number of nodes grows. This means that walks ofn/2 steps are
long enough to correspond to the mixing time of those networks.
Shorter walks exhibit a dramatic degradation in the test’s score.
The larger the network is, the worst are the results of these short
RWs, since they do not get a chance to move far away from the
originating node. As a result, every node ends up with relatively
more nodes in its view that are geographically closer to it and with
fewer nodes that are geographically far from it.

Figure 2(b) presents the results of our simulations with mobility.
Interestingly, the random dissemination of membership informa-
tion is actually improved by nodes movements, and even RWs of
lengthn/8 get the same results as with lengthn. Nodes that used
to be close to some node in the initial stage of the algorithm may
end up in a completely different location in the network after some
time, helping the “mixing” effect of the RW.

View size distribution. Recall that the size of the view is a bino-
mial distributed random variable with probabilitys(n)

n
, mean value

s(n) and variances(n)(1 − s(n)
n

). We have compared those ex-
pected values with the actual mean and variance values of view
sizes at the end of the convergence process.

Figures 3 presents the graphs forA(s)
s

andV ar(A(s))
V ar(s)

, with s rep-
resenting the expected view size,A(s) the actual mean view size,
V ar(s) the expected variance, andV ar(A(s)) the actual variance,

calculated as
∑n

i=1(A(s)−viewi)
2

n
. For all network sizes and for all

walk lengths, in both static and mobile networks, the average size
of the view is almost equal (typically up to90%) to the ideal ex-
pected mean size. Only for small networks the mean view size is
a bit larger than expected, due to the fact that fors of the order of
n, ns

n−s
is not a tight bound ofr(n) (see Lemma 2). In these cases,

nodes simply start too many RWs. The variance in the view sizes
is also very close to an expected one in the static networks, pre-
senting another evidence to the fact that the view size is a binomial
distributed random variable. The only exception is a small network
of 10 nodes. For very short walks (n/16), the RWs did not get a
chance to walk even a single step and the resulting view includes
only the node itself. The variance is zero in such a case.

Notice that in mobile networks the variance is larger than in static
networks. Surprisingly, in mobile networks, the variance is even
larger for long RWs than for short RWs. The reason for this is as
follows. A fast moving mobile nodev has a lower chance of getting
a RW message, because ifv passes next to a nodeu that has the
RW message,v disappears from the transmission range ofu before
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Figure 2: RaWMS - the path length distribution test (TotalScore versusn)
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the neighbors discovery protocol atu detectsv. The result is that
static and slow moving nodes have a much larger view, at any given
point in time, then fast moving nodes. This phenomenon becomes
even worse in long RWs, since the longer the RW, the greater is the
chance that it will be “stuck” at a static or slow moving node.

Intersection between views of neighboring nodes.We have com-
pared the measured average size of the intersection between the
views of all pairs of neighboring nodes with an expected intersec-
tion. For ideal uniformly chosen views there should not be any
special correlation between the views of neighbor nodes. Since the
average view size is

√
n, the expected intersection is

√
n
√

n
n

= 1,
for all network sizes. It can be seen from Figure 4(a) that indeed in
static networks for long enough RWs (walks of lengthn andn/2)
the average intersection size is very close to an expected one. How-
ever, walks shorter than the mixing time do not have enough steps
to get far away from the originating node and tend to stop at its
proximity instead of at a random node. As a result the neighbors of
an originating node have a greater chance to have it in their views.

In mobile networks intersection between views of neighboring
nodes is greatly reduced. Here, even short RWs can get a chance to
escape the proximity of its originating node, due to mobile nodes
carrying the RW message.

Correlation between node degree and view size.Additional tests
were conducted to measure the correlation between nodes’ degrees
(the number of neighbors in the ad hoc network) and view sizes. We
have omitted those figures due to space limitations, but they can be
found in the full version of this paper [4]. The results have shown
that RWs without self loops introduce a significant bias towards
high degree nodes - much more RWs stop at these nodes than at
lower degree nodes, resulting in unbalanced view sizes. Maximum
Degree RW balances the node degree with self loops, generating a
regular graph on which the RW has a uniform stationary distribu-
tion. This annuls the bias towards high degree nodes so all views
have almost the same average size.

lpbcast. In our measurements, we have separated the routing com-
munication overhead from the application communication overhead.
This highlights why lpbcast is considered a very good protocol for
peer-to-peer networks, but does not do so well in ad hoc networks.
lpbcast was tested with a varying number of rounds:log n, 2 log n,
4 log n, 8 log n, 16 log n. The fanout was set to3 for all simula-
tions and the view size limit was set to

√
n, to establish the same

conditions as with RaWMS. As can be seen in Figure 5(a), in static
networks, when the number of gossip rounds is2 log(n) or less, the
resulting view is not uniform according to the path length distribu-
tion test. As for a view size of lpbcast, since it was limited to

√
n

and since nodes gossip their entire view, in almost all cases the view
was full. Here too, as can be seen in Figure 5(b), the uniformity of
the views is dramatically improved when nodes are mobile.

RaWMS versus lpbcast - communication overhead. Figure 6
depicts the number of messages sent by a single node during the
entire simulation period, in both RaWMS and lpbcast. We have
separated the number of application messages (messages directly
generated by RaWMS and lpbcast) from the total number of net-
work messages, which include the cost of routing and the neighbor
discovery protocol messages. We have chosen to present RaWMS
with a walk length ofn/2 and lpbcast with4 log n rounds, as these
give optimal results, respectively. That is, these are the most effi-
cient versions of both protocols, which still guarantee a fairly uni-
form distribution of views at the lowest possible cost.

We can see that the results generally follow our theoretical dis-
cussion in Section 5.2. In RaWMS, each node starts roughly

√
n+2

RWs, each walk sendingTactual mix ≤ Tmix
dmax

D
messages.Tmix

was approximated byn/2 according to the results in Figure 2 and
D was set large enough to bounddmax. The measuredTactual mix

was aboutTmix/2. Thus, each node sends a total number ofn
√

n
4

messages. In lpbcast, every node starts4 log n rounds with fanout
3 and each message traverses the network over an average path of√

n
log n

. Therefore, each node sends12
√

n log n messages in total.

As is evident from Figure 6(a), lpbcast generates fewer appli-
cation messages than RaWMS, as expected by our previous anal-
ysis. Yet, recall that in lpbcast each message contains the whole
view, while in RaWMS messages carry only a single node iden-
tifier. Therefore, the total bit communication overhead of lpbcast
is 12n

√
log n. In addition, lpbcast has a significant message over-

head due to routing. When adding the cost of routing, RaWMS
becomes considerably more efficient than lpbcast.

Figure 6(b) illustrates the communication costs of RaWMS with
a walk length ofn/8 and lpbcast with2 log n rounds in mobile
scenarios. Again, those parameters guarantee a uniform distribu-
tion of views at the lowest possible cost. Here, the cost of RaWMS
is significantly lower than lpbcast. This is due to a decreased walk
length, yet without compromising the uniformness of the views. In
this scenario, each node sends aboutn

√
n

16
messages. lpbcast sends

approximately the same number of application messages as in the
static case. However, with mobility, the cost of routing becomes
considerable, which accounts for the dramatic affect on the overall
performance of lpbcast in terms of network messages.

7. RELATED WORK

Random walks. Comprehensive surveys of random walk tech-
niques and their analysis appear in [22] and [17]. The idea of using
a “maximum-degree” RW to reach a uniform limit distribution on
the state space has been used before in a number of contexts [3, 7].

Lv et al. [24] propose to use simulated RWs for searching in
unstructured peer-to-peer networks. They report that such a search
is preferable to searching by flooding, due to RWs’ adaptiveness to
termination conditions and a fine-grain control of the search space.
This work reported attractive empirical results, but does not provide
any analytical evaluation of the RW properties.

The work in [15] explore the performance of RWs for searching
and sampling in peer-to-peer networks and show that it is possible
to simulate the selection of a uniform sample of elements from the
network by performing a RW with an adequate length. We use a
similar sampling technique, but on a completely different commu-
nication graph. Peer-to-peer networks graphs are usually assumed
to be expanders. On the other hand, ad hoc network graphs are
random geometric graphs [28], which are not expanders.

Various properties of RWs on random geometric graphs, includ-
ing the mixing time and the partial cover time, have been investi-
gated by [7] and [2]. We rely on these results in our work.

Dolev et al [10] propose a randomized self-stabilizing group mem-
bership service for ad hoc networks. The group membership list is
collected by a single random walk agent traversing the network.
However, [10] only constructs a full membership while RaWMS
can be used to construct partial membership views. Moreover, they
apply a single RW that covers the whole network and runs for a
period of time that is equal to the cover time. We use multiple RWs
simultaneously each running for a period that is equal to the mixing
time. Thus, the time and communication complexities of the algo-
rithm in [10] areO(n3), while in RaWMS each RW runs for only
O(n). The communication complexity of RaWMS depends on the
desired view size. For example, to construct a view of sizeO(

√
n)
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Figure 4: Intersection between views of neighboring nodes
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Figure 5: lpbcast - path length distribution test (TotalScore versusn)
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Figure 6: RaWMS versus lpbcast - comparing the number of messages



at every node, RaWMS sends a total ofO(n2√n) messages. A
full membership can be constructed with RaWMS by an additional
short RW that collects partial random views from different nodes.
The total communication complexity in this case isO(n2√n).

In [30] RWs are used for routing in large-scale sensor networks.
They assume a static network and only consider a grid topology.
On the other hand, we also support mobility, and do not restrict the
topology except for being connected.

Gossiping. Gossiping is another well-known scheme to establish
a random sample. Recently, gossip-based dissemination of mem-
bership information was proposed in order to design scalable im-
plementations of a peer sampling service [20]. Other examples of
gossip-based lightweight membership services are reported in [1,
11, 13] and are discussed in more details in Section 5.

SCAMP [13] introduced a generic random membership service
that is used for probabilistic reliable dissemination of data and events
in peer-to-peer networks. The appealing property of SCAMP is
that the partial view obtained by a node adapts automatically to the
system’s size, without any a priori knowledge of the total network
size. However, [13] only proves that the mean value of the sum of
all views of all nodes isΘ(n log n) and that the actual sum of all
view sizes is not far from the mean. No proof is provided about
the view size of a single node, which may be far from the mean by
orders of magnitude. In our work, we do bound the minimal and
maximal view sizes of all nodes.

RDG [23] is an adaptation of [11] to ad hoc networks. It reduces
the cost of routing compared to [11] by utilizing routes created by
other applications running in the same wireless node or by using
proactive periodical flooding in order to establish those routes. Al-
though RDG relies only on partial views for correct implementa-
tion of probabilistic multicast, in practice the views constructed by
RDG are not necessarily partial and may even be almost full views.
In addition, those views are not constructed by gossiping, but by
the same flooding that establishes the routes. Gossiping is only
used in RDG for data dissemination and for removal of nodes that
left the network from the views. The usage of flooding results in
a linear memory consumption, so there is no point in using it for
constructing partial views.

Haas et al. have investigated various approaches for disseminat-
ing data using several gossip functions in ad hoc networks [18].
They investigate the impact of gossip on the message delivery ratio
of broadcast messages. Theanonymous gossipwork has explored
the use of gossip with direct neighbors in an ad hoc network to in-
crease the reliability of broadcast and multicast protocols [8]. Both
these works, however, do not address membership maintenance.

8. DISCUSSION
In this paper we have presented RaWMS, a random walk based

lightweight membership service for ad hoc networks. We have
presented a formal analysis of RaWMS, backed by simulations
and have also compared RaWMS with gossip-based approaches for
building such membership services. Overall, the results of the sim-
ulations confirm the formal analysis. They show that RWs present
an attractive paradigm for implementing partial view based mem-
bership services in ad hoc networks. This is due to the fact that RWs
do not require multi-hop routing and avoid flooding altogether. More-
over, when the network is mobile, RWs reach their target unifor-
mity even faster than in static networks. In these cases, the mobility
helps to disseminate messages to random places in the network

Finally, we believe that our analysis of RW’s complexity for ad
hoc networks can serve as a starting points for many additional
RW-based algorithms in ad hoc networks.
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