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This paper presents RaWMS, a novel lightweight random membership service for ad hoc networks.
The service provides each node with a partial uniformly chosen view of network nodes. Such a
membership service is useful, e.g., in data dissemination algorithms, lookup and discovery services,
peer sampling services, and complete membership construction. The design of RaWMS is based
on a novel reverse random walk (RW) sampling technique. The paper includes a formal analysis of
both the reverse RW sampling technique and RaWMS and verifies it through a detailed simulation
study. In addition, RaWMS is compared both analytically and by simulations with a number of
other known methods such as flooding and gossip-based techniques.

Categories and Subject Descriptors: C.2.1 [COMP.-COMMUNICATION NETWORKS]: Network Architec-
ture and Design—Wireless communication; C.2.4 [COMP.-COMMUNICATION NETWORKS]: Distributed
Systems—Distributed applications
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1. INTRODUCTION

Context of this study. Membership services serve as essential building blocks in a variety
of other services and applications in ad hoc networks. A membership service provides each
node with a view regarding who are the other nodes in the network.

In traditional membership services [Chockler et al. 2001], the view of each process ap-
proximates the entire membership. Moreover, views must be consistent, and changes to
views must be coordinated among all their members. This complete and strongly consis-
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tent approach works well in wired LANs. However, generally speaking, it is not suitable
for large networks and mobile ad hoc networks. This is because maintaining such member-
ship information consumes a lot of memory and requires large message and computational
overheads for each membership change. In contrast, in mobile ad hoc networks, nodes
often have limited memory capacities. The dynamic nature of the system implies frequent
changes to the network membership. Additionally, wireless multi-hop networks are more
sensitive to high message loads than wired LANs, and the energy consumption associated
with sending and receiving many messages could quickly drain the batteries of mobile
devices (making the usage of frequent flooding impractical). The mobility of nodes re-
sults in a continuous evolution of the physical structure of the network, causing frequent
links and paths breakups, thereby discouraging the usage of multiple hop routing in such
networks. These problems motivate the development of a membership service that avoids
both flooding and multiple hop routing of messages.

Interestingly, many applications do not need complete membership information. In-
stead, they only require each member to hold a partial random view of the network mem-
bership. Examples of such applications are probabilistic reliable dissemination of data and
events [Birman et al. 1999; Eugster et al. 2003; Kermarrec et al. 2003], peer sampling ser-
vices [Jelasity et al. 2007], location services and uniform quorums [Haas and Liang 1999],
random overlay constructions [Melamed and Keidar 2004], DHTs [Pucha et al. 2004], P2P
anonymizers [Freedman and Morris 2002], etc. Therefore, it makes sense to offer an op-
timized membership service that indeed only provides nodes with partial random views.
Such optimized services are the focus of this paper.

Contributions of this work. We start by introducing a novel reverse Maximum Degree
random walk (RW) technique for peer sampling with an adaptation to ad hoc networks
along with a formal analysis of this technique. Next, we present the RAndom Walk based
Membership Service (RaWMS), which provides a random uniformly chosen partial mem-
bership view based on random walks. That is, every node in the network has an equal
probability to appear in the view of every other node. In particular, the choice of the peers
in the view of every node is independent of the locations of the peers in the network. 1

In RaWMS, every ∆ time units, every node starts a reverse Maximum Degree random
walk, whose messages carry this node’s identifier. Each RW traverses the network for a
predefined number of steps and stops at some destination node. The length of the RW
is such that the node in which the RW has stopped appears as if it was picked uniformly
at random out of all network nodes. This way the source node advertises itself to the
destination node, allowing the destination node to include the source node’s identifer into
its membership list. As we show in this paper, the result is that the membership list of the
destination node includes a uniform random sample of nodes from the network.

Unlike many gossip-based algorithms, our service possesses five important properties.
These include (i) proven uniform randomness of the constructed views, (ii) proven bounds
on the load of an individual node (view size), (iii) enabling each node to set its view size
independently of other nodes without any implications on the randomness of the views’
content, (iv) a low chance of partition in the knowledge graph induced by the views, and
(v) self healing from partitions when they do occur. Another important characteristic of

1The location-independence is importation for the target applications of such membership services, which depend
on the fact that there is very little overlap in the views of any pair of neighboring nodes.
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our algorithm is that it does not require multiple-hop routing. The analytically proven
properties of our work are based on the assumption that the network graph is a connected
static random geometric graph. We show through simulations that these properties indeed
hold empirically for both static and mobile networks (yet, without a formal mathematical
proof for the mobile case).

In the implementation of RaWMS, we seek to obtain a good tradeoff between the com-
munication overhead incurred by our protocol vs. its memory consumption. To deal with
this issue, our protocol allows every node to choose the target size of its view indepen-
dently and without any correlation with other nodes. Moreover, a node can adjust its view
size on-the-fly according to its currently available memory. In a small or medium size net-
work, or if a node has plenty of memory, it may wish to maintain a large or even complete
membership knowledge. On the other hand, in a sensor network or a large ad hoc network
(with hundreds of nodes), nodes may wish to save memory and only maintain a partial
membership view. If at some point in time a node with a small view requires knowledge
of the entire membership, e.g., due to its application’s demand, our service can reactively
increase its view in a fast and efficient manner. This is done by consulting its neighboring
nodes, which carries an additional small communication overhead.

We provide a detailed formal analysis of our implementation of RaWMS. Addition-
ally, we extend the generic gossip-based peer sampling framework introduced in [Jelasity
et al. 2007] to incorporate ad hoc networks. We utilize it to compare RaWMS with other
membership construction techniques, such as lpbcast [Eugster et al. 2003], Shuffling [Ga-
vidia et al. 2005; Voulgaris et al. 2005] and flooding. Finally, we study the performance
of RaWMS by simulations, evaluating its properties and comparing it to the other known
techniques mentioned above. These measurements largely confirm the insight from our
theoretical analysis.

Paper’s road-map:. Section 2 introduces the system model. In Section 3, we present
the RW technique for peer sampling in ad hoc networks. Section 4 describes RaWMS
and its formal analysis. Section 5 describes a generic framework used in a variety of
gossiping algorithms for membership construction and compares a number of methods
in this framework with RaWMS. Section 6 presents the simulation results for RaWMS
vs. known gossip-based membership services. Section 7 discusses related work and we
conclude with a discussion in Section 8.

2. SYSTEM MODEL

Consider a set of nodes spread across a geographical area and communicating by exchang-
ing messages using a wireless medium. A node in the system is a device owning an omni-
directional antenna that enables wireless communication. Each node v may send messages
that can be received by all other nodes within its transmission range rv . A node u is a
neighbor of another node v if u is located within the transmission range of v. The trans-
mission disk of node v is a disk centered on v with radius rv . The combination of the nodes
and the transitive closure of their transmission disks forms a wireless ad hoc network.2 The

2In practice, the transmission range does not behave exactly as a disk due to various physical phenomena. How-
ever, for the description of the protocol it does not matter, and on the other hand, a disk assumption greatly
simplifies the formal model. At any event, our simulation results are carried on a simulator that simulates a real
transmission range behavior including distortions, background noise, unidirectional links, etc.
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network described above can also be modeled as a graph G = (V,E) where V is the set of
network nodes and E models the one-to-one neighboring relations.

The network connectivity graph G = (V, E) of an ad hoc network is a special case of
a d-dimensional Unit Disk graph, in which n nodes are embedded in the surface of a d-
dimensional unit torus, and any two nodes within Euclidean distance r of each other are
connected. When the nodes are placed uniformly at random on the surface the graph is
known as a Random Geometric Graph (RGG) [Penrose 2003] and is denoted by Gd(n, r).
RGGs have been studied in the context of random walks, and thus we can utilize some
of these results for our purposes. Specifically, the G2(n, r) graph is often used to model
the network connectivity graph of 2-dimensional wireless ad hoc networks and sensor net-
works [Gupta and Kumar 1998]. See Appendix A for a formal description of the model.

We assume that nodes do not know their position and we do not use any geographic
knowledge in our algorithms. Each node has a unique identifier that is used for sending
messages to that node. The membership knowledge of a node, defined as the view of this
node, is a list of identifiers of other nodes known to this node. In addition to the view
structure, we assume that each node knows all of its direct neighbors, whose addresses
are stored in the node’s neighbors list. This list can be constructed, e.g., by a simple
heartbeat mechanism that is present in any case in most routing algorithms for ad hoc
networks. A node can communicate with its neighbors directly. Additionally, a node can
communicate with other distant nodes whose address is present in its view by applying a
routing algorithm.

New nodes may join and existing nodes may leave the network at any time, either grace-
fully or by suffering a crash failure. Nodes that crash or leave the network may rejoin it
later (nodes that rejoin the network use their old identifiers).

Assumptions. For the theoretical analysis of random walk sampling in Section 3, we as-
sume a static G2(n, r) connected network graph. The theoretical analysis of RaWMS in
Section 4 allows nodes to leave and join the system, but still precludes mobility. However,
the RaWMS algorithm itself is designed to operate in both static and mobile networks. In
particular, the way RW is implemented in RaWMS can handle evolving neighborhoods,
including recovering from disappearance of neighbors (either due to mobility, failure, or
departure from the network). The correct behavior of RaWMS in mobile networks is shown
by a simulation study in Section 6.

3. RANDOM WALK TECHNIQUES

Simple random walks. Let G = (V,E) be an undirected graph, n = |V |. Let dv

denote the degree of a vertex v ∈ V . A simple random walk on G is a stochastic process
in which a “token” is repeatedly forwarded from a node to a randomly chosen neighbor.
Formally, the random walk is specified by an n× n probability transition matrix P , where
Pv,u = 1/dv , if (v, u) ∈ E, and Pv,u = 0 otherwise. For every time step t ≥ 0, φt is a
probability distribution over the vertex set V . It specifies, for each v ∈ V , the probability
that the token is placed on vertex v at step t. The initial distribution φ0 specifies the vertex
at which the random walk is started. For every t ≥ 1, φt = φ0P

t.
If the graph is connected and non-bipartite, then the sequence of distributions φ0, φ1, φ2, . . .

is guaranteed to converge to a unique limit distribution π, which is independent of the ini-
tial distribution. π is also a stationary distribution of P , that is, πP = π.
ACM Journal Name, Vol. V, No. N, February 202008.
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A simple analysis (cf. [Lovász 1993]) shows that the stationary distribution of the simple
random walk has a limit distribution that assigns probabilities to nodes proportionally to
their degree: π(v) = dv

2|E| , for every v ∈ V . Therefore, a stationary distribution of a simple
random walk on a graph is uniform if and only if the graph is regular, i.e., all nodes have
the same degree. Later in the section we will present the Maximum Degree random walk,
whose stationary distribution is uniform even for non-regular graphs.

RW-based sampling. The following algorithm uses a random walk on G to sample nodes
from the limit distribution π:

sample (p,T )
1) start a RW from p;
2) run the RW for T steps;
3) return the node in which the RW was stopped

If π happens to be the uniform distribution, then the algorithm generates uniform sample
nodes. The idea of the algorithm is very simple: it starts the random walk at some start
vertex p and runs it for T steps. The node reached after T steps is returned as a sample.
If T is sufficiently large, then the distribution φT of the node returned is close to the limit
distribution π.

Notice that this sampling technique does not require a priori knowledge of all network
nodes and does not use multi-hop routing. A node must only be aware of its neighbors.
This makes RW-based sampling attractive for ad hoc networks.

The main question to be addressed is how to set T to guarantee that φT is close to π. To
this end, we define the mixing time of a random walk:

Definition 3.1. For every node v ∈ V , let φv
0 be the initial distribution concentrated on

v. For every step t ≥ 0, the total variation distance between φv
0P

t and π is defined as:

Mv (t) =
1
2

∑

u∈V

|φv
0P

t(u)− π(u)|.

For every ε > 0, the ε-mixing time of the random walk is:

Tmix(ε) = max
v∈V

min{t |Mv (t′) ≤ ε, ∀t′ ≥ t}.

Intuitively, the mixing time of a RW is the minimum number of steps t required to
guarantee that, regardless of the start vertex of the random walk, the probability distribution
reached after t steps is ε-close to the stationary distribution. Throughout this paper, when
the parameter ε is omitted, we refer to mixing time with ε = Θ( 1

n ).
A popular method for bounding the mixing time of a random walk is via the spectral gap

of its transition matrix. Let λ1, λ2, . . . , λn be the n eigenvalues of P ordered in decreasing
absolute value. It can be shown that all these eigenvalues must be real and lie in the interval
[−1, 1], where the principal eigenvalue, λ1 = 1. If G is connected and non-bipartite, then
|λ2| < 1. The difference 1−|λ2| is called the spectral gap of P and turns out to determine
the mixing time of the random walk (cf. [Guruswami 2000]):

THEOREM 3.2. The mixing time of a random walk with transition matrix P is upper
bounded as follows:

Tmix(ε) ≤ ln π−1
min + ln ε−1

1− |λ2| ,
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where πmin = min{π(v) | v ∈ V }.

Note that when π is the uniform distribution then πmin = 1/n.
Theorem 3.2 provides the means for setting the parameter T in the sampling algorithm.

Given a bound on the spectral gap of P (which is typically derived by analyzing combina-
torial properties of the graph G) and given the desired accuracy parameter ε, we can use
the above formula to calculate T .

The Maximum Degree RW. As mentioned above, the simple RW on a graph converges
to a uniform limit distribution if and only if the graph is regular. Ad hoc network graphs
are typically non-regular, and thus we cannot use the simple RW directly to obtain uniform
sampling of network nodes. Instead, we use a different RW, called the Maximum Degree
(MD) random walk, which has been used before in various contexts [Bar-Yossef et al.
2000; Boyd et al. 2004; Boyd et al. 2005; Lovász 1993] to achieve uniform sampling.

Let G = (V, E) be an undirected, connected, and non-bipartite graph, which is not
necessarily regular. Suppose we have an upper bound D on dmax, the maximum degree of
G (we show how to obtain such a bound below). We use D to transform G into a regular
graph G′. To this end, we add to each node v of G a weighted self loop (i.e., multiple edges
from v to itself). The weight of the self loop of v is set to be D − dv . The degrees of all
nodes in the resulting graph G′ are the same and equal D. The Maximum Degree random
walk on G is the simple random walk on G′. The transition matrix of this random walk is
then the following:

Pv,u =





1/D, if (v, u) ∈ E, v 6= u,

0, if (v, u) /∈ E,

1−∑
u′ 6=u Pu′,u if v = u.

If G is connected, then G′ is connected and non-bipartite, and hence (since G is undi-
rected, connected and non-bipartite) the MD random walk has a limit distribution. Further-
more, since G′ is regular, this distribution is uniform.

Many of the steps performed in a MD random walk are self loop steps. In many appli-
cations, including ours, self loop steps are “free”: they can be executed in zero time and
require no communication. Thus, it makes sense to define the actual mixing time of a ran-
dom walk, denoted Tactual mix, which is the expected number of actual steps (i.e., non-self
loop steps) needed for the random walk to approach its limit distribution.

As we shall see later, an overestimate of D may increase the mixing time of the MD
random walk, but typically does not affect the actual mixing time. This is because an
inflated D increases the mixing time at the same rate it increases the fraction of self loop
steps, leaving the number of actual steps intact.

Another interesting aspect of MD random walks is that mobility does not affect the
stationary distribution of the graph, as long as D is picked large enough to bound dmax.
As we discovered empirically (Section 6), it appears that (random) mobility even improves
the mixing time.

Random walks on ad hoc networks. Wireless ad hoc and sensor networks are typically
modelled as Random Geometric Graphs (RGG). We show that for an appropriate values of
the radius r, a random geometric graph G2(n, r) is with high probability undirected and
connected. Hence, the MD random walk on G2(n, r) is likely to converge to a uniform
limit distribution.
ACM Journal Name, Vol. V, No. N, February 202008.
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Undirectedness. Recall that two nodes u, v ∈ G2(n, r) are connected by an edge if and
only if the Euclidean distance between them is at most r. Since Euclidean distance is
symmetric, G2(n, r) must be undirected. 3

Connectivity. For RW based sampling to work, we must require the network graph to
be connected. The connectivity of G2(n, r) was extensively studied in the context of the
minimal transmission power necessary to ensure that with high probability a given ad hoc
network graph is still connected as the number of nodes in the network grows to infinity.
Gupta and Kumar [1998] have shown that if n nodes are placed on a unit disk and each
node transmits at a power level that covers an area of πr2 = log n+c(n)

n , then the resulting
network is asymptotically connected with probability one, if and only if c(n) → ∞ as
n → ∞. In [Panchapakesan and Manjunath 2001], the authors obtain a similar result
when nodes are distributed in the unit square [0, 1]2.

Throughout this paper we assume a radius r =
√

C ln n
n for the transmission range,

where C is a constant. For C > 1/π, this is the minimal radius that satisfies the connec-
tivity condition of Gupta and Kumar. Thus, we can assume w.h.p. that the ad hoc network
graph is connected.

For technical reasons, we also assume the radius r is not too large (r ≤ 1/2). If the
radius is greater than 1/2, then the resulting graph is a clique or close to a clique, and thus
the random walk on this graph mixes very quickly.

Estimating the maximum degree bound. We now prove an upper bound on the maximum
degree of the random graph G2(n, r). Note that the maximum degree is not being used
by the MD RW or RaWMS in any way and does not influence its communication cost.
The parameter D of the MD RW can be set arbitrarily high, in order to ensure that it
bounds the actual maximum degree. Hence, the utility of the proposition below is mainly
to get a feel for how the degrees of such graphs behave; this result is generic, and not tied
down to RaWMS. We also use the analysis below in evaluating the actual mixing time in
Theorem 3.4 (which indeed shows that the value of D does not affect the actual mixing
time).

PROPOSITION 3.3. Suppose r ≤ 1/2. Fix any 0 < αd < 1 and let

δd =

√
3

πr2(n− 1)
· ln 2n

αd
.

Let davg, dmax, and dmin be, respectively, the average, maximum, and minimum degree of
the random geometric graph G2(n, r). Then,

(1) E(davg) = πr2(n− 1)
(2) with probability at least 1−αd, dmin ≥ (1− δd) ·πr2(n− 1) and dmax ≤ (1+ δd) ·

πr2(n− 1)

PROOF. Fix any i ∈ {1, . . . , n}. For each j 6= i, let Xj be a 0-1 random variable

3The symmetry assumed in the theoretical model of RGGs is not always valid in real ad hoc networks and the
transmission range does not behave exactly as a disk due to various physical phenomena. In practice, it is possible
that a node v receives messages sent from node u, but not vice versa. Yet, such phenomena are rare and on the
other hand, those assumptions greatly simplify the formal model. At any event, our theoretical results were
verified through an extensive simulation with real transmission range behavior including distortions, background
noise, unidirectional links, etc.
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indicating whether the j-th node of G2(n, r) is a neighbor of the i-th node of G2(n, r) or
not. Since two nodes are neighbors if and only if they are at distance at most r from each
other, then E(Xj) = Pr(Xj = 1) = πr2. (Here we use the fact r ≤ 1/2. Otherwise, a
disk of radius r centered at the i-th node “wraps around” itself, and thus contains multiple
“copies” of the same points on the surface of the unit torus. In particular, this means that
the probability to have the j-th node as a neighbor the i-th node is lower than πr2.)

Let Yi =
∑

j 6=i Xj be the degree of the i-th node. By linearity of expectation, E(Yi) =
πr2(n − 1). Note that davg = 1

n

∑n
i=1 Yi. Thus, using linearity of expectation again,

E(davg) = πr2(n− 1). By Chernoff bounds

Pr(|Yi − E(Yi)| > δdE(Yi)) ≤ 2 · exp(−δ2
dE(Yi)

3
).

Substituting E(Yi) = πr2(n− 1) and the value of δd, we have:

Pr(|Yi − πr2(n− 1)| > δd · πr2(n− 1)) ≤ αd

n
.

Using the union bound, the probability that there is a node whose degree is less than
πr2(n− 1) · (1− δd) or more than πr2(n− 1) · (1 + δd) is at most αd.

As shown by the proposition, the average degree of every node in G2(n, r) is (n−1)πr2.
For example, for C = 1 and αd = 0.1, the average degree is around π ln n and the
maximum degree is at most a factor (1 +

√
1 + 3/ ln n) ∼ 2 away from the average

degree with probability 0.9.
Mixing time. Next, we analyze the mixing time of the Maximum Degree random walk
on G2(n, r). Avin and Ercal [2005] and Boyd et al. [2005] analyze the mixing time of
the simple random walk on G2(n, r) and show it equals Θ(r−2 log n). Boyd et al. [2005]
mention in their paper that a similar analysis can show the same bound on the mixing time
of the MD random walk. Yet, they do not give this analysis explicitly. Furthermore, the
analysis provided in these papers is asymptotic, and does not include the exact constants.

We follow the footsteps of Boyd et al. and provide a rigorous analysis of the mixing time
of the MD RW. We show that:

THEOREM 3.4. Suppose r ≤ 1/2 and n ≥ 10. Let G2(n, r) be a random geometric
graph chosen with n nodes and radius r. Let D be any value that upper bounds the
maximum degree of G2(n, r). Let Tmix(ε) be the mixing time of the MD random walk on
this graph, when applied with the value D. Let Tactual mix(ε) be the actual mixing time of

this random walk (i.e., excluding self loop steps). For any C > 49, if r =
√

C ln n
n , then

with probability at least 2/3 (over the choice of the graph),

Tmix(ε) ≤ 30
(1− 7√

C
)2
· D

n
· 1
r4
· (lnn + ln ε−1).

Tactual mix(ε) ≤ 120
(1− 7√

C
)2
· 1
r2
· (lnn + ln ε−1).

Tactual mix(ε) ≤ dmax

D
· Tmix(ε).

The proof of Theorem 3.4 is rather involved, and is therefore deferred to Appendix E.
The proof relies on Sinclair’s canonical paths method [Sinclair 1992] for bounding the
ACM Journal Name, Vol. V, No. N, February 202008.
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spectral gap of a random walk. The construction and the analysis of these canonical paths
are done via partitioning of the torus into a square grid, and defining “square paths” on this
grid. Several additional remarks are in order.

(1) If dmax ≈ πr2n (as guaranteed w.h.p. by Proposition 3.3) and if we choose D to be
close to dmax, then the mixing time of the MD random walk is Tmix(ε) = O(r−2(ln n +
ln ε−1)). For our choice of r, if C is a constant, then this mixing time is Tmix(ε) =
O(n(1 + ln ε−1

ln n )). On the other hand, if D is a gross overestimate of dmax, Tmix can get
higher.

(2) As opposed to the standard mixing time, which can get large if D is an overestimate
of dmax, the actual mixing time is not affected by the difference between D and dmax.
That is, Tactual mix(ε) = O(r−2(lnn + ln ε−1)) always, regardless of the value of D. For
constant C, we have

Tactual mix(ε) = O(n(1 +
ln ε−1

ln n
)).

(3) The theorem exhibits a tradeoff between the mixing time and the radius r: the larger
is r, the smaller is the mixing time. This is to be expected, since a large transmission range
improves the connectivity of the graph, which results in a faster mixing time. On the other
hand, large transmission range increases the number of transmission collisions, reducing
the quality of the wireless link.

(4) The minimum network size, for which the above theorem gives a non-trivial result
is obtained by setting C = 50, in which case n ≥ 1, 060. For smaller networks, the lower
bound on r implies r > 1/2, which means that the graph G2(n, r) is a clique. In cliques
(with self loops), the random walk mixes in a single step.

(5) The theorem shows that the asymptotic behavior of the random walk is linear. The
fact that the bounds provide non-trivial results only for sufficiently large networks and that
Theorem 3.4 is applicable only for quite large radii (C > 49) are artifacts of the involved
theoretical analysis and not of the algorithm itself. We believe that in practice the RW
mixes quickly for much smaller transmission ranges and for small networks as well. This
is supported by our experimental results, in which we have experienced with C = 1 and
observed almost uniform quality of the RW sampling for Tmix(ε) = n/2.

3.1 Reverse RW-based uniform sampling in ad hoc networks

The naı̈ve, direct, approach for applying the MD random walk for generating uniform
samples in an ad hoc network is the following. Every node v starts the sampling algorithm
described above using the MD random walk, passing its own id and the random walk’s
mixing time as parameters. The last node reached in the random walk notifies v of its
id. This id represents a uniformly sampled node from the network. The notification can
be done either by using the reverse path of the RW or by applying unicast routing. Both
introduce significant additional communication overhead.

To solve this problem, we propose using a reverse sampling technique. That is, instead
of informing the source node v about a sampled destination node u, the destination u is
informed about the source v. We claim that this constitutes a random sample of source
nodes. Using symmetry arguments, the destination node u can use the source v as if v
was sampled by u directly. This way, there is no additional routing overhead for notifying
the result of the RW to its initiating node. Since every node can initiate a number of RWs
with its id simultaneously, we can use this technique to construct for each node a random
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sample of s (1 ≤ s ≤ n) other nodes.
Below, we prove that reverse sampling indeed results in a uniform sample of nodes.

LEMMA 3.5. Suppose every node v in a network chooses (via a random walk) a ran-
dom node Xv . For every u, let Zu be the set of nodes that selected u (the RWs started by
them have stopped at u): Zu = {v | Xv = u}. Then, given that the size of Zu is k, Zu is
a random subset of the vertex set of size k.

PROOF. The proof can be found in Appendix C.

4. RANDOM WALK BASED MEMBERSHIP SERVICE

In RaWMS, a View at a node v is defined as a set of node descriptors, where each de-
scriptor consists of <NodeIdentifier,LastTime>. NodeIdentifier is the unique identifier of
a given node u and LastTime is the last time that v has “heard” from u. Every node v
advertises itself every ∆ time units by starting a reverse sampling process, as described
in Section 3.1. In other words, each ∆ time units, v starts a Maximum Degree random
walk, whose messages carry v’s identifier. Each of these RWs traverses the network for a
number of steps that is equal to the mixing time and stops at some node u. If u already
has a descriptor corresponding to v in its view, u refreshes the last time it heard from v
and discards the RW. Otherwise, u stores the identifier of v in its view. We propose two
methods for removal of nodes from the view: size-based and time-based.

In the size-based method, a node maintains a hard limit on its view size. Each node may
choose the target size of its view independently and without any correlation with other
nodes. In case that the view of a node u exceeds its limit upon storing a new identifier, u
discards a descriptor with the oldest LastTime from its view.

In the time-based method, every node discards nodes’ descriptors according to a prede-
fined timeout. The descriptor of node v is removed from node’s u view, if u has not heard
from v for Timeout time units. Each node may choose the value of Timeout independently
and without any correlation to other nodes. A node can probabilistically adjust its view size
by setting the Timeout proportionally to the mixing time and ∆. Both methods automati-
cally deal with purging descriptors of nodes that already left the network. The difference
between the methods is the probabilistic versus deterministic guarantee of the view size.

The general structure of RaWMS is presented in Figure 1. The protocol consists of
two threads: an active thread that initiates a new RW every ∆ time units and a passive
thread waiting for incoming messages. The discardExpiredFromView(View, Time-
out) function discards all descriptors from the view that the node has not heard from in the
last Timeout period; discardOldestFromView(View) discards the oldest descriptor
from the view; refreshInView(View,addr) refreshes the LastTime attribute of a given
descriptor in the view; storeInView(View,addr) stores a new descriptor corresponding
to a given address and the current time in the view. pickNextNode picks either one
of the neighbor nodes or a self-loop (of the current node) according to the RW transition
matrix probabilities.

RaWMS can also support construction of different views for different groups. Nodes
periodically advertise themselves to all groups they belong to (every RW advertises the
source node to all groups simultaneously). When a RW stops, the destination node can
filter the source node according to the groups it belongs to.
ACM Journal Name, Vol. V, No. N, February 202008.
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do forever
wait(∆ time units);
// start a new RW
ttl ← MixingTime;
handleRW(myAddress,ttl);
if timeoutBasedMethod then
discardExpiredFromView(View,Timeout)

endif;
enddo

upon receive(RW message<addr,ttl>) from u do
// resend the RW to the next node
ttl ← ttl-1;
handleRW(addr,ttl) enddo

handleRW(addr,ttl)
while ttl> 0 do

next ← pickNextNode();
if next != v then
send (RW message<addr,ttl>) to next;
return

else
// self-loop step, only count ttl
ttl ← ttl-1

endif
// the ttl count reached 0
enddo
publish(addr)

publish(addr)
if addr ∈ View then
refreshInView(View,addr)

else
storeInView(View,addr)

endif
if sizeBasedMethod and ViewIsFull then
discardOldestFromView(View)

endif

Fig. 1. RaWMS - code for node v

4.1 Formal performance analysis

For the purpose of analysis of RaWMS, we assume that all nodes start the algorithm simul-
taneously with initial empty views and all nodes have the same target view size, denoted
s(n). Notice that these assumptions are only required for the formal performance analy-
sis of RaWMS. On the other hand, the correctness of the reverse sampling (and RaWMS)
does rely on the fact that all nodes advertise themselves at the same average rate 1/∆.
Otherwise, a bias towards more frequently advertising nodes will be created.

We define the convergence time to be the number of protocol steps required until all
views reach their target size. The period from the beginning of the protocol run until the
convergence time has passed is the convergence period. In order to evaluate the perfor-
mance of RaWMS, we study the time and the communication complexity of the protocol
throughout the convergence period. Obviously, the target view size, that can be picked by
each node independently from other network nodes by enforcing a view size limit or by us-
ing an aging timeout, has a direct impact on the memory consumption of the node, as well
as on the time and the communication complexity of the convergence process. Clearly, the
larger the target view size is, the more messages should be sent and the more time the view
construction takes.

Intuitively, if each random walk started by some node v would have reached a different
node, then in order to obtain a view of size s(n), it would have been enough to start s(n)
RWs at each node during the convergence period. However, two random walks started at
the same node v have a non-negligible probability of reaching the same node u. Thus,
in order to obtain the target view size s(n), each node should start a larger number of
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RWs, which we denote by r(n). Once we compute r(n), we can immediately compute the
communication and time complexity to reach convergence.

The average value of r(n). In order to calculate r(n), we refer to the famous bins and
balls probabilistic problem: how many balls should be placed randomly into n bins in
order to have at least one ball in s bins. In our case, we wish to calculate the number
r(n) of random trials (the “balls”) that are required until s(n) different destination nodes
(the “bins”) are picked. Each random trial corresponds to a single RW. (For simplicity of
analysis, we assume below that each RW chooses a truly uniform node from the network,
i.e., ε = 0). We prove the following:

LEMMA 4.1. Let 1 ≤ s = s(n) ≤ n and let r = r(n) be the random variable spec-
ifying the number of balls needed to be randomly placed in n bins until s of the bins are
non-empty. Then,

E(r) = n(Hn −Hn−s) ≤
{

n ln n
n−s , s < n,

n ln n + O(1), s = n.

where Hk =
∑k

i=1
1
i is the k-th harmonic number (and define H0 = 0).

PROOF. The proof can be found in Appendix D.

Note that using the inequality 1 + x < ex, which holds for all x > 0, we have:

n ln
n

n− s
= n ln(1 +

s

n− s
) <

ns

n− s
.

This gives a tight bound on E(r) for s ¿ n.
Note that nodes start new RW every ∆ time units and do not have to be aware of E(r(n))

or make any use of it in RaWMS. E(r(n)) is used here only for the performance estimation
of the algorithm.

However, E(r(n)) can be exploited by nodes working in the time-based method in order
to adjust their average view size. A node that wishes to maintain an average view size of
s(n) can calculate the corresponding E(r(n)) independently based on its s(n) and use the
value E(r(n)) ·∆ as the Timeout for purging old descriptors out of its view. According to
this strategy, no identifier stays in a node’s view for more than E(r(n)) ·∆ time units on
average without being refreshed by a new RW. Thus, an important property of RaWMS is
that every view is refreshed to contain a completely new set of identifiers every E(r(n))·∆
time units on average.

Communication and time complexity for convergence. The communication complexity
during the convergence period is determined by the number of random walks each node
should start, i.e., the value E(r(n)) calculated above, multiplied by the length of each
random walk. Thus, the total communication complexity during the convergence period
is n · E(r(n)) · Tactual mix = Θ(n2 · E(r(n))). The time complexity is E(r(n)) · ∆ +
Tactual mix, i.e., the time to start E(r(n)) RWs and for the last RW to reach its destination.

For the special case of s(n) =
√

n, we get E(r(n)) ≈ ns
n−s ≈

√
n. This means

that for relatively small view sizes, there is a very little chance of getting collisions. The
convergence time in this case is about

√
n ·∆+Tactual mix = Θ(

√
n ·∆+n) and the total

communication complexity is n · √n · Tactual mix = Θ(n2
√

n).
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Bandwidth Consumption vs. Convergence Time. The main parameter that affects the
bandwidth consumption of RaWMS is the frequency ∆ in which nodes publish themselves.
From the analysis above, the convergence time of RaWMS behaves linearly with ∆. Since
in RaWMS all messages have the same size (every RW message includes an identifier of
a RW originator), there is also a linear relationship between the bandwidth consumption
of RaWMS and the number of messages. For example, doubling ∆ would increase the
bandwidth consumption by a factor of two, but will also halve the convergence time.

Join, leave, and maintenance. When a new node joins the network it starts the same al-
gorithm as any other node, i.e., it starts advertising itself by initiating multiple RWs. After
a convergence period, a new node will produce enough advertisements so that its identifier
will be uniformly distributed across the network. Therefore, the time and communication
complexities of a join process are E(r(n)) · ∆ + Tactual mix and E(r(n)) · Tactual mix,
respectively.

In order to speed up the uniform dissemination of new nodes in the network, a new node
may initially advertise itself more frequently than 1/∆. It can start the first E(r(n)) RWs
at a fast rate, or even simultaneously. It is important, however, for the correctness of the
reverse sampling, that after this initial phase, the joining node will return to advertising
itself only once every ∆ time units.

The algorithm purges the identifiers of failed or departed nodes automatically, without
relying on any action on their side. In the time-based method, a failed node’s identifier will
be purged from the views of all other nodes precisely Timeout time units after its departure.
In the size-based method, this will occur on average after E(r(n)) ·∆ time units.

The maintenance complexity of RaWMS is constant: all nodes keep advertising them-
selves at an average rate of 1/∆ advertisements per time unit. The value of ∆ can be tuned
to tradeoff communication complexity with the time it takes to react to node leaves/failures
and to purge their identifiers from all views.

Mobility. Nodes mobility is another important source of dynamic changes in the network
graph of ad-hoc networks. This form of dynamism is not covered by our formal model
and analysis. Very little is known in the literature about the behavior of random walks
in mobile graphs. Moreover, dealing with mobility requires some knowledge about the
mobility pattern.

Interestingly, our analysis for non-mobile networks can serve as a good approximation
for the situation where nodes move slowly, or infrequently. Yet, at the other extreme, if
nodes move fast and in a uniformly random fashion, then a partial uniform membership
service can be trivially implemented by occasionally sampling the local neighborhood of
each node. After a short duration, the physical network “mixes itself” well enough that the
sample becomes uniform and random. However, in general, the speed of mobility cannot
be trusted, and the mobility model is rarely uniformly random. Hence, even in mobile
network, performing random walks is important for obtaining a good uniform sample of
nodes. Formally analyzing the exact relationship between the mobility pattern and the
required lengths of the random walks is left as an open research question. In this work we
only study this issue by simulations.

Message loss. RaWMS uses a salvation technique to prevent dropping of RW messages.
If a node v does not succeed to forward a RW message to the neighbor chosen in a given
step (did not receive a MAC level acknowledgement), v makes a new attempt to send this
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message to another random neighbor within the same step. This technique prevents a loss
of RW messages in mobile networks, where nodes’ mobility can lead to frequent breakages
of neighborhood connections.

Notice that usage of such a salvation technique could potentially cause an undesired
forking effect. That is, either a RW message was successfully received by the next node
and propagated onward but the corresponding ack was dropped, or the next node failed
after forwarding the RW message, but before acking it. In both cases, a RW messages
would be resent to a different node, potentially creating a duplicate RW and leading to
an additional message overhead and non uniform samples. We show that such forking in
wireless ad hoc networks happens with a very low probability.

Forking probability. According to the IEEE 802.11 MAC protocol, when a source node
does not receive an acknowledgement, it waits a backoff period and resends the message.
Upon receiving a message for the second time, a destination node sends the ack again
while discarding the duplicate message. The number of times the message is resent by the
source node is defined by the protocol parameter, called dot11ShortRetryLimit (for short
messages, up to 2347 bytes), whose default value is 7 [IEEE-802.11-Standard ].

Therefore, in order for forking on a single link to occur, the first message should arrive,
its ack should be lost and in six subsequent transmissions, either a message or an ack should
be lost. Denote by pack the probability of an ack to be lost and by pmsg the probability of
a subsequent (second, third and so on) transmission of a message to be lost. Therefore,

P (single forking) ≤ pack ∗ (pmsg + (1− pmsg)pack)6

The probability that no forking happens along the path of length n is:

P (no forking along the path) = (1− P (single forking))n

The value of pmsg is actually quite small, since it is a probability of a subsequent trans-
mission to fail, after the first transmission succeeded (the nodes were neighbors during
the first transmission and a subsequent transmission happens very soon after the first one).
pack is small as well, given the 802.11 mechanism, which reserves the air link for an ack
after a data message transmission. For example, for pmsg = pack = 0.1 and n = 1000,
P (no forking along the path) = 0.995.

As for the second forking scenario, in which the next node fails or moves away after
sending the RW message on, but before acking it, let us notice the following facts. The
next node is a neighbor of the source node (since it received the first transmission) and
the whole MAC transaction of resending the message and ack for 7 times occurs in a very
short period of milliseconds. Thus, the probability that the next node will depart or move
far after receiving the message and before acking it is very low as well.

We can therefore conclude that although theoretically possible, for the typical choice
of parameters and network sizes we have considered, the probability of forking is very
low. Our simulations (which inherently already include all these phenomena) validate that
indeed forking almost never happens.

4.2 RaWMS usages and properties

Envisioned applications. Partial random membership can be very useful for construction
of a variety of other services and applications in ad hoc networks (some of them are already
mentioned in the introduction). Every node can pick its view size based on its memory
ACM Journal Name, Vol. V, No. N, February 202008.
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constraints and its envisioned applications’ needs. For example, for the knowledge graph
to be connected, the minimal view size should Θ(log(n))([Bollobas 2001]).

One of the applications we envision for RaWMS is a data location service. A data lo-
cation service provides every node with the ability to share the data it posses with other
network nodes, as well as to find and fetch for data stored in other nodes. In our im-
plementation of a data location service, membership information is used in order to map
data identifiers to nodes. Advertisements of new data items and lookups for existing data
are based on this mapping. A good tradeoff between communication overhead and mem-
ory consumption for such a location service can be achieved using random views with an
average size of Θ(

√
n), as they help ensure intersections with high probability.

Another potential application that can benefit from our work is P2P anonymization.
Consider, for example, a collection of Wi-Fi enabled cell-phones. Each cell phone can
access the Internet directly using its cellular communication. However, this would leave
explicit information identifying the surfer. The goal of an anonymizer is to utilize the ad-
hoc network, created over the Wi-Fi capabilities of these cell phones, to anonymize such
Internet accesses.

Systems like Crowds [Reiter and Rubin 1999] and Tarzan [Freedman and Morris 2002],
to name a few, have been developed to provide user anonymity by reliance on P2P for-
warding.4 In such systems, the request first travels through a random path of nodes before
being sent to the targeted web site by the last node in the path; the reply is sent back on the
reverse path (each message carries a unique id and nodes remember a mapping between
the ids of incoming messages and the node from which they came, so no intermediate node
knows the entire path).

These ideas cannot be applied as is to ad-hoc networks, for example, since they assume
that any node may communicate directly with any other node. In an ad-hoc network,
multiple hop routing is expensive, and also might compromise the anonymity of the nodes.
Hence, a more natural approach would be to perform a random walk, whose length is the
mixing time of the network. Additionally, to avoid disclosure of the initial node, instead
of adding a TTL to the message, it is possible to have each node decide with probability
P = 1/mixing time to access the targeted web site, and with probability 1− P to forward
the walk. Our work is useful for this approach, since our analysis of the mixing time of
random walks in ad-hoc networks, including the use of maximum degree random walks,
can be applied here to compute the mixing time of the network.

Yet, the above usage of random walks may also be problematic, as the mixing time of the
network is O(n). We can improve on this by utilizing RaWMS directly. Specifically, the
initiator of the request can include its RaWMS random view of size

√
n (or a fraction of it,

e.g., half the view) in the header of the message. In this approach, the random walk stops
after reaching any of the nodes in the attached header, which will happen after O(

√
n)

steps, on average. For this purpose, RaWMS is particularly attractive, since in RaWMS,
nodes never disclose any part of their view to other nodes. Also, the views continuously
evolve, making the task of identifying the initiator of a request extremely hard. Working
out the exact details of this idea, analyzing the anonymity level, and bench-marking such a
system is part of our future work.

Random Knowledge graph. In evaluation of RaWMS, we consider several properties

4The idea of a using a network of mixers to provide e-mail anonymity was first proposed by Chaum [1981].
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of the generated random views that are important to the envisioned applications. The
properties are best described using a graph-theoretic view [Jelasity et al. 2007] as follows.
Define the knowledge graph as a directed graph, whose vertices are the network nodes,
and that contains an edge from v to u if and only if u’s identifier is in the view of v. If the
views are truly uniform, then the graph induced by the views is actually a random graph.
This framework allows us to study the connectivity of the knowledge graph and the load
of an individual node (out-degree and in-degree).

In order to gain a better understanding of our generated knowledge graph, we adopt
the model introduced by [Fenner and Frieze 1982] and later described in [Jelasity and van
Steen 2002]. The random digraph Dk−in,l−out is defined as follows: each vertex v ∈ V
chooses a set in(v) of k random sources for edges directed into v and a set out(v) of l
random targets for edges directed out of v. Such a digraph is called a k-in, l-out digraph.
The edges are chosen without replacement so the graph has (k + l)|V | edges. When l = 0
we write Dk−in. Notice that Dk−in is a directed graph. The random knowledge graph
generated by RaWMS is Dk−in (rather than a traditional Erdos and Renyi [1960] random
graph, in which every edge is picked randomly, independently of other edges).

Uniformity of the views. A key feature of RaWMS, compared to other probabilistic
methods like [Allavena et al. 2005; Jelasity et al. 2007], is that the distribution of node
ids in the views is guaranteed to be ε-close to the uniform distribution (according to the
definition of the total variation distance in Definition 3.1).

The sampling accuracy (the difference between the stationary distribution and the actual
achieved distribution) is controlled by the RW length and is probabilistically guaranteed
to differ by up to ε = Θ( 1

n ) from the uniform distribution, if the mixing time is set cor-
rectly. Setting of the mixing time relies on the assumption of a static random geometric
graph. Even if the network graph is not a static random geometric graph, the stationary
distribution of the RW remains uniform due to the regularization of the graph with self
loops. However, in this case, the assumed mixing time could turn out to be insufficient.
To explore deviations from this assumption we have explored different topologies, such
as mobile networks, in the simulation study in Section 6. The results reported there show
the uniformity of views generated by RaWMS both in static networks and under different
mobility speeds.

Connectivity of the knowledge graph. The connectivity of a random graph depends on
the graph model (see [Bollobas 2001] for a detailed description of various models). For
example, in their classical paper Erdos and Renyi [1960] consider an undirected graph of
n nodes, where an edge between each (unordered) pair of nodes is present with probability
pn, independent of other edges. They show that if pn = (log(n) + c + o(1))/n, then the
probability that the graph is connected goes to e−e−c

.
For Dk−in,l−out, strong connectivity with high probability is achieved if k ≥ 2 and

l ≥ 2 [Fenner and Frieze 1982]. Dropping the orientation in such a graph results in
an undirected graph G(k+l)−out which is naturally also connected with high probability.
Therefore, the graph is connected only if a node is guaranteed to have at least 2 incoming
and 2 outgoing edges.

For a directed Dl−out (when k = 0) constant out degree is not enough and one has to
increase l logarithmically according to l = c + O(log n) to achieve the probability limit
e−e−c

for the reachability of each vertex from a specified source as n → ∞ [Jelasity
and van Steen 2002; Kermarrec et al. 2003]. Although to the best of our knowledge an
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equivalent result for Dk−in has never been published, due to symmetry considerations, we
conjecture that the connectivity condition for Dk−in is the same as for Dl−out. That is, k
has to be at least logarithmic to ensure strong connectivity.

Self healing from partitions. Another important property exhibited by RaWMS is a self
healing from partitions. Since in RaWMS nodes are not restricted to communicate only
with nodes in their views, even if partition in the knowledge graph does occur at some
time, it will be fixed by itself after a short period of time.

View size. As we have already shown, the view size can be set independently by every
node. Every node can pick its view size based on its memory constraints and applications’
needs. For example, for our envisioned application of data location service the average
view size should be Θ(

√
n).

Distribution of the in-degrees and out-degrees in the knowledge graph. We first take a
closer look at the in-degree of a given node (the number of nodes that have this node’s iden-
tifier in their view) at the end of the convergence period when using the time-based method.
We consider the period in which no identifier was already removed due to the Timeout. Fix
some node v out of the n nodes. Let Xv be the random variable specifying the in-degree of
v at the end of the convergence period. v advertises itself to s(n) uniformly chosen nodes.
Thus, each node has a probability of s(n)/n to have v in its view. Since advertisements to
different nodes are independent of each other, Xv has a binomial distribution with param-
eters n and s(n)/n. We conclude that the mean value of Xv (the mean in-degree) is s(n).
In order to investigate the possible deviation of Xv from its mean, we use Chernoff bounds
(see Appendix B). We view Xv as the sum of n independent Bernoulli random variables
Y1, . . . , Yn, where Yi is 1 if and only if the i-th network node advertises itself to v. By
Chernoff bounds, for any 0 < δ < 1,

Pr [|Xv − s(n)| > δs(n)] < 2 · exp(−s(n)δ2/3).

For example, for a value of δ = 0.5, the probability for a given node to have an in-degree
larger than 1.5 · s(n) or smaller than 0.5 · s(n) is less than 2/es(n)/12.

By the union bound, the probability for any node to have an in-degree that differs from
the average in-degree by a factor of δ is:

Pr [∃v : |Xv − s(n)| > δs(n)] < 2n · exp(−s(n)δ2/3).

Recall that the out-degree corresponds to the view size. Clearly, the average out-degree
is s(n), as expected by our construction. We can apply the same method as for the in-
degree distribution and conclude that the probability that any out-degree will deviate from
the mean view size is very low (the same as for the in-degrees).

For the size-based method the analysis of in and out degrees should take into account
possible removals from the view (thus making the analysis more complicated). The max-
imum view size is exactly s(n). The probability to have view smaller than s(n) is expo-
nentially small with s(n) as well. It can be shown that the distribution of in-degrees is also
highly concentrated around the mean value, with exponentially small deviation probability.

Conclusion. The view constructed by RaWMS in every node contains a random sample of
nodes. Moreover, the probability for in and out degrees in the knowledge graph to deviate
from their mean is very low (exponentially small with the average view size).
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4.3 Reactive extension of the view

It is possible that a node will wish to extend its local view to a larger one upon its ap-
plication’s demand. Increasing the desired view size, s(n), is a good long term solution,
since it does not incur any additional communication and relies on existing advertisements.
The drawback is that it may take a significant amount of time until the new target size is
reached (increasing a view size by s(n) will take E(r(n)) · ∆ time units). On the other
hand, maintaining a large view size all the time may be wasteful in case such a large view
is typically not required. Therefore, a method to extend the view on demand is required.

We propose two on demand RW-based methods for extending the views. The first
method can be used for constructing a full membership view out of all partial member-
ships. A node v requesting to extend its view to a full membership, starts a RW including
its current view and the estimated network size, n. Every node u that receives this message
adds its view to the message while removing duplicates. If the combined view is smaller
than n, u sends the combined view to one of its neighbors picked at random. Once a com-
bined view reaches the target size n, it is sent back to v on the reverse path of the RW. Since
in this method the RW path is remembered inside the message, we can further optimize the
RW by preventing it from revisiting the same nodes more than once. Studying the potential
performance gain of this optimization is left for future work. Let us note that in a mobile
network, there is a chance that some link of the reverse path of the RW may not exist by
the time it is used for sending the reply back. To overcome this problem, a unicast routing
protocol should be used. Practically, this happens very rarely due to a short time proximity
between the RW and the reply.

The first technique can also be used to extend a view to some bigger, yet still partial
view (by sending as a target size the size of the requested extended view, es(n)). However,
it can produce highly correlated views between nearby nodes. Therefore, we propose a
different technique for an on demand extension of a view into a larger partial view. In
this method, instead of collecting nodes from neighbors by one short RW, different partial
memberships should be collected from different nodes, chosen uniformly at random from
the network. A node v that requests to extend its view up to a size of es(n), starts a number
of MD random walks, each running for a number of steps equal to the mixing time. The
node chosen this way returns its view on the reverse path of the RW. If the combined view
at v is not enough, v initiates more RWs to sample more memberships. This technique is
actually an extension of our regular sampling technique, when we sample the whole view
of randomly chosen node at once.

4.4 Network size estimation

RaWMS assumes that the number of nodes in the network n is known. This is required
in order to determine the length of the RW in the reverse sampling procedure (the mixing
time). There are a number of methods for obtaining a loose upper bound on the network
size, e.g., [Feige 1996; Servetto and Barrenechea 2002]. Once we have such a loose upper
bound, we can use the birthday paradox principle to obtain a much tighter bound in the
following manner. We have shown that according to the reverse sampling technique, every
time RW stops at node u, it has the effect of having u pick uniformly at random a node
identifier out of all n nodes. According to the famous “birthday paradox”, it is well-
known that after m =

√
2n random trials such that each trial picks uniformly one of n

distinct values, the probability to pick m distinct values is at most 1
e and it drops rapidly
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as m increases ([Motwani and Raghavan 1995]). Therefore, every node can calculate the
first time it receives the same advertisement again (denoted by m) and use this number to
estimate n according to n = m2

2 . This process is repeated constantly and averaged across a
number of measurements. In order to deal with accumulating errors, the loose upper bound
should be re-used periodically and the tight bound estimation be restarted.

A recent work [Merrer et al. 2006], which was done concurrently and independently to
ours, compares various algorithms for network size estimation of peer-to-peer networks.
The authors report that the usage of “birthday paradox” in a manner very similar to ours
renders the best tradeoff among all compared algorithms between the estimation accuracy
and the associated overhead of bandwidth and computational resources.

5. GOSSIP-BASED MEMBERSHIP

5.1 The generic gossip framework

As discussed in Section 7, gossiping has been studied in the past as a way to implement
partial view membership services. A generic framework for such gossip-based protocols
in peer-to-peer networks has been presented in [Jelasity et al. 2007] and adapted to sensor
networks in [Gavidia et al. 2005]. We have combined these two frameworks into a unified
framework that is adapted to both static and mobile ad hoc networks.

The view in gossip-based membership algorithms is a set of s node descriptors, each
descriptor consisting of <NodeIdentifier,HopCount,NewFlag>. In existing gossip-based
membership protocols, the size of the view is usually assumed to be the same for all nodes,
whether it is a constant or a function of n (the number of nodes in the network).

We assume that each node executes the same protocol whose skeleton is shown in
Figure 2. As in RaWMS, the protocol consists of two threads: an active thread initi-
ating communication with other nodes, and a passive thread waiting for incoming mes-
sages. The skeleton code is parameterized with three boolean parameters, namely push,
pull and NewFlag, the desired fanout F , and three functions, namely selectPeer,
selectItemsToSend and selectItemsToKeep.

Periodically, each node gossips with one of its neighbors to exchange the items in their
views. A view is organized as a list of descriptors, ordered according to increasing hop
counts. Entries with the same hop count are ordered in a random manner. We can thus
meaningfully refer to the first or last k elements of a particular view. Notice that in the
protocol’s code, a call to increaseHopCount(view) increments the hop count of every
element in a view.

The above skeleton enables us to evaluate within the same framework the important
policies involved in gossip-based protocols along four dimensions: (i) peer selection, (ii)
view propagation, (iii) keep selection, and (iv) send selection. By combining the possible
values of each of these attributes, one can obtain many variations of gossip protocols, some
of which have already been explored.

Peer selection. Periodically, each node v selects a peer in order to exchange membership
information with it. This selection is implemented by the function selectPeer() that
returns the address of a live node either in v’s current view or in v’s neighbors list. Below
we list a few representative policies that have been mentioned in the literature.
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do forever
wait∆ time units;
if push then

// 0 is the initial hop count
myDescriptor ← (myAddress,0,NewFlag);
send buff ← selectItemsToSend

(view,myDescriptor,{})
else

// empty view to trigger response
send buff ← {}

endif
repeat

v ← selectPeer();
send (send buff ) to v
if pull then
receive (recv buff ) from u
recv buff ← increaseHopCount(recv buff );
view ← selectItemsToKeep(view,recv buff )

endif
for F times // F is the fanout parameter

enddo

Upon receive(gossip message,recv buff ) from u do
recv buff ← increaseHopCount(recv buff );
if pull then

// 0 is the initial hop count
myDescriptor ← (myAddress,0,NewFlag);
send buff ← selectItemsToSend

(view,myDescriptor,recv buff );
send (send buff ) to v

endif
view ← selectItemsToKeep(view,recv buff )

enddo

Fig. 2. A Generic Gossip Framework

rand Uniform randomly select an available node from the view
head Select the first node from the view (the one with the lowest hop count)
tail Select the last node from the view (the one with the highest hop count)
neighbor Randomly select an available node from the neighbors list
broadcast Select all nodes in the neighbors list to send a broadcast message to them

View propagation. Once a peer has been chosen, there are several alternatives to ex-
changing information with that peer, as listed below.

push The node sends its view to the selected peer
pull The node requests the view from the selected peer
pushpull Both the node and the selected peer exchange their respective views

Send selection. Once the peer and the way to contact it have been chosen, the sender must
decide what information to send. The options that have been discussed in the literature are
listed below:

rand Randomly select up to X descriptors from the view
head Select the first X descriptors from the view (the ones with the lowest hop count)
tail Select the last X descriptors from the view (the ones with the highest hop count)
new Pick all descriptors that have been received for the first time
full Send all s descriptors of the view

Keep selection. Once the membership information has been exchanged between peers,
the received descriptors should be integrated into the node’s view. The integration proce-
dure must adhere to the target size limit of s descriptors by choosing only the subset of
all available descriptors. In the protocol above, this is done by the merge(view,recv buff )
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procedure, which merges the received view with the current one. In case a descriptor
appears in both views, the merged view takes the version with the most up to date times-
tamp. The function selectItemsToKeep(view,recv buff ) selects a subset of at most
s elements from merged views (ordered by increasing hop count) according to one of the
policies listed below:

rand Merge and randomly select s elements without replacement from the merged view
head Merge and select the first s elements from the merged view
tail Merge and select the last s elements from the merged view
shuffle Merge and remove the elements that were sent in this data exchange to the other

node until only s elements remain in the view

It is possible to obtain a large selection of gossip protocols by simply plugging any of
the above policies in the skeleton protocol of Figure 2. Each combination is expressed by
means of a 4-tuple (peer selection, view propagation, send selection, keep selection). In
particular, various combinations of the above policies were investigated in [Jelasity et al.
2007]. One of the conclusion of [Jelasity et al. 2007] is that no gossiping algorithm suc-
ceeds in constructing views that form a truly random knowledge graph. Typically, the
resulting knowledge graph induced by the view’s edges has great resemblance to a small-
world graph.

Speeding up the joining process with NewFlag. We can use the same technique here
as in RaWMS in order to speedup the joining process of a new node. That is, a new node
increases the rate of gossiping until it has managed, with high probability, to distribute
its identifier to enough random nodes in the network. Note that in gossiping algorithms,
other nodes must also gossip the identifiers of newly joined nodes more frequently than
the standard gossip frequency. For that purpose, during a fixed period of NewTimeout time
units, a new node v turns on the NewFlag flag of its descriptor each time v gossips its
descriptor. When a node receives a gossip descriptor with the NewFlag flag turned on, it
increases its own gossip rate for a duration of NewTimeout time units. As a result, when a
new node joins the network, the gossip rate at all “infected” nodes is increased and the new
identifier is gossiped faster. After NewTimeout time units elapse, the gossip rate returns to
1/∆ in order to reduce the communication overhead.

5.2 Specific gossip methods

lpbcast. lpbcast [Eugster et al. 2003] corresponds to (rand, push, full, rand).
In each round every node v sends its view to F (the fanout parameter) nodes, chosen
randomly from v’s view. The number of rounds is logarithmic in the network size. In order
to establish a communication path between two nodes in an ad hoc network, some routing
algorithm must be employed. Since destinations are chosen randomly among the network
nodes, the number of network level messages required to send a single gossip message is
equal to the average path length of the network.5 The average path length in an ad hoc
network is in the order of the diameter of the network divided by the transmission range.
In our case, this amounts to O(

√
n

log n ). Also, in each gossip message, the entire view

5More precisely, v chooses F random nodes from its view. However, the view gradually converges to a random
sample.
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is sent. Therefore, the total communication overhead of lpbcast for a view of size s is
n · √n log n · F · s.

The main drawback of lpbcast, which makes it unsuitable for ad hoc networks, is the
extensive usage of unicast routing. Since each node sends messages to random network
nodes, lpbcast uses F · log(n) routes in the initial convergence stage and keeps utilizing
more routes afterwards. Notice that the establishment of a unicast route if often obtained
through flooding, which is costly in an ad hoc network. Since the potential number of
source destination pairs is quadratic, lpbcast’s traffic pattern virtually establishes all-to-all
routing paths over time, which are created merely for lpbcast’s usage and are not neces-
sarily used by the application. Those routes break over time due to nodes mobility, which
adds the cost of repairing them.

Another drawback of lpbcast is that according to [Jelasity et al. 2007], lpbcast fails to
provide uniform views. In addition, the views at the same node but in different rounds
are not truly independent, since nodes gossip at round t + 1 only with nodes they had in
their view in round t. As a result, it was shown in [Jelasity et al. 2007] that lpbcast has
a non-negligible chance of partitioning. When partitions do occur in lpbcast, or any other
similar gossip algorithm, they cannot self-heal.

Shuffling. Shuffling [Gavidia et al. 2005; Voulgaris et al. 2005] corresponds to (neighbor,
pushpull, rand, shuffle). Shuffling was first introduced in the context of sensor
networks and originally used for information dissemination. Yet, shuffling can also be used
for construction of random views, by disseminating nodes identifiers, as was done in [Voul-
garis et al. 2005] for peer-to-peer networks. In shuffling, a node communicates only with
its direct neighbors. Every round each node randomly picks B identifiers out of its view
and shuffles them with its randomly chosen neighbor. The main idea of Shuffling is that
unlike other gossiping algorithms, Shuffling avoids loss of data during items exchange.
This is accomplished by having the peers agree on which data items will be kept by each
of them after the exchange takes place. Any two nodes that engage in a shuffle essentially
swap a number of items. In doing so, they “move” the data around in a seemingly random
fashion.

We analyze the performance of shuffling by adapting some RW techniques to it. In the
following analysis, let us assume that each node already possess a random view. We are
interested in determining the number of rounds and the number of messages required for a
new node joining the system to incorporate its identifier uniformly into the views of other
nodes in the system.

Every round each node randomly picks B identifiers out of its view and shuffles them
with its randomly chosen neighbor. Since the views are random, when two nodes shuffle,
they pass to each other almost completely different sets of identifiers. Therefore, almost all
ids that node v passes to node u will migrate to u and will be removed from v’s view. In this
process, ids already present in the network are not discarded, and almost never duplicated.
This view exchange process has some resemblance with RWs; each identifier traverses the
network from one node to its randomly chosen neighbor. However, there are a number of
differences: 1) in shuffling, the “walks” of different identifiers are not independent since
an exchange is performed on a batch of B identifiers, 2) an identifier may not be passed to
a neighbor node every round, since only B identifiers out of the entire view are exchanged
every round.

The first difference can be controlled by the size of the exchanged batch, B. Large
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values of B indeed increase the dependence between disseminations of different identifiers.
However, for small values of B, the effect of dependence is not significant, especially since
in every round each node picks a different set of B ids from its view for an exchange.
Indeed, shuffling is usually run with small, constant B.

As for the second difference, we can measure the pause time, i.e., the average amount
of time that each identifier spends in the view before being shuffled. If the whole view is
shuffled, the pause time is zero. If only B identifiers out of the entire s (the view size)
are shuffled every time, the pause time is a geometric random variable with a mean of
s
B . Therefore, the number of rounds until an arbitrary identifier reaches a random place
(assuming no duplications and discarding and fanout 1) is s

B ·Tactual mix, where Tactual mix

is the actual mixing time of a RW of the underlying graph. Since we are interested in a
situation when s random nodes have the identifier of the new node in their view, a new
node must publish itself s times, once in each successive round. This yields a total of
s + s

B · Tactual mix rounds until convergence.

Flooding. Flooding can be used to implement a membership service by having each
node flood the network with its identifier. An efficient implementation of flooding requires
memory which is linear in the number of nodes in the system. That is, in order to prevent a
node from delivering (and retransmitting) the same message more than once, a node should
remember the identifiers of the last few broadcast messages initiated by every other node.
Since the implementation of flooding itself requires linear memory space, there is no point
in limiting the view to include fewer than n identifiers.

5.3 Probabilistic starvation

One of the main usages of partial membership services is in gossip-based probabilistic
multicast algorithms. Specifically, these algorithms attempt to deliver every message to
almost every node with high probability. The percentage of nodes that receive a message is
called the reliability factor. However, those algorithms usually make no attempt to provide
reliability for a single node. When the views are not truly random, there is a possibility that
while most nodes receive all messages, a small number of nodes do not receive messages
at all or receive only a small fraction of all messages. In particular, if there are some nodes
(e.g., low degree nodes) that are not uniformly distributed among other nodes’ views, those
nodes will be constantly denied messages and thus suffer from probabilistic starvation. On
the other hand, views constructed by RaWMS are proven to be uniform and therefore any
probabilistic multicast algorithm built a top of it will not suffer from such a phenomenon.

5.4 Comparison

Table I shows an asymptotic comparison of all the methods mentioned above based on
the theoretical analysis. Table II shows an exact comparison with constants based on the
simulation results (taken from Section 6 below) for view size

√
n. The tables compare

the time and the communication complexity of the convergence period in static networks.
The maintenance cost for each method is the communication cost during the convergence
period divided by the convergence time. An interesting observation about this comparison
is that the message complexity of lpbcast does not depend on the view size.6 On the other

6The view size only affects the bit complexity of the protocol. However, in most networks, as long as messages
are not too large, the number of messages dominate the performance limitations of the protocol.
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hand, in RaWMS and Shuffling, the message overhead for the duration of the convergence
period depends on the view size (since the length of the convergence period depends on
the view size). Thus, had we taken a smaller view size, such as log n, it would have placed
RaWMS and Shuffling in a further advantage over lpbcast.

Note that when nodes are mobile, there is an additional cost due to routing. In particular,
lpbcast is highly affected by mobility since it relies heavily on unicast routing. When
nodes move, routes break and must then be reestablished or repaired. In contrast, neither
RaWMS nor shuffling suffer due to mobility, since they do not use multi-hop routing.
In fact, in these two approaches, nodes’ mobility can actually facilitate faster and more
random dissemination of membership information.

6. SIMULATIONS

6.1 Setup

The simulations were performed using the JiST/SWANS simulator [Barr et al. ] from Cor-
nell university. Nodes use two-ray ground radio reflection model as the radio propagation
model, with IEEE 802.11 MAC protocol and 1Mb/sec throughput. The multi-hop routing
protocol used by lpbcast is AODV (recall that RaWMS does not use routing at all). Mo-
bility was modelled by the Random-Waypoint model [Johnson and Maltz 1996]. In this
model, each node picks a random target location and moves there at a randomly chosen
speed, chosen from a given range. The node then waits for a random amount of time and
then chooses a new location, etc. We have used 3 ranges of the speed of movement: 0.5-2
m/s, 2-5 m/s and 5-10 m/s. The speed range of 0.5-2 m/s corresponds to a walking speed
and unless stated differently was used as a default speed range in our simulations, while
the speed ranges of 2-5 m/s and 5-10 m/s were investigated in Section 6.2.3. An average
pause time is 30 seconds. All simulations were performed on networks of 10, 50, 100,
200, 400 and 800 nodes. We have used the default Java pseudo random number generator,
initialized with the current system time in milliseconds as a seed.

The nodes were placed at uniformly random locations in a square universe.7 The trans-
mission range was fixed for all network sizes and all simulations at 200m. The size of
the simulation area was scaled in order to comply with the analytical results of Gupta
and Kumar [1998] regarding the critical transmission range. For a square area a2 the

radius of the transmission range is r = a
√

C ln n
n , r ∈ [0, a]. The average number of

nodes in the transmission range of any node (network density) was set to davg = 3 ln n

(davg = πr2n
a2 = πa2 C ln n

n n

a2 = πC ln n = 3 ln n for C ≈ 1). That is - we kept a
constant transmission range and scaled the simulation area a2 for n nodes according to
a2 = π2002n

3 ln n . By proposition 3.3, for such davg, dmax ≈ 2davg. Additional densities were
studied in Section 6.2.2.

Each simulation lasted 1,000 seconds (of simulation time) and each data point was gen-
erated as an average of 10 simulation runs. Simulations started after a 60 seconds initial-
ization period, which was enough to construct one hop neighborhood information. The
neighbors discovery protocol was running throughout the entire simulation period in all
scenarios. RaWMS was run with a time-based method; the node’s descriptor timeout in the
view was set so that the average view size will be

√
n. In each scenario of RaWMS, each

7We run our simulation on a flat topology rather than a torus. This places our scheme in a slight disadvantage,
since the communication graph tends to be less uniform in a flat topology.
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node started E(r(n)) RWs, calculated out of the expected view size of
√

n as described in
Section 4.1. These advertisements were spread over the whole simulation period.

6.2 Properties of RaWMS

6.2.1 Uniformness. We have performed a number of tests to compare the views con-
structed by RaWMS with the ideal uniformly sampled views. These tests were picked
to reflect the most important structural properties of the system: distribution of the path
lengths from every node to all nodes in its view, dependence between views of neighbors
in the ad hoc network, clustering coefficient of the knowledge graph, view size distribution,
and connection between a node’s degree (in the ad hoc network) and its view size. Since it
is not possible to empirically prove the uniform randomness of the views, these statistical
tests are used to strengthen our claim that the properties of the constructed views do not
deviate from the properties of the theoretical uniform samples. The measures are explained
and studied below.

Path Length Distribution. The first measure we used to evaluate RaWMS is the uni-
formness of the locations of nodes appearing in the views. That is, for each node v and
corresponding view V , we compare the ratio of nodes in V that are at a given distance
from v to the ratio of such nodes in the real random network. If there is a strong match
between these ratios for all views and distances, this gives a positive indication about the
uniformness of the views created by RaWMS.

To this end, we used a χ2 statistical test to compare the distribution of nodes in the
view of every node at the end of the convergence period with the desired uniform distri-
bution. Namely, we have partitioned all nodes into a number of bins according to their
distance from the tested node. For every node v we have calculated the following score:
PathScorev =

∑#bins
j=1

(Actualv,j−Expectedv,j)
2

Expectedv,j
, Actualv,j being the actual number of

nodes from distance j found in the view of node v and Expectedv,j is the number of
nodes from distance j that are expected to be found in the view of node v. The total net-
work score PathScore corresponds to the average of all PathScorevs. Thus PathScore
is a statistical test for the difference between the distribution of path lengths obtained by
simulations and the assumed uniform distribution (in a perfect uniform sample, each view
should include a number of nodes at each distance that is proportional to the actual number
of nodes at this distance in the network).

The results of the path length distribution test for static networks are depicted in Fig-
ure 3(a). The simulations were run with 5 different lengths of the random walk, corre-
sponding to 5 different candidates for the mixing time, Tmix. Clearly, the longer the walk
is, the closer is the distribution reached by the RW to the uniform stationary distribution,
since a long walk has a “better” chance to reach a random node. We can see that for lengths
of n and n/2 the PathScore is relatively low and almost does not change as the number
of nodes grows. This means that walks of n/2 steps are long enough to correspond to
the mixing time of those networks. Shorter walks exhibit a dramatic degradation in the
test’s score. Those walks are shorter than Tmix and do not have enough steps to reach the
uniform stationary distribution. The larger the network is, the worst are the results of these
short RWs, since they do not get a chance to move far away from the originating node.
As a result, every node ends up with relatively more nodes in its view that are geograph-
ically closer to it and with fewer nodes that are geographically far from it. This confirms
the theoretical result that too short RW in static networks will not converge to a stationary
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Fig. 3. RaWMS - the path length distribution test (PathScore versus n)

distribution.
Figure 3(b) presents the results of our simulations with mobility. Interestingly, the ran-

dom dissemination of membership information is actually improved by nodes movements,
and even RWs of length n/8 get the same results as with length n. Nodes that used to be
close to some node in the initial stage of the algorithm may end up in a completely differ-
ent location in the network after some time, helping the “mixing” effect of the RW. Still,
as can be seen from the graph, very short walks of length n/16 obtain worse results even
with mobility. Also, notice that due to the salvation technique employed by RaWMS (if a
node did not receive a MAC level ACK for a RW message, it sends this message to another
random neighbor within the same step), RW messages are almost never dropped, even in
mobile networks.

Intersection between views of neighboring nodes. In this test we have checked the
amount of correlation between the views of (physically) neighboring nodes. For ideal
uniformly chosen views there should not be any special correlation between the views
of neighboring nodes. We have measured the average size of the intersection between
the views of all pairs of neighboring nodes and compared it with a theoretically expected
intersection. Since the average view size is

√
n, the expected intersection is

√
n
√

n
n = 1,

for all network sizes. It can be seen from Figure 4(a) that indeed in static networks for
long enough RWs (walks of length n and n/2) the average intersection size is very close
to an expected one. However, walks shorter than the mixing time do not have enough steps
to get far away from the originating node and tend to stop at its proximity instead of at a
random node. As a result the neighbors of an originating node have a greater chance to
have it in their views.

In mobile networks intersection between views of neighboring nodes is greatly reduced.
Here, even short RWs can get a chance to escape the proximity of its originating node,
due to mobile nodes carrying the RW message. Surprisingly, in mobile networks, the
intersection is even smaller than expected. The reason for this is as follows. A fast moving
mobile node v has a lower chance of getting a RW message, because if v passes next to
a node u that has the RW message, v disappears from the transmission range of u before
the neighbors discovery protocol at u detects v. The result is that long RWs tend to stop
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Fig. 4. Intersection between views of neighboring nodes

at static and slow nodes, that are surrounded by fast moving mobile nodes and usually are
not neighbors of each other. Therefore, the intersection between views of static nodes with
their fast moving neighbors is very small. This phenomenon becomes even worse in long
RWs, since the longer the RW, the greater is the chance that it will be “stuck” at a static
or slow moving node. The situation could be improved by a more aggressive and frequent
neighborhood discovery protocol. These results also suggest that the length of RWs should
be adjusted in reverse proportion to the observed mobility in the network.

Clustering Coefficient of the knowledge graph. A common measure for the uniformness
of random graphs is their clustering coefficient [Watts and Strogatz 1998]. The clustering
coefficient for a node v represents the probability that two neighbors of v will also be
neighbors of each other. Hence, a graph with good uniformness will have a low clustering
coefficient. Notice, however, that clustering coefficient alone, as being a statistical test, is
not enough. For example, it only refers to the knowledge graph induced by the nodes, yet
ignores the relationship between views of physical neighbors. The latter is covered by our
measure above for the intersection between views of (physically) neighboring nodes.

The clustering coefficient of a node v is defined as the number of edges between the
neighbors of v divided by the number of all possible edges between those neighbors. Intu-
itively, this coefficient indicates the extent to which the neighbors of v are also neighbors
of each other. The clustering coefficient of the graph is the average of the clustering co-
efficients of the nodes, and always lies between 0 and 1. Figure 5 depicts the clustering
coefficient of the knowledge graph induced by RaWMS compared to the theoretical clus-
tering coefficient of a random graph (which is equal to the probability of existence of a
link between any pair of nodes and equals 1

V iew size = 1√
n

in our case). It can be clearly
seen that in static networks, the clustering coefficient for walks of length n/4 and longer
closely follows the theoretically expected one (except for the small networks of 10 nodes).
In dynamic networks, clustering coefficient behaves as expected even for shorter RWs.

View size distribution. Recall that the size of the view is a binomial distributed random
variable with probability s(n)

n , mean value s(n) and variance s(n)(1 − s(n)
n ). We have

compared those theoretically expected values with the actual mean and variance values of
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(b) Mobile network

Fig. 5. Clustering coefficient

view sizes at the end of the convergence process.
Figures 6 presents the graphs for A(s)

s and V ar(A(s))
V ar(s) , with s representing the expected

view size, A(s) the actual mean view size, V ar(s) the expected variance, and V ar(A(s))
the actual variance, calculated as

∑n
i=1(A(s)−viewi)

2

n . For all network sizes and for all
walk lengths, in both static and mobile networks, the average size of the view is almost
equal (typically up to 90%) to the ideal, theoretically expected mean size. Only for small
networks the mean view size is a bit larger than expected, due to the fact that for s of
the order of n, ns

n−s is not a tight bound of E(r(n)) (see Lemma 4.1). In these cases,
nodes simply start too many RWs. The variance of the view sizes is also very close to the
expected one in static networks, presenting another evidence to the fact that the view size
is a binomial distributed random variable. The only exception is a small network of 10
nodes. For very short walks (n/16), the RWs did not get a chance to walk even a single
step and the resulting view includes only the node itself. The variance is zero in such a
case.

Notice that in mobile networks the variance is larger than in static networks. The vari-
ance is even larger for long RWs than for short RWs. This can be explained in the same
way as with intersection between views of neighboring nodes. Long RWs tend to stop at
static and slow nodes. As a result these nodes have a much larger view, at any given point
in time, then fast moving nodes. The situation could be improved by a more aggressive
and frequent neighborhood discovery protocol.

Correlation between node degree and view size. Additional tests were conducted to
measure the correlation between nodes’ degrees (the number of neighbors in the ad hoc
network) and view sizes.

Figure 7 shows the distribution of view sizes accumulated into bins according to node
degrees. The nodes were sorted by degree and then separated into 10 deciles, each contain-
ing 10% of the nodes. For each decile, the bar chart shows the ratio between the average
view size of this decile and the average view size of the whole network. The results in
Figures 7 and 8 were generated for walk length n/2. The same results were observed for
other walk lengths both in static and mobile networks.

As stated before, the stationary distribution of a RW without self loops is degree-dependent,
ACM Journal Name, Vol. V, No. N, February 202008.
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Fig. 6. View size distribution - the difference between actual and expected mean and
variance values

resulting in more RWs stopping at higher degree nodes. Indeed, it can be seen from Fig-
ure 7(b) that there is a significant bias towards high degree nodes - much more RWs stop
at these nodes than at lower degree nodes, resulting in unbalanced view sizes. On the other
hand, our Maximum Degree RW balances the node degree with self loops, generating a
regular graph on which the RW has a uniform stationary distribution. Indeed, Figure 7(a)
demonstrates that there is no bias towards high degree nodes and that the views have almost
the same average size for all deciles.

The results for mobile networks are depicted in Figure 8. The results for RWs with self
loops are essentially the same as in static networks: there is no bias towards high degree
nodes. On the other hand, in a mobile network, RWs without self loops have very little bias
as well. This is since in a mobile network the neighborhood of a node changes frequently.
During the run every node has different degrees, and all nodes have approximately the
same degree averaged over the whole simulation time. Therefore, we can note here that
again mobility assists in introducing uniformity into the RW.
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(a) RW with self loops - static network

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D
ec

ile
 a

ve
ra

ge
 v

ie
w

 s
iz

e 
/ W

ho
le

 n
et

w
or

k 
av

er
ag

e 
vi

ew
 s

iz
e

Deciles of nodes ordered by degree

50 nodes
100 nodes
200 nodes
400 nodes
800 nodes

(b) RW without self loops - static network

Fig. 7. Correlation between node’s degree and its view size. Static network, walk length
n/2
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(a) RW with self loops - mobile network
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(b) RW without self loops - mobile network

Fig. 8. Correlation between node’s degree and its view size. Mobile network, walk length
n/2

6.2.2 Nodes density. This section studies the performance of RaWMS in networks
with varying nodes density. In these simulations we have changed the average num-
ber of neighbors to be 7, 10, 15, 20 and 30 (which corresponds to davg = C ln n, for
C = 1, 1.5, 2.2, 3, 4.5). We depict only the results for networks of 800 nodes. For other
network sizes the qualitative effect of the results was the same, however as 800 nodes is
our biggest network, it depicts the general trends of the results in the best way. Note that
7 neighbors is the smallest density which results in the connected network (even for 7
neighbors there are some individual nodes that may sometimes be disconnected, but their
number is negligible).

We can see in Figure 9 the path length distribution test results as a function of network
density. The denser the network is, the smaller is the PathScore, meaning that the views
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Fig. 9. Path length distribution test (PathScore) as a function of varying density
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Fig. 10. Intersection between views of neighboring nodes as a function of varying density

are more uniform. The same trend can be seen in Figure 10, depicting the intersection
between views of neighboring nodes. The intersection is smaller for denser networks.
We have not depicted the results of clustering coefficient and view size distribution (both
average and variance) since the results were not affected by density and were very similar
to the results in Figures 5 and Figures 6.

We can observe in both Figures 9 and 10 the effect of the average number of neighbors on
RaWMS. The smaller the transmission radius is (resulting in smaller davg), the bigger the
network diameter becomes and as a result a single RW has to walk more steps to reach the
stationary distribution. Thus, a longer mixing time is needed to reach a uniform distribution
of nodes in the views constructed by RaWMS. This complies with the general result of
our analysis in Theorem 3.4. It also matches intuition, since the denser a network is, the
closer it is to a clique, and hence its mixing time should be shorter. In mobile networks
the same phenomenon can be seen. However, quantitatively, uniformity is achieved with
much shorter mixing times.
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6.2.3 RaWMS in fast and medium speed mobile networks. This section studies the per-
formance of RaWMS in fast and medium moving mobile networks. In these simulations,
we employed the Random Waypoint model with movement speeds ranging in 2-5 m/s,
which corresponds to running, and with speeds ranging in 5-10 m/s, which corresponds to
urban traffic or VANET networks. The average pause time was set to 30s.

According to the path length distribution test, we can see in Figures 11(a) and 11(b)
that when the speed of movement is medium or fast, uniform path length distribution is
achieved with relatively short RWs. Even a RW of a couple of steps (walk length of n/64)
achieves a very good score. This is clearly due to the high rate of change in the network.

The average view size is very close to the theoretically expected view size and was there-
fore not depicted. The variance in the view sizes is depicted in Figures 11(c) and 11(d).
We can see the same behavior as in Figure 6(d) for slow moving networks. The variance
becomes larger for longer RWs than for shorter ones, due to the fact that moving nodes
have a lower chance of getting any RW message. Recall that this is because the neighbors
discovery protocol is not fast enough to notice their short presence. Hence, fast moving
nodes have smaller views than slower (and static) nodes. However, this phenomenon is
reduced in fast and medium moving networks compared to slow moving networks. In fast
networks, the dynamics is so high and sporadic that almost all nodes are equally likely
to be both fast and slow during the simulation time. Since those differences are averaged
along the whole simulation period, the view size variance is reduced.

The intersection between the views of neighboring nodes is depicted in Figures 11(e)
and 11(f) and resembles the same behavior as in Figure 4(b). The intersection is close to
the optimal of one (of size 1) for short RWs and is even smaller for long RWs. This is again
a result of the difference between fast and slow moving nodes. However, faster mobility
does not assist in this case as with view size variance. This is due to the fact that we
measure the intersection between views at the end of the simulation period, at which point
the differences between fast and slow nodes are significant. Therefore, when it comes to
view intersection, the effect of heterogeneity between fast and slow nodes is not averaged
along the whole simulation period.

A general observation from all the simulations we have conducted for fast and medium
speed networks is that generally speaking, mobility greatly assists in uniform membership
dissemination. Yet, long RWs tend to have negative influence on the uniformity of some
distribution properties (increased view size variance and decreased intersections). The
conclusion is that the length of RWs should be set inversely proportional to the mobility
level.

Another interesting phenomenon that was observed during simulations of fast moving
networks with long RWs is as follows: since the neighborhood discovery protocol is not
fast enough to detect frequent neighborhood changes, often an attempt is made to pass a
RW to a neighbor that is no longer present in the sender’s proximity. Consequently, the
MAC protocol makes several attempts to send the message and gives up only after all
attempts have failed (recall that due to the salvation technique of RaWMS, such a RW will
not be lost and an attempt will be made to pass it to another neighbor). In the meanwhile,
additional messages arrive and wait at the IP level queue to be passed to the MAC protocol,
which is still busy with the previous message. This results in congestion and reduced
bandwidth.

Consequently, we believe that in fast networks, a somewhat different approach for RW
ACM Journal Name, Vol. V, No. N, February 202008.
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(a) Path length distribution - 2-5 m/s Mobile network
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(b) Path length distribution - 5-10 m/s Mobile network
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(d) View size distribution - ratio of the variances
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(e) Intersection between views of neighboring nodes -
2-5 m/s Mobile network
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Fig. 11. Fast and medium speed mobile networks: Path length distribution, View size
distribution and Intersection between views of neighboring nodes
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(a) Path length distribution - Heterogeneous Mobile
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(b) Clustering coefficient - Heterogeneous Mobile net-
work
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(c) View size distribution - ratio of the variances
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Fig. 12. Mobile networks with heterogeneous speeds: Path length distribution, Clustering
coefficient, View size distribution, and Intersection between views of neighboring nodes

implementation is worth investigating. Instead of picking a next node based on neighbor-
hood information that is likely to be obsolete, a node v that wishes to pass a RW message
will broadcast this message to all its neighbors. Every node u that receives this message
will choose with probability 1

number of neighbors to accept this RW message (and will ig-
nore it otherwise). On average, a single node will accept this RW and pass it on to the
next node. However, there is a non-negligible probability that no node will rebroadcast
this message, i.e., the RW will be discarded, or more than one node will rebroadcast it, i.e.,
the RW will be duplicated. One possible solution is to allow RWs to be duplicated and
discarded and compensate for that at the membership service level. Another option is to
use a higher rebroadcasting probability, yet if a node u decided to accept the RW, then u
will first ask for permission from the sender v. Node v will grant the RW to the first node
asking for it. Further exploration of the above techniques in mobile networks is left for
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future research.8

6.2.4 RaWMS in mobile networks with heterogeneous speeds. This section studies the
performance of RaWMS in mobile networks with very heterogeneous speeds. In this sim-
ulations we employed the Random Waypoint model, when half of the nodes moved at the
speed picked in the range of 0.5-2 m/s (slow nodes) and another half moved at the speed
picked in the range of 5-10 m/s (fast nodes). The average pause time was set to 30s. We
can see that the views are random according to the path length distribution test and clus-
tering coefficient, for mixing times of n/16 and longer. However, both view size variance
and the intersection between views of neighboring nodes show the same tendency that was
seen in mobile networks before (Figures 4, 6 and 11). There is a growing difference be-
tween slow and fast nodes, which happens due to the fact that long RWs tend to stop at
static and slow nodes rather than at fast nodes. As a result slow nodes have larger views
and smaller intersection with the views of their fast moving neighbors. To deal with this a
more aggressive and frequent neighborhood discovery protocol should be used.

6.2.5 Mixing time - the conclusion. As we have shown in various tests, Tmix is well
approximated by n/2 for static networks and by n/8 for dynamic networks. Moreover,
for fast moving networks, Tmix can be set as low as n/32. However, measuring the level
of mobility at runtime is an open challenge. We will therefore use an upper bound of
Tmix = n/8 for all mobile networks. According to Theorem 3.4, Tactual mix ≤ Tmix

dmax
D .

In our simulations, D was set large enough to bound dmax and the measured Tactual mix

was about Tmix/2. Therefore, Tactual mix is about n/4 for static networks and n/16 for
dynamic networks.

6.3 Comparison with lpbcast

lpbcast. In our measurements, we have separated the routing communication overhead
from the application communication overhead. This highlights why lpbcast is considered
a very good protocol for peer-to-peer networks, but does not do so well in ad hoc net-
works. lpbcast was tested with a varying number of rounds: log n, 2 log n, 4 log n, 8 log n,
16 log n. The fanout was set to 3 for all simulations and the view size limit was set to

√
n,

to establish the same conditions as with RaWMS. As can be seen in Figure 13(a), in static
networks, when the number of gossip rounds is 2 log(n) or less, the resulting view is not
uniform according to the path length distribution test. As for a view size of lpbcast, since it
was limited to

√
n and since nodes gossip their entire view, in almost all cases the view was

full. Here too, as can be seen in Figure 13(b), the uniformity of the views is dramatically
improved when nodes are mobile.

RaWMS versus lpbcast - communication overhead. Figure 14 depicts the number
of messages sent by a single node during the entire simulation period, in both RaWMS
and lpbcast. We have separated the number of application messages (messages directly
generated by RaWMS and lpbcast) from the total number of network messages, which
include the cost of routing and the neighbor discovery protocol messages. We have chosen
to present RaWMS with a walk length of n/2 and lpbcast with 4 log n rounds, as these give
optimal results, respectively. That is, these are the most efficient versions of both protocols,
which still guarantee a fairly uniform distribution of views at the lowest possible cost.

8The ideas presented in this paragraph were proposed to us by Chen Avin.
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Fig. 13. lpbcast - path length distribution test (PathScore versus n)
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Fig. 14. RaWMS versus lpbcast - comparing the number of messages

We can see that the results generally follow our theoretical discussion in Section 5.4. In
RaWMS, each node starts roughly

√
n + 2 RWs, each walk sending Tactual mix messages.

Tactual mix is about n/4 as previously explained. Thus, every node sends a total number
of n

√
n

4 messages. In lpbcast, every node starts 4 log n rounds with fanout 3 and each

message traverses the network over an average path of
√

n
log n . Therefore, each node sends

12
√

n log n messages in total.
As is evident from Figure 14(a), lpbcast generates fewer application messages than

RaWMS, as expected by our previous analysis. Yet, recall that in lpbcast each message
contains the whole view, while in RaWMS messages carry only a single node identifier.
Therefore, the total bit communication overhead of lpbcast is 12n

√
log n. In addition, lp-

bcast has a significant message overhead due to routing. When adding the cost of routing,
RaWMS becomes considerably more efficient than lpbcast.

Figure 14(b) illustrates the communication costs of RaWMS with a walk length of n/8
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and lpbcast with 2 log n rounds in mobile scenarios. Again, those parameters guarantee
a uniform distribution of views at the lowest possible cost. Here, the cost of RaWMS
is significantly lower than lpbcast. This is due to a decreased walk length, yet without
compromising the uniformness of the views. In this scenario, each node sends about n

√
n

16
messages. lpbcast sends approximately the same number of application messages as in
the static case. However, with mobility, the cost of routing becomes considerable, which
accounts for the dramatic affect on the overall performance of lpbcast in terms of network
messages.

6.4 Comparison with Shuffling

Shuffling. We have measured the influence of a batch size, denoted by B, and the number
of rounds on the uniformness of the views and the performance of Shuffling. Shuffling was
tested with a varying number of rounds: n

√
n

B , n
√

n
2B , n

√
n

4B , n
√

n
8B , corresponding to different

values for the actual mixing time and for different values of B : 1, 2, 4, 8. The view size
limit was set to

√
n.

As can be seen from Figures 15, in static networks, when the number of gossip rounds
is n

√
n

4B or more, the resulting view is uniform according to the path length distribution
test, for all values of B (due to the space considerations, we have chosen to present the
results only for B = 1 and B = 8, but the same results were measured also for B = 2
and B = 4). According to our theoretical analysis, the number of rounds in Shuffling is√

n
B · Tactual mix. Indeed, as we have shown previously, Tactual mix is well approximated

by n/4. Thus, the number of n
√

n
4B rounds, which results in a good uniformity according to

the path length distribution test, confirms our theoretical analysis.
However, the value of a batch size has a direct impact on the size of the intersection

between views of neighboring nodes. As can be seen from Figure 15(e) and Figure 15(f),
which depict the average intersection size between views for n

√
n

4B rounds as a function of
B, the larger the value of B is, the bigger the intersection is. This can be explained by a
certain amount of duplication that occurs when neighboring nodes shuffle their identifiers.
We can therefore see the importance of conducting multiple statistical tests in order to
compare the results with the ideal uniform sample: according to the path length distribution
test, the views are uniform, but the intersection test clearly shows the opposite. The view
size of Shuffling at the end of the convergence period was full in all cases.

In mobile networks, good uniformity is reached after n
√

n
8B rounds, irrespectively of the

batch size as well. Increasing a batch size has the same effect on the views intersection
size in mobile networks as in static networks, however to a lesser extent.

RaWMS versus Shuffling - communication overhead. Figure 16 depicts the number of
application messages sent by a single node during the entire simulation period for different
values of B. In Shuffling, as in RaWMS, the cost of routing and the neighbor discovery
protocol messages is constant and is therefore not depicted.

In static networks RaWMS is presented with a walk length of n/2 and Shuffling with
n
√

n
4B rounds, as these are the most efficient versions of both protocols, which still guarantee

a fairly uniform distribution of views at the lowest possible cost. In RaWMS, each node
sends a total number of n

√
n

4 messages (as explained in Section 6.3). In Shuffling, each
node sends a total number of 2n

√
n

4B messages, since in each round every node starts one
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(c) Path length distribution, Static network - batch
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Fig. 15. Shuffling - path length distribution test (PathScore versus n) and intersection
between views of neighboring nodes
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Fig. 16. RaWMS versus Shuffling - comparing the number of messages

shuffle with one of its neighbors, and therefore every shuffle results in an exchange of two
messages of size B. For B = 2, the overhead of Shuffling matches that of RaWMS.

In mobile networks RaWMS is presented with a walk length of n/8 and Shuffling with
n
√

n
8B rounds. In RaWMS, each node sends a total number of n

√
n

16 messages, while in
Shuffling, each node sends a total number of 2n

√
n

8B messages. For B = 4 the overhead of
Shuffling matches that of RaWMS.

Figures 15(e) and 16 depict the tradeoff in the Shuffling algorithm: on the one hand the
number of messages is reduced as the batch size B increases. On the one hand, larger B
results in an increased correlation between neighboring nodes, damaging the uniformity
of the views. In addition, increasing the batch size results in the increased message size.
Therefore, the total bit communication complexity of Shuffling does not depend on B

and equals n
√

n
2 in static network ( n

√
n

4 in mobile network), while the bit communication
complexity of RaWMS is n

√
n

4 in static network (n
√

n
16 in mobile network).

In summary, Shuffling introduces the possibility of batching a number of RW messages
together, thus reducing the total number of messages (but not the total communication
bandwidth, which remains constant w.r.t. B). Shuffling with small values of B behaves
very similarly to RaWMS, but is much harder to analyze in a formal manner. Therefore,
in systems in which the added confidence provided by a formally understood model is
an issue, e.g., for legal reasons, RaWMS has an advantage over Shuffling. As for other
practical purposes, increasing the size of B reduces the message complexity compared to
RaWMS, but results in views that have worse uniformity properties. In other words, a net-
work designer can choose between lower network complexity and better view uniformity:
whenever message complexity is more important, Shuffling with a large value of B is a
better choice. If view uniformity is more important, then both RaWMS and Shuffling with
small values of B can be used. Another minor advantage of RaWMS is that its code is
slightly simpler than Shuffling, and nodes are free to pick their view sizes independently.

7. RELATED WORK

Random walks. Comprehensive surveys of random walk techniques and their analysis
appear in [Lovász 1993] and [Guruswami 2000]. The idea of using a “maximum-degree”
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RW to reach a uniform limit distribution on the state space has been used before in a
number of contexts [Bar-Yossef et al. 2000; Boyd et al. 2005].

Lv et al. [2002] propose to use simulated RWs for searching in unstructured peer-to-
peer networks. They report that such a search is preferable to searching by flooding, due to
RWs’ adaptiveness to termination conditions and a fine-grain control of the search space.
This work reported attractive empirical results, but does not provide any analytical evalua-
tion of the RW properties.

Gkantsidis et al. [2004] explore the performance of RWs for searching and sampling in
peer-to-peer networks and show that it is possible to simulate a uniform sample of elements
from the network by performing a RW with an adequate length. We use a similar sampling
technique, but on a completely different communication graph. Peer-to-peer networks
graphs are usually assumed to be expanders. On the other hand, ad hoc network graphs are
random geometric graphs [Penrose 2003], which are not expanders.

A recent work, which was done concurrently and independently to ours, proposed two
RW based methods for peer counting and sampling in peer-to-peer networks: Random
Tour and Sample and Collide [Massoulie et al. 2006]. The latter method is based on the
“birthday paradox” in a manner very similar to ours (Section 4.4). There are a number
of significant differences between our work and [Massoulie et al. 2006]. First, the meth-
ods in [Massoulie et al. 2006] use a continuous time RW to produce the samples, while
RaWMS uses a Maximum Degree discrete RW with self-loops. Our work establishes the
exact value of the mixing time for random geometric graphs, while [Massoulie et al. 2006]
does not calculate the mixing time of the underlying graph and relies on the known ex-
pansion properties of random overlay graphs. Our work uses reverse sampling to reduce
the communication overhead and constructs a membership service, while [Massoulie et al.
2006] uses its sampling methods only for counting. Additionally, [Massoulie et al. 2006]
targets peer-to-peer networks, while RaWMS is meant for wireless ad hoc networks, which
have different properties.

Various properties of RWs on random geometric graphs, including the mixing time and
the partial cover time, have been investigated by [Boyd et al. 2005] and [Avin and Ercal
2005]. We rely on these results in our work.

Dolev et al. [2002] propose a randomized self-stabilizing group membership service for
ad hoc networks. The group membership list is collected by a single random walk agent
traversing the network. However, [Dolev et al. 2002] only constructs a full membership
while RaWMS can be used to construct partial membership views. Moreover, they apply
a single RW that covers the whole network and runs for a period of time that is equal to
the cover time. We use multiple RWs simultaneously each running for a period that is
equal to the mixing time. Thus, the time and communication complexities of the algorithm
in [Dolev et al. 2002] are O(n3), while in RaWMS each RW runs for only O(n). The
communication complexity of RaWMS depends on the desired view size. For example,
to construct a view of size O(

√
n) at every node, RaWMS sends a total of O(n2

√
n)

messages. A full membership can be constructed with RaWMS by an additional short
RW that collects partial random views from different nodes. The total communication
complexity in this case is O(n2

√
n).

In [Servetto and Barrenechea 2002] RWs are used for routing in large-scale sensor net-
works. They assume a static network and only consider a grid topology. On the other hand,
we also support mobility, and do not restrict the topology except for being connected.
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Gossiping. Gossiping is another well-known scheme to establish a random sample. Re-
cently, gossip-based dissemination of membership information was proposed in order to
design scalable implementations of a peer sampling service. In particular, a general gossip-
based peer sampling service was introduced in [Jelasity et al. 2007]. Examples of gossip-
based lightweight membership services complying to this general framework are reported
in [Allavena et al. 2005; Eugster et al. 2003; Ganesh et al. 2001; Jelasity and Babaoglu
2005; Voulgaris et al. 2005] and are discussed in more details in Section 5.

SCAMP [Ganesh et al. 2001] introduced a generic random membership service that is
used for probabilistic reliable dissemination of data and events in peer-to-peer networks.
The appealing property of SCAMP is that the partial view obtained by a node adapts au-
tomatically to the system’s size, without any a priori knowledge of the total network size.
However, [Ganesh et al. 2001] only proves that the mean value of the sum of all views of
all nodes is Θ(n log n) and that the actual sum of all view sizes is not far from the mean.
No proof is provided about the view size of a single node, which may be far from the mean
by orders of magnitude. In our work, we do bound the minimal and maximal view sizes of
all nodes.

A gossip-based membership service for sensor and mobile ad hoc networks based on the
Shuffling technique is described in [Gavidia et al. 2005] and discussed in section 5. The
CYCLON [Voulgaris et al. 2005] protocol is an adaptation of Shuffling for membership
construction in peer-to-peer networks. In [Voulgaris et al. 2005] the resemblance between
the knowledge graph constructed by CYCLON and random graphs is shown by simula-
tions. However, no formal analysis is presented. We believe that based on our observations
in Section 5.2, a more through analysis of the CYCLON protocol is now possible.

RDG [Luo et al. 2003] is an adaptation of [Eugster et al. 2003] to ad hoc networks. It
reduces the cost of routing compared to [Eugster et al. 2003] by utilizing routes created
by other applications running in the same wireless node or by using proactive periodical
flooding in order to establish those routes. Although RDG relies only on partial views
for correct implementation of probabilistic multicast, in practice the views constructed
by RDG are not necessarily partial and may even be almost full views. In addition, those
views are not constructed by gossiping, but by the same flooding that establishes the routes.
Gossiping is only used in RDG for data dissemination and for removal of nodes that left the
network from the views. The usage of flooding results in a linear memory consumption, so
there is no point in using it for constructing partial views.

Haas et al. [2002] have investigated various approaches for disseminating data using
several gossip functions in ad hoc networks [Haas et al. 2002]. They investigate the impact
of gossip on the message delivery ratio of broadcast messages. The anonymous gossip
work has explored the use of gossip with direct neighbors in an ad hoc network to increase
the reliability of broadcast and multicast protocols [Chandra et al. 2001]. Both these works,
however, do not address membership maintenance.

Symphony [Manku et al. 2003] is a scalable and failure resilient protocol for maintaining
distributed hash tables based on Kleinberg’s Small World construction [Kleinberg 2000].
The distribution of nodes in the routing tables of Symphony (Symphony’s membership) is
comprised of local neighbors in the virtual ring structure, as well as of a constant number of
long distance neighbors picked accordingly to a distribution which is inversely proportional
to their distance on the ring. Such a choice of long distance neighbors guarantees, w.h.p.,
fast logarithmic DHT lookup.
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8. DISCUSSION AND CONCLUSIONS

In this paper we have presented RaWMS, a random walk based lightweight membership
service for ad hoc networks. We have presented a formal analysis of RaWMS, backed by
simulations and have also compared RaWMS with gossip-based approaches for building
such membership services. Overall, the results of the simulations confirm the formal anal-
ysis. They show that RWs present an attractive paradigm for implementing partial view
based membership services in ad hoc networks. This is due to the fact that RWs do not
require multi-hop routing and avoid flooding altogether. Moreover, when the network is
mobile, RWs reach their target uniformity even faster than in static networks. In these
cases, the mobility helps to disseminate messages to random places in the network.

We would like to highlight the fact that RaWMS is a fully decentralized algorithm. The
only parameter that needs to be set for the correct behavior of RaWMS is the mixing
time. No other assumptions or explicit prior knowledge about the structure of the network
graph is being used in RaWMS. Specifically, no assumptions are made about the degree
distribution of the graph – the stationary distribution of the RW remains uniform for any
degree distribution due to the regularization of the graph with self loops. In particular, the
maximal degree dmax need not be known, since an upper bound D on dmax can be chosen
arbitrary large. Moreover, the network size can be estimated on the fly.

However, the calculation of the mixing time is based on an assumption that the network
graph is a static connected unit disk graph. If the graph is not a connected unit disk graph,
but is rather some sparser graph, e.g., a grid or a line, then the mixing time established in
this work may be not sufficient to reach the uniform distribution. In such cases, RaWMS
should be parameterized with a different mixing time. From a practical point of view, if
the structure of the network graph cannot be estimated, the mixing time can be always
overestimated without hurting the uniformity of the samples, but rather by increasing the
communication complexity.

A surprising empirical result of our study is that in mobile networks short RWs obtain
better results than long ones. In other words, the mixing time of mobile ad-hoc networks
graphs is shorter than for static unit-disk graphs. The conclusion is that nodes should
consider the degree of mobility in the network when determining the length of the RWs
that they start. The faster nodes move, the shorter the RWs need to be. Recognizing the
level of mobility can be implemented, e.g., by analyzing the frequency of neighborhood
changes in each node’s proximity. Studying this phenomenon in a formal manner and
deriving a specific protocol from it is left for future work.

Power consumption and battery life are two important aspects of any mobile system in
which nodes are battery operated. Power is governed by a fixed consumption per second
plus a component that is directly affected by the number of messages sent and received.
The cost of sending and receiving messages is almost the same in most WiFi wireless cards
and even idle power consumption is of the same magnitude (325 mA for send, 215 mA for
receive/idle and 25 mA for Power Save Mode [Ferro and Potorti 2005]). Hence, the energy
requirements of RaWMS is directly proportional to the number of messages it generates,
which we studied in Section 6.3. However, since RaWMS only uses unicast messages, it
gives opportunity to 802.11 like networks to save energy by switching from idle to Power
Save Mode [IEEE-802.11-Standard ]. As for battery life, one can distinguish between two
cases based on the level of heterogeneity (in terms of batteries and power specifications) of
the network. If the network is homogeneous, then RWs are a very good mechanism, since
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they inherently spread the load evenly between all nodes. On the other hand, if the network
is very heterogeneous, then the above load balancing of RaWMS becomes a drawback,
since in such cases we would rather utilize nodes that have more energy than others. It
is actually possible to use our Maximum Degree RW method to bias the random walks in
order to utilize the more powerful nodes, thereby extending the network’s life. This can
be done by adding more self-loops to powerful nodes and less self-loops to power-poor
nodes. In such case the membership samples will not be uniformly random, but rather
proportional to the power level of the nodes. Further investigating this direction is left for
future work.

Our work leaves several additional open problems. These include, e.g., a more detailed
investigation of the relation between random walks and gossip. In particular, combining
random walks with occasional gossiping to far away nodes.

Finally, we believe that our analysis of RW’s complexity for ad hoc networks can serve
as a starting points for many additional RW-based algorithms in ad hoc networks.
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APPENDIX

A. RANDOM GEOMETRIC GRAPHS

We provide below a formal definition of the Random Geometric Graph G2(n, r). To this
end, we need to introduce some basic facts about the geometry on the surface of a torus.

Geometry on the surface of a torus. A 2-dimensional unit torus is the set of points
in the unit square [0, 1] × [0, 1] endowed with a special measure of distance, called the
geodesic distance. It is convenient to visualize a torus as taking the flat unit square, and
then “gluing” together the two vertical edges and the two horizontal edges. What we get
is a surface of 3-dimensional object, whose shape resembles a holed donut. The important
point to notice is that because of the gluing points near the left vertical edge are close to
points near the right vertical edge, and similarly points near the top horizontal edge are
close to points near the bottom horizontal edge.

Every point u on the surface of a torus has two coordinates: ux ∈ [0, 1] and uy ∈ [0, 1].
Every two points u, v on a torus have two straight lines connecting them (going in opposite
directions). The geodesic distance between u and v is the length of the shorter of these
two lines. To formally define the geodesic distance we introduce the following notion of
“circle distance” between real numbers.

Every real number a ∈ R can be embedded into a circle whose circumference is 1 as
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follows:

a mod 1 =
{

a− bac if a ≥ 0
1− (|a| mod 1) if a < 0

For two numbers a, b ∈ [0, 1], we define the circle distance between a and b as:

cd(a, b) = min{(a− b) mod 1, (b− a) mod 1}.
For example, if a = 7/8 and b = 1/8, then (a− b) mod 1 = 6/8, while (b− a) mod 1 =
2/8, and hence cd(a, b) = 2/8. Note that the circle distance between any two numbers is
always at most 1/2.

Given two points u, v on the surface of a unit torus, we define the geodesic distance
between u and v as follows:

gd(u, v) =
√

cd(ux, vx)2 + cd(uy, vy)2.

Random geometric graphs. Let n be a positive integer and let r ≥ 0 be a real number.
The random geometric graph G2(n, r) is generated as follows. The graph has n vertices
associated with n uniformly chosen points on the surface of a 2-dimensional torus. Two
vertices u, v are connected by an edge if and only if gd(u, v) ≤ r.

B. CHERNOFF BOUNDS

We state below the exact version of the Chernoff bounds [Chernoff 1952] we use in this
paper. A proof can be found, e.g., in [Motwani and Raghavan 1995].

THEOREM B.1 CHERNOFF BOUNDS. Let X1, X2, . . . , Xn be independent and identi-
cally distributed Bernoulli random variables with probability of success p. (That is, for all
1 ≤ i ≤ n, Xi is a 0-1 random variable and Pr[Xi = 1] = p.) Let X =

∑n
i=1 Xi and let

µ = E(X) = np. Then, for any 0 < δ < 1,

Pr(X > (1 + δ)µ) < e−µδ2/3 [Upper tail],

and

Pr(X < (1− δ)µ) < e−µδ2/2 [Lower tail].

Note that by combining the upper and lower tail bounds we obtain:

Pr(|X − µ| > δµ) < 2e−µδ2/3.

C. REVERSE RW-BASED UNIFORM SAMPLING - PROOF OF LEMMA 3.5

Lemma 3.5 (restated) Suppose every node v in a network chooses (via a random walk) a
random node Xv . For every u, let Zu be the set of nodes that selected u (the RWs started
by them have stopped at u): Zu = {v | Xv = u}. Then, given that the size of Zu is k, Zu

is a random subset of the vertex set of size k.

PROOF. For simplicity of analysis, we assume in the proof that each RW produces a
truly-uniform node and not a nearly-uniform node. The extension to deal with nearly-
uniform samples is rather straightforward.

To prove the lemma, we need to show that ∀u ∈ V , ∀1 ≤ k ≤ n, and for set S of k
distinct nodes, Pr(Zu = S | |Zu| = k) = 1/

(
n
k

)
.

ACM Journal Name, Vol. V, No. N, February 202008.



48 · Ziv Bar-Yossef et al.

Fix any u, any k ∈ {1, . . . , n}, and any set S = {v1, . . . , vk} of k nodes. By Bayes
rule,

Pr(Zu = S | |Zu| = k) =

= Pr(|Zu| = k | Zu = S) · Pr(Zu = S)
Pr(|Zu| = k)

(1)

We next analyze each of the three terms on the RHS of Equation 1. For the first term,
we have Pr(|Zu| = k | Zu = S) = 1. Regarding Pr(Zu = S), note that Zu = S =
{v1, . . . , vk} iff Xv1 = u,Xv2 = u, . . . , Xvk

= u, and for every v /∈ S, Xv 6= u.
The events {Xv = u}v∈V are independent of each other (because the random walks are
independent). Furthermore, for every v, Pr(Xv = u) = 1

n . Therefore, Pr(Zu = S) =
( 1

n )k · (1− 1
n )n−k.

Regarding Pr(|Zu| = k), |Zu| has a binomial distribution with n trials and a probability
of success 1

n . Therefore, Pr(|Zu| = k) =
(
n
k

) · ( 1
n )k · (1− 1

n )n−k. Substituting the three
terms into Equation 1, we have the desired result.

D. PROOF OF LEMMA 4.1

Lemma 4.1 (restated) Let 1 ≤ s = s(n) ≤ n and let r = r(n) be the random variable
specifying the number of balls needed to be randomly placed in n bins until s of the bins
are non-empty. Then,

E(r) = n(Hn −Hn−s) ≤
{

n ln n
n−s , s < n,

n ln n + O(1), s = n.

where Hk =
∑k

i=1
1
i is the k-th harmonic number (and define H0 = 0).

PROOF. We view the balls as being placed in the bins sequentially, one by one. The
first ball is inserted into an empty bin. The second ball is placed into an empty bin with
probability n−1

n and into a non empty bin with probability 1
n . Using the independence

assumption, the expected number of balls required to have a second non empty bin is a
geometric random variable with parameter p = n−1

n and mean 1
p = n

n−1 . The additional
number of balls required to get the third non empty bin is a geometric random variable with
parameter p = n−2

n and mean 1
p = n

n−2 . This process goes on until s bins have at least
one ball. r is the number of balls used in this process and is therefore a sum of geometric
random variables. By linearity of expectation, we have:

E(r) = 1 +
n

n− 1
+

n

n− 2
+ · · ·+ n

n− s + 1

= n(
1
n

+
1

n− 1
+

1
n− 2

+ · · ·+ 1
n− s + 1

)

= n(Hn −Hn−s).

In order to bound the difference Hn −Hn−s, we use the following well-known bounds
on the harmonic number (see, e.g., [Sondow and Weisstein ]):

ln n + γ +
1

2(n + 1)
≤ Hn ≤ ln n + γ +

1
2n

,
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where γ is a constant. The case s = n immediately follows from the above bound on Hn.
For s < n,

n(Hn −Hn−s) ≤ n

(
ln n +

1
2n

− ln(n− s)− 1
2(n− s + 1)

)

≤ n(ln n− ln(n− s)) = n ln
n

n− s
.

E. MIXING TIME BOUND FOR THE MD RANDOM WALK

In this section we prove the upper bound on the actual mixing time of the Maximum Degree
random walk on a random geometric graph G2(n, r) (Theorem 3.4). Our proof is based on
Sinclair’s bound [Sinclair 1992] on the spectral gap of a random walk.

E.1 Sinclair’s bound

In this section we overview Sinclair’s bound [Sinclair 1992] on the spectral gap of a
Markov chain. Sinclair’s result holds for general reversible Markov chains. Yet, in or-
der to avoid cumbersome notation, we restrict to random walks on regular graphs, which
is the case of interest to us.

Let G = (V, E) be a connected non-bipartite D-regular graph on n nodes. G possibly
has weighted self loops but does not have parallel edges. The probability transition matrix
P corresponding to a random walk on G is an n× n stochastic matrix defined as follows.
For every u 6= v, Puv = 1

D if u and v are connected by and edge and Puv = 0, if they are
not. The diagonal entries are Puu = 1−∑

u′ 6=u Puu′ .
Since P is a symmetric matrix, the stationary distribution of this random walk is the

uniform distribution. The principal eigenvalue of P is 1. Let λmax denote its second
largest eigenvalue in absolute value. Sinclair showed a bound on the spectral gap 1−λmax

using the notion of canonical paths.
A family of canonical paths is a collection of paths γ = {γuv}u 6=v∈V , one for each pair

of distinct node u, v in G. Sinclair defines two parameters of such a family: the maximum
path length and the maximum edge load. The maximum path length of a family of canonical
paths γ is defined as:

`(γ) = max
γuv∈γ

|γuv|.

For an edge e ∈ E, we denote by ρ(γ, e) the number of paths in γ that pass through e:

ρ(γ, e) = |{γuv ∈ γ | γuv 3 e}|.
The maximum edge load of γ, denoted ρ(γ), is defined as:

ρ(γ) = max
e∈E

ρ(γ, e).

Sinclair’s bound is then the following:

THEOREM E.1 SINCLAIR. For any D-regular graph G and for any family of canonical
paths γ on G,

1− λmax ≥ n

D · `(γ) · ρ(γ)
.
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To derive bounds on the mixing time of the Maximum Degree random walk on G2(n, r),
we need to resort to a stronger version of Sinclair’s bound. (Our extension of Sinclair’s
bound is identical to the extension done by Boyd et al. [2005] to the bound of Diaconis and
Stroock [1991].) Let Γ be the collection of all possible families of canonical paths. Let p
be a probability distribution over Γ. Let SUPP(p) be the set of canonical path families that
have non-zero probability under p. The maximum path length of p is defined as:

`(p) = max
γ∈SUPP(p)

`(γ).

The maximum expected load of p is defined as:

ρ(p) = max
e∈E

∑

γ∈Γ

p(γ) · ρ(γ, e).

We prove the following:

THEOREM E.2. For any D-regular graph G and for any distribution p over Γ,

1− λmax ≥ n

D · `(p) · ρ(p)
.

PROOF. We use the variational characterization of the second eigenvalue (cf. [Horn and
Johnson 1985]):

1− λmax =
n

D
· inf

ψ

∑
e∈E(ψ(e+)− ψ(e−))2∑
u,v∈V (ψ(u)− ψ(v))2

, (2)

where the infimum is over all non-constant functions ψ : V → R, and e+ and e− denote
the two vertices comprising an edge e. Consider any term (u, v) in the denominator. Using
any γ ∈ Γ, we can rewrite this term as the following telescopic sum:

(ψ(u)− ψ(v))2 =

( ∑
e∈γuv

(ψ(e+)− ψ(e−))

)2

.

Since this holds for all γ, then we can also write:

(ψ(u)− ψ(v))2 =


∑

γ∈Γ

p(γ) ·
∑

e∈γuv

(ψ(e+)− ψ(e−))




2

.

Applying the Cauchy-Schwarz inequality, we have:

(ψ(u)− ψ(v))2 ≤

∑

γ∈Γ

∑
e∈γuv

p(γ)


 ·


∑

γ∈Γ

∑
e∈γuv

p(γ) · (ψ(e+)− ψ(e−))2


 .

We first bound the left factor:
∑

γ∈Γ

∑
e∈γuv

p(γ) =
∑

γ∈SUPP(p)

p(γ) · |γuv| ≤ `(p).

Substituting the above back in the denominator of the expression appearing in Equation 2,
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we have:
∑

u,v∈V

(ψ(u)− ψ(v))2 ≤ `(p) ·
∑

u,v∈V

∑

γ∈Γ

∑
e∈γuv

p(γ) · (ψ(e+)− ψ(e−))2

= `(p) ·
∑

e∈E

(ψ(e+)− ψ(e−))2 ·
∑

γ∈Γ

p(γ) ·
∑

γuv3e

1

= `(p) ·
∑

e∈E

(ψ(e+)− ψ(e−))2 ·
∑

γ∈Γ

p(γ) · ρ(γ, e)

≤ `(p) · ρ(p) ·
∑

e∈E

(ψ(e+)− ψ(e−))2.

Substitution in Equation 2 completes the proof.

E.2 Mixing time bound for G2(n, r)

In this section we show that the Maximum Degree random walk on the random geometric
graph G2(n, r) has a mixing time of about n with high probability. The proof basically
repeats the argument made by [Boyd et al. 2005]. We need to repeat the analysis, in order
to figure out the best constants. Moreover, we provide details that are missing in the current
version of [Boyd et al. 2005].

Theorem 3.4 (restated) Suppose r ≤ 1/2 and n ≥ 10. Let G2(n, r) be a random
geometric graph chosen with n nodes and radius r. Let D be any value that upper bounds
the maximum degree of G2(n, r). Let Tmix(ε) be the mixing time of the MD random walk
on this graph, when applied with the value D. Let Tactual mix(ε) be the actual mixing time

of this random walk (i.e., excluding self loop steps). For any C > 49, if r =
√

C ln n
n , then

with probability at least 2/3 (over the choice of the graph),

Tmix(ε) ≤ 30
(1− 7√

C
)2
· D

n
· 1
r4
· (lnn + ln ε−1).

Tactual mix(ε) ≤ 120
(1− 7√

C
)2
· 1
r2
· (lnn + ln ε−1).

We prove the theorem by bounding the spectral gap of the Maximum Degree random
walk using Theorem E.2. In order to define a distribution over canonical paths on G2(n, r),
we introduce the notion of a square grid on the unit torus.

Square grid. Let t = d
√

8
r e. We divide the unit square [0, 1]2 into t2 squares, each one

of side length 1/t. Each square is surrounded by eight neighboring squares. Consider any
two nodes u, v ∈ G2(n, r) belonging to neighboring squares. Since the square side length
is at most r/

√
8, then cd(ux, vx) ≤ 2r/

√
8 = r/

√
2 and similarly cd(uy, vy) ≤ 2r/

√
8 =

r/
√

2. It follows that gd(u, v) ≤ r, implying u and v are neighbors in the graph G2(n, r).
We next prove that with high probability each square in the grid contains about n/t2 nodes:

PROPOSITION E.3. Fix any 0 < αs < 1. Let

δs =

√
3t2

n
· ln 2t2

αs
.
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With probability at least 1−αs (over the choice of the random graph), every square in the
square grid contains between (n/t2) · (1− δs) and (n/t2) · (1 + δs) nodes of G2(n, r).

PROOF. Fix any square C in the square grid. For each i = 1, . . . , n, let Xi be the 0-1
random variable indicating whether the i-th node of G2(n, r) lands in C or not. Clearly,
E(Xi) = Pr(Xi = 1) = 1/t2.

Let X =
∑n

i=1 Xi be the total number of nodes of G2(n, r) that fall into C. By linearity
of expectation, E(X) = n/t2. By Chernoff bounds,

Pr(|X − E(X)| > δsE(X)) ≤ 2 · exp(−δ2
sE(X)

3
).

Then,

Pr(|X − n

t2
| > δs · n

t2
) ≤ 2 · exp(−δ2

sn

3t2
) =

αs

t2
.

The total number of squares is t2. Hence, by the union bound, the probability there is a
square that contains less than n

t2 · (1− δs) nodes or more than n
t2 · (1+ δs) nodes is at most

αs.

Square paths. Fix any realization G of the random graph G2(n, r) that has at least one
node in each of the squares of the square grid (by Proposition E.3 the vast majority of the
realizations of G2(n, r) have this property). Let u 6= v be any two distinct nodes in this
graph. We next define a family of paths between u and v, which we call square paths. Let
Cu be the square to which u belongs and let Cv be the square to which v belongs (possibly,
Cu = Cv). Let Luv be the shortest straight line connecting u and v. Let C1, . . . , Ck be
the sequence of squares through which Luv passes. Clearly, C1 = Cu and Ck = Cv . A
square path is a sequence u1, . . . , uk of k nodes that satisfies the following:

(1) u1 = u.
(2) uk = v.
(3) For every i = 1, . . . , k, ui belongs to Ci.

Note that there can be many square paths connecting u and v. We next show an upper
bound on the length of square paths:

PROPOSITION E.4. Let G be any realization of the random graph G2(n, r) that has at
least one node in each square. Let u 6= v ∈ G be any two distinct nodes. Then, every
square path between u and v is of length at most t + 2.

PROOF. Let Luv be the shortest straight line connecting u = (ux, uy) and v = (vx, vy).
Let C1, . . . , Ck be the squares through which Luv passes and let (x1, y1), . . . , (xk, yk) be
the bottom-left corners of these squares, respectively. For every i = 1, . . . , k − 1, the
squares Ci and Ci+1 are neighboring squares, meaning that either cd(xi, xi+1) = 1/t
and/or cd(yi, yi+1) = 1/t. Since cd(ux, vx) ≤ 1/2, then the number of i ∈ {2, . . . , k−1}
for which cd(xi, xi+1) = 1/t is at most b 1

2/ 1
t c ≤ t

2 . Similarly, the number of i ∈
{2, . . . , k − 1} for which cd(yi, yi+1) = 1/t is at most t

2 . We conclude that k can be at
most t + 2.

Canonical path distribution. Fix any realization G of the random graph G2(n, r) that
has at least one node in each square. Let ΓG be the set of all families of canonical paths
γ = {γuv}u,v∈G on G. We now define a probability distribution pG on ΓG. The support of
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pG will consist only of families of square paths. We pick such a family γ as follows. The(
n
2

)
paths in γ are selected independently. For each u 6= v ∈ G, a canonical path between

u and v is chosen uniformly at random among all the square paths between u and v. By
Proposition E.4, we have an immediate bound on the maximum path length of pG:

`(pG) ≤ t + 2.

Before we prove the upper bound on the maximum expected edge load of pG, we show the
next upper bound on the number of paths that pass through each square:

LEMMA E.5. Let

δ` =
t√(

n
2

) · α`

.

With probability at least 1−α` (over the choice of the random graph), the number of paths
passing through each square of the square grid is at most

(
n
2

) · ( 1
t + 2

t2 ) · (1 + δ`).

PROOF. Fix any square C. Let U1, . . . , Un be the n random points chosen on the surface
of the unit torus. For each i 6= j, let LUiUj be the shortest straight line connecting Ui and
Uj . We define XC

ij to be the 0-1 random variable indicating whether C intersects LUiUj or
not. Let XC =

∑
1≤i<j≤n XC

ij be the number of paths passing through C. Our goal is to
show that XC is small with high probability. To this end, we first bound the expectation of
XC and then use Chebyshev’s inequality to prove that with high probability XC does not
exceed its expectation by much.

By linearity of expectation, E(XC) =
∑

1≤i<j≤n E(XC
ij ). It thus suffices to bound the

expectation of XC
ij :

CLAIM E.6. For all C, i, j, 1
t2 ≤ E(XC

ij ) ≤ 1
t + 2

t2 .

PROOF. For every square C and every two points u, v on the torus, define:

T (C, u, v) =
{

1 if C intersects the line Luv

0 otherwise

Let U and V be uniformly chosen points on the torus surface. Clearly, E(XC
ij ) = E(T (C,U, V )).

E(T (C,U, V )) is the probability that the line LUV intersects C. We next show that this
probability is the same for all C:

CLAIM E.7. Let U and V be uniformly chosen points on the surface of the torus and
let LUV be the shortest straight line connecting U and V . Then all squares in the square
grid are equally likely to intersect LUV .

PROOF. The proof is based on the symmetry of the torus. For each square C, let SC be
the set of pairs of points whose shortest connecting line passes through C:

SC = {(u, v) | Luv ∩ C 6= ∅}.
Fix any two squares C, C ′. We would like to show that |SC | = |SC′ |. That would imply
that all squares are equally likely to intersect the line LUV connecting two random points
U, V on the torus surface. To this end, we define a 1-1 function f from the torus surface to
itself and prove that f induces a 1-1 mapping from SC onto SC′ .
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Let (x, y) and (x′, y′) be the leftmost bottom corners of C and C ′, respectively. We
define the function f as follows. For every point w = (wx, wy):

f(wx, wy) = ((wx + cd(x, x′)) mod 1, (wy + cd(y, y′)) mod 1).

To show f is 1-1 we present an inverse mapping:

g(zx, zy) = ((zx − cd(x, x′)) mod 1, (zy − cd(y, y′)) mod 1).

Indeed, let w = (wx, wy) be any point on the torus surface. The x-coordinate of g(f(w))
is:

((wx + cd(x, x′)) mod 1− cd(x, x′)) mod 1
= (wx mod 1 + cd(x, x′) mod 1− cd(x, x′) mod 1) mod 1
= (wx mod 1) mod 1 = wx.

Similarly, the y-coordinate of g(f(w)) is wy and hence g(f(w)) = w.
We observe that f maps lines to lines and squares to squares. Furthermore, f(C) = C ′.

Let F be the following mapping from SC : F (u, v) = (f(u), f(u)). Next, we prove that
F is a 1-1 mapping from SC onto SC′ . Let (u, v) be any pair in SC . This means that C
intersects the line Luv . Let w be a point in C ∩ Luv . Since f maps lines to lines, then
f(w) must lie also on the line Lf(u)f(v) connecting f(u) and f(v). On the other hand,
since w ∈ C and f(C) = f(C ′), then f(w) ∈ C ′. We conclude that Lf(u)f(v) intersects
C ′, and thus (f(u), f(v)) ∈ SC′ . F is then a mapping from SC to SC′ . It is 1-1 due to the
fact f is 1-1. A similar argument can show that G(u′, v′) = (g(u), g(v)) (where g = f−1)
is the inverse mapping of F . Hence, F is a 1-1 mapping from SC′ onto SC implying SC

and SC′ are of equal size.

Going back to the proof of Claim E.6, since E(T (C, U, V )) is independent of C, we can
write it as:

E(T (C, U, V )) =
1
t2

∑

C′
E(T (C ′, U, V )),

where the summation is over all squares C ′ in the grid and t2 is the number of such squares.
By linearity of expectation,

1
t2

∑

C′
E(T (C ′, U, V )) =

1
t2

E(
∑

C′
T (C ′, U, V )).

Since for every u, v, the number of squares that intersect Luv is at least 1 and at most t+2
(Proposition E.4), then

1 ≤
∑

C′
T (C ′, U, V ) ≤ t + 2.

We conclude that:

E(XC
ij ) = E(T (C,U, V )) ≤ 1

t2
· (t + 2) =

1
t

+
2
t2

and

E(XC
ij ) = E(T (C,U, V )) ≥ 1

t2
.
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We conclude from the above claim that

E(XC) ≤
(

n

2

)
· (1

t
+

2
t2

).

Next, we prove that the sequence of random variables {XC
ij}1≤i<j≤n is pairwise indepen-

dent:

CLAIM E.8. For every (i, j) 6= (i′, j′), XC
ij and XC

i′j′ are independent.

PROOF. If {i, j} ∩ {i′, j′} = ∅, then the independence of XC
ij and XC

i′j′ follows from
the independence of the two pairs (Ui, Uj) and (Ui′ , Uj′). So suppose, e.g., that i = i′ but
j 6= j′. The independence will follow from the following stronger claim: for every two
points u, v on the torus surface,

Pr(XC
ij = 1 | Ui = u,Uj′ = v) = Pr(XC

ij = 1).

Since XC
ij and Ui are independent of Uj′ , it suffices to show that for all u,

Pr(XC
ij = 1 | Ui = u) = Pr(XC

ij = 1).

That is, even if we know that Ui was chosen to be u, this does not change the probability of
the line LUiUj to pass through C. This statement follows by a symmetry argument, similar
to the one done in the proof of Claim E.7: for every fixed point u, all squares are equally
likely to intersect the line LuV (where V is chosen at random).

We now finally return to the proof of Lemma E.5. Since E(XC) ≤ (
n
2

) · ( 1
t + 2

t2 ), then

Pr(XC >

(
n

2

)
· (1

t
+

2
t2

)(1 + δ`)) ≤ Pr(XC > E(XC) · (1 + δ`))

≤ Pr(|XC − E(XC)| > δ` · E(XC)).

By Chebyshev’s inequality,

Pr(|XC − E(XC)| > δ` · E(XC)) ≤ var(XC)
δ2
` · E2(XC)

.

Recall that XC =
∑

i,j XC
ij . The random variables {XC

ij}i,j are identically distributed and
pairwise independent. Let p = Pr(XC

ij = 1). Then, var(XC) =
(
n
2

) · p(1− p) ≤ (
n
2

) · p.
On the other hand, E(XC) =

(
n
2

) · p. Therefore,

var(XC)
δ2
` · E2(XC)

≤ 1
δ2
`

(
n
2

)
p
.

By Claim E.6, p ≥ 1/t2. Also recall that δ` = t/
√(

n
2

) · α`). We conclude that

Pr(XC >

(
n

2

)
· (1

t
+

2
t2

) · (1 + δ`)) ≤ α`

t2
.

Using the union bound and based on the fact there are t2 squares, the probability there is
at least one square C for which XC >

(
n
2

) · ( 1
t + 2

t2 ) · (1 + δ`) is at most α`.

We are now ready to prove the upper bound on the maximum expected edge load of pG:
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LEMMA E.9. Fix any 0 < α`, αs < 1. Let G be a random realization of the random
graph G2(n, r) and let pG be the canonical path distribution defined above. Then, with
probability at least 1− α` − αs (over the choice of G),

ρ(pG) ≤ t3

16
· (1 +

2
t
) · 1 + δ`

(1− δs)2
.

PROOF. Fix any square C. By Lemma E.5, with probability at least 1−α`, the number
of paths that pass through C is at most

(
n

2

)
· (1

t
+

2
t2

) · (1 + δ`).

The canonical path distribution disseminates the paths that pass through C evenly among
the nodes in C. By Proposition E.3, with probability at least 1− αs, the number of nodes
in C is at least

n

t2
· (1− δs).

Fix any node u ∈ C. We conclude that with probability at least 1− α` − αs, the expected
number of paths that pass through u is at most

(
n
2

) · ( 1
t + 2

t2 ) · (1 + δ`)
n
t2 · (1− δs)

≤ n

2
· t · (1 +

2
t
) · 1 + δ`

1− δs
.

A symmetry argument similar to the one shown in the proof of Claim E.6 can show that
in expectation exactly 1/8 of the paths that pass through square C go to each one of its
neighboring squares. Fix a neighboring square C ′. Recall that any node in C is connected
to any node in these neighboring squares. Hence, 1/8 of the paths that pass through u
are expected to use the edges that connect u with nodes in C ′. Since the canonical path
distribution picks a random node from each square independently, then all the edges that
connect u and C ′ are expected to carry the same load. This load then equals the number
of paths that pass through u divided by 8 and divided again by the number of nodes in C ′.
We already know (Proposition E.3) that the number of nodes in C ′ is at least n

t2 · (1− δs),
hence the expected load on edges connecting u with C ′ is at most:

n
2 · t · (1 + 2

t ) · 1+δ`

1−δs

8 · n
t2 · (1− δs)

=
t3

16
· (1 +

2
t
) · 1 + δ`

(1− δs)2
.

Since the choice of C, C ′ and u was arbitrary this is also the maximum expected load on
edges of the graph G.

We are now ready to prove Theorem 3.4:

PROOF PROOF OF THEOREM 3.4. Suppose D is the upper bound on dmax used in the
random walk. We start by analyzing the standard mixing time of the MD random walk,
including the self loops. Let P be the probability transition matrix of the random walk. By
Theorem 3.2,

Tmix(ε) ≤ ln n + ln(1/ε)
1− λmax(P )

.

By the strong version of Sinclair’s bound (Theorem E.1),

1
1− λmax(P )

≤ D

n
· `(pG) · ρ(pG).
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Hence,

Tmix(ε) ≤ D

n
· `(pG) · ρ(pG) · (ln n + ln(1/ε)).

We set αd = αs = α` = 1/9. Then, with probability at least 2/3, the chosen random
graph G satisfies the three following conditions:

(1) By Proposition 3.3, its maximum degree, dmax, is at most πr2(n− 1) · (1 + δd).

(2) By Proposition E.4, `(pG) ≤ t + 2.

(3) By Lemma E.9, ρ(pG) ≤ t3

16 · (1 + 2
t ) · 1+δ`

(1−δs)2 .

Therefore,

Tmix(ε) ≤ D

n
· (t + 2) · t3

16
· (1 +

2
t
) · 1 + δ`

(1− δs)2
· (lnn + ln(1/ε))

=
D

n
· (t + 2)2 · t2

16
· 1 + δ`

(1− δs)2
· (lnn + ln(1/ε)).

Now, recall that t = d√8/re ≤ √
8/r + 1. Therefore, t + 2 ≤ √

8/r + 3. r was chosen
so that r ≤ 1/2, hence

√
8/r + 3 ≤ (

√
8 + 3/2)/r < 5/r. Similarly, t2 ≤ (

√
8

r + 1)2 =
8
r2 + 1 + 2

√
8

r ≤ 12
r2 . Therefore, (t + 2)2 · t2/16 < 19/r4. We conclude that:

Tmix(ε) ≤ 19 · D

n
· 1
r4
· 1 + δ`

(1− δs)2
· (lnn + ln(1/ε)).

Recall that:

δ` =
t√(

n
2

) · α`

and

δs =

√
3t2

n
· ln 2t2

αs
.

Since r ≤ 1/2, then t ≤ √
8/r + 1 ≤ 4/r. Also, α` = 1/9. Hence,

δ` ≤ 12
√

2
r
√

n(n− 1)
.

Recall that r =
√

C ln n/n for C > 49 and that n ≥ 10. Therefore, δ` < 0.55.
As for δs, t2 ≤ 12/r2 and αs = 1/9. Hence,

δs ≤
√

36
r2n

ln
216
r2

.

Rewriting r as
√

C ln n/n, we have:

δs ≤
√

36
C ln n

ln
216n

C ln n
=

√
36
C
·
(

1 +
ln( 216

C ln n )
ln n

)
.
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Since C > 49 and n ≥ 10, then δs <
√

47/C < 7/
√

C. By incorporating the bounds on
δ` and δs, we obtain the desired bound on the mixing time:

Tmix(ε) ≤ 30
(1− 7√

C
)2
· D

n
· 1
r4
· (lnn + ln(1/ε)).

We now turn to the calculation of the actual mixing time. Consider a run of the MD
random walk, and let U1, U2, . . . be the distinct nodes visited during the random walk.
(Note that U1, U2, . . . are random variables.) For each i = 1, 2, . . ., let Xi denote the
number of steps the random walk spends at Ui. That is, Xi is 1 plus the number of steps
the random walk spends at the self loop of Ui until moving to Ui+1. For every infinite
sequence of nodes v1, v2, . . . the random variables X1, X2, . . . are independent given that
U1 = v1, U2 = v2, . . . (that is, the number of self loop steps spent at Ui depends only on
Ui and not on the other nodes visited during the random walk).

Consider any step i. Given that Ui = vi, Xi is a geometric random variable with
probability of success dvi/D, where dvi is the degree of vi, excluding the weighted self
loop. Hence, E(Xi|U1 = v1, U2 = v2, . . . , Ui = vi, . . .) = E(Xi|Ui = vi) = D/dvi

. Let
dmax = maxv dv . Then, E(Xi|U1 = v1, U2 = v2, . . .) ≥ D/dmax.

Let m = Tmix(ε) be the mixing time of the random walk. The random walk runs for
m steps, including self loop steps, until it is stopped. Let T denote the number of non-self
loop steps made by the random walk. Note that T is a random variable and E(T ) is the
actual mixing time Tactual mix(ε) we wish to calculate. Furthermore,

∑T
i=1 Xi = m. Since

for every sequence of nodes v1, v2, . . ., the random variables X1, X2, . . . are independent
given that U1 = v1, U2 = v2, . . ., the conditions of Wald’s identity (cf. [Siegmund 1985])
are met, implying that:

E(
T∑

i=1

Xi | U1 = v1, U2 = v2, . . .) ≥ E(T | U1 = v1, U2 = v2, . . .) · D

dmax
.

Since
∑T

i=1 Xi = m always, we have:

E(T | U1 = v1, U2 = v2, . . .) ≤ m · dmax

D
.

This holds for every sequence v1, v2, . . .. Thus,

E(T ) ≤ m · dmax

D
.

Hence,

Tactual mix(ε) = E(T ) ≤ m · dmax

D
= Tmix(ε) · dmax

D

≤ 30
(1− 7√

C
)2
· D

n
· 1
r4
· (lnn + ln(1/ε)) · dmax

D

=
30

(1− 7√
C

)2
· dmax

n
· 1
r4
· (lnn + ln(1/ε)).

Recall that we assumed the chosen random graph satisfies

dmax ≤ πr2(n− 1) · (1 + δd),
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where

δd =

√
3

πr2(n− 1)
· ln 2n

αd
.

Writing r as
√

C ln n/n and recalling that αd = 1/9, we have:

δd =

√
3n

πC ln n(n− 1)
· ln(18n).

Since C > 49 and n ≥ 10, we have: δd < 0.25. Therefore, dmax ≤ 1.25πr2(n − 1) <
4r2n. Substituting in the bound for Tactual mix(ε), we have:

Tactual mix(ε) ≤ 120
(1− 7√

C
)2
· 1
r2
· (ln n + ln(1/ε)).
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