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Extraction of a source from multichannel data
using sparse decomposition�

Michael Zibulevsky∗, Yehoshua Y. Zeevi
Department of Electrical Engineering, Technion, 32000 Haifa, Israel

Received 1 March 2001; accepted 22 October 2001

Abstract

It was discovered recently that sparse decomposition by signal dictionaries results in dramatic
improvement of the qualities of blind source separation. We exploit sparse decomposition of a
source in order to extract it from multidimensional sensor data, in applications where a rough
template of the source is known. This leads to a convex optimization problem, which is solved
by a Newton-type method. Complete and overcomplete dictionaries are considered. Simulations
with synthetic evoked responses mixed into natural 122-channel MEG data show signi7cant
improvement in accuracy of signal restoration. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider the following problem:

x(t) = as(t) + �(t); (1)

where x(t) an observed n-channel sensor signal, s(t) is an unknown scalar signal
of interest, a an unknown n-dimensional vector of weights, and �(t) an n-channel
background signal.
We assume that a rough template ŝ(t) of the signal s(t) is known in advance. The

template can be obtained using a priori knowledge about the signal, or alternatively, by
averaging multiple trials. It can be for example, a rectangular pulse, which corresponds
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to the sign of the original signal, or of its most signi7cant part. This is a realistic
assumption in many practical cases.
We also assume that a sparse representation of s(t) can be obtained by means of its

decomposition coeDcients ck , corresponding to the set of functions ’k(t):

s(t) =
K∑
k=1

ck’k(t): (2)

The functions ’k(t) are called atoms or elements of the dictionary of functions. These
elements do not have to be linearly independent, and instead may form an overcomplete
dictionary. Important examples are wavelet and wavelet-related dictionaries (wavelet
packets, stationary wavelets, Gabor-type frames, etc., see for example [5,9,17] and
references therein), or learned dictionaries [8,11].
Sparsity means that only a small number of coeDcients ck di?er signi7cantly from

zero. It was shown in [15,4,7,16] that use of sparseness often yields much better blind
source separation than other techniques. In this work, we use the same property of
sparseness for extraction of one source.
There are other approaches of a single source extraction. For example, Fast ICA

algorithm [6] permits the extraction sources from mixtures sequentially, using an ap-
proximation of entropy as a criterion for separation. It will not necessarily extract the
source of interest 7rst, especially when the number of data channels is large. In order
to deal with this problem, it was suggested in [1] to initialize separation weights in fast
ICA-type algorithm using a second-order method based on maximal correlation with a
template. This approach improves the order, in which the sources are extracted, but it
does not exploit to its fullest extent available information regarding the structure of a
template at the stage of separation.
In our work, we combine the prior knowledge about the sparsity of a source rep-

resentation with the information regarding the relevant template into one optimization
criterion. The resulting optimization problem is convex (unlike problems arising in
usual ICA). It leads to high-quality solution even when the number of data channels is
high and total number of samples is small. In our simulations we use 512 samples of
122-channel MEG data. In this situation standard ICA techniques cannot give a mean-
ingful separation, because the number of free parameters in the separation 122 × 122
matrix is much larger than the number of data samples (normally the amount of data
used for blind separation of such a data by standard methods is of order 105 samples
or more, see for example [13]).
In the sequel we use a matrix notation. Let t = 1; 2; : : : ; T be a discrete time under

consideration, X be a T × n matrix, with discrete signals xi(t) in its columns, and �
be a matrix T × K with columns ’k(t). Then, instead of (2), we have

s =�c: (3)

If an estimate s̃(t) of the signal would be known, it could be sparsely decomposed in
the dictionary � using the following optimization [5]:

min
c

‖s̃ −�c‖2 + 
K∑
k=1

h(ck): (4)
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Here, h(c) can be considered as a penalty for non-sparseness. A reasonable choice of
h(c) [12,11] is

h(c) = |c|1=�; �¿ 1 (5)

or a smooth approximation thereof. Below we use a family of convex smooth approx-
imations of the absolute value [15]

h1(c) = |c| − log(1 + |c|); (6)

h�(c) = �h1(c=�) (7)

with � being a proximity parameter: h�(c)→|c| as � → 0+. Other approximations can
be used as well, for example

h�(c) =
√
c2 + �:

2. Second-order source extraction using correlation with a template

In this section we present a standard approach of maximum correlation with a tem-
plate, which will be used as a reference point. We look for an estimate s̃(t) of the
signal s(t) as a linear combination of the sensor signals

s̃(t) =
∑
i

wixi(t); (8)

which in a matrix form is

s̃ = Xw; (9)

where w is a vector of weights that we would like to determine.
Suppose that we have an approximate template ŝ of the signal s. Then one can

7nd an estimate of the signal s in form (9), which has maximal correlation with the
template

max
s̃

ŝTs̃
‖ŝ‖ · ‖s̃‖ :

It can be rewritten equivalently as

min
s̃

‖s̃‖2

s:t: ŝTs̃ = 1: (10)

Combining this with (9), we obtain

min
w

‖Xw‖2

s:t: ŝTXw= 1: (11)

This problem can be solved using the method of Lagrange multipliers, yielding

w̃= �R−1
xx X

Tŝ; (12)

where Rxx is the covariance matrix: Rxx = XTX.
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3. Sparse estimation with a template

Suppose now that we have the following two priors:

• sparsity of the coeDcients in the representation (3); and
• an approximate template ŝ of the signal.

We look for the estimated signal s̃ with the sparsest representation c according to the
dictionary L, which has a unit covariance with the template. In the general case of
overcomplete dictionary this leads to the following optimization problem:

min
c

‖s̃ −�c‖2 + 
K∑
k=1

h(ck)

s:t: ŝTs̃ = 1: (13)

In the framework of linear estimation (9) we obtain

min
c;w

‖Xw−�c‖2 + 
K∑
k=1

h(ck)

s:t: ŝTXw= 1: (14)

When the dictionary is complete, we obtain signi7cant simpli7cation of the problem:
the matrix � is invertible, and the coeDcients can be estimated directly, i.e.

c̃ =�−1s̃ =�−1Xw: (15)

Combining this with (14), where the 7rst term ‖Xw − �c‖2 vanishes, and using the
transformed sensor data

Y =�−1X

we get

min
w

K∑
k=1

h((Yw)k);

s:t: ŝTXw= 1: (16)

Using the method of Lagrange multipliers, we come to the following problem:

min
w

K∑
k=1

h((Yw)k)− �ŝTXw: (17)

There is a potential for instability in optimization of (17): growth of the 7rst term in
any direction is asymptotically linear, therefore the minimum of the objective function
may approach −∞, when � is too large, so that the second term decreases faster than
the 7rst term grows. In order to avoid this, we use a monotonic convex transformation
of the second term u(ŝTXw), where u(·) is a convex monotonically decreasing function
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of one variable. For example, we can use quadratic-logarithmic function [2]

u�(t) =

{
1
2 t

2 − t; t6 �;

−(1− �)2 log( 1−2�+t
1−� )− �+ 1

2�
2; t ¿ �:

where 06 �¡ 1. The second derivative of this function is continuous and bounded
∀t ∈R. Thus, we are in good position for the Newton minimization. Finally, our func-
tion for optimization becomes

F(w) =
K∑
k=1

h((Yw)k) + �u(ŝ
TXw): (18)

It is easy to see from the optimality conditions, that (18) yields the same solution Ow
as (17), when � is changed by a factor of u′(ŝTX Ow).

4. Computational experiments with synthetic evoked responses mixed into natural
MEG recordings

In order to verify the method, we synthesized a typical evoked brain response and
mixed it linearly (with random weights) into real 122-channel MEG recording taken at
the rate of 256 samples=s. The synthetic evoked response (Fig. 1, top plot) is composed
of a narrow positive Gaussian pulse with a standard deviation of four samples and a
wide negative Gaussian pulse with a standard deviation of 10 samples. The second
pulse is delayed by 20 samples with respect to the 7rst and decreased in amplitude
by a factor 0:6. Other plots in Fig. 1 show few MEG channels already mixed with
our synthetic evoked response. As one can see, the response is almost invisible on
the background of brain activity. As a template (Fig. 2) we used a rectangular signal,
corresponding to the time interval, when the response is above 10% of its maximal
positive value.
We compared two methods of recovering evoked responses: the maximum correla-

tion method (12) and our sparse estimation method, which consists of minimization
of the objective function (18). We used a wavelet basis L with the mother-wavelet
Symmlet-8, which has eight vanishing moments. This basis is convenient for approxi-
mation of smooth functions, like evoked responses are (see for example [9]).
In (18) we used the parameter � = 1000, and in (7) the parameter � = 0:01. Our

empirical observation is that the results are not that sensitive to the values of these
parameters; scaling by a factor 10 up and down does not a?ect the results signi7cantly.
Slight improvement in the quality can be observed when � grows and � decreases more
signi7cantly, but the problem becomes more diDcult for optimization.
As a minimization procedure we used the Newton method with frozen Hessian (see

for example [10]). At each iteration the Hessian matrix was computed and three con-
sequent Newton steps were then produced by substituting current gradients into the
same Cholessky decomposition of the Hessian (expressions of gradient and Hessian
are presented in Appendix A). Cubic line search with bisection safeguard and early
stopping by Goldstain criterion was used at every Newton step (see for example [3]).
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Fig. 1. Plot at the top shows synthetic evoked response; other plots show some of MEG channels already
mixed with the evoked response: the response is almost invisible on the background of brain activity.
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Fig. 2. A template (solid line) corresponding to the time interval, when the response (dashed line) is above
10% of its maximal value.

The results of estimation by the maximum correlation method are shown in Fig. 3
(upper frame). The signal-to-noise ratio is signi7cantly better than that of the original
sensor data (shown in Fig. 1), but the form of the pulse is corrupted, especially the
negative part, which was not included in the template.
In Fig. 3, bottom, we see the recovered evoked response using our sparse estima-

tion (18). It resembles the original pulse much more accurately, than the maximum
correlation method does. Results of 50 simulated trials with random pulse position
and random mixing weights are shown in Table 1. The mean-squared error is about
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Fig. 3. (Top frame) Solid line—evoked response recovered by using the maximum correlation approach;
(Bottom frame) Solid line—evoked response recovered by using sparse estimation; Dashed line in both
frames—the original signal.

Table 1
Results of 50 simulated trials with random pulse position and random mixing weights

Method Mean-squared Std. deviation
error of sq. error

Max correlation 0.38 0.0354
Sparse estimation 0.044 0.0185

Table 2
l1 measure of sparseness of the wavelet coeDcients

Original signal 3.30
Max correlation estimate 4.48
Sparse estimate 3.50

9 times smaller in the case of using our method, than with the maximum correlation
approach.
We can measure sparseness of the wavelet coeDcients c̃ of obtained estimates as

a ratio ‖c̃‖1=‖c̃‖2. Table 2 shows that the sparseness of the coeDcients of the signals
obtained by our method is better than one of the maximum correlation estimates.
Another important issue is robustness with regard to the variations in width and

position of the template. Figs. 4 and 5 demonstrate superiority of sparse estimation.
We should mention, that very similar results were obtained also with non-random
mixing weights, corresponding to an area in visual cortex.
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Fig. 4. A narrow template (top); max. correlation estimate (middle); sparse estimate (bottom).

We also tested some standard ICA techniques with the same data, but the results
were meaningless. This can be easily understood taking into account a very small
amount of data compared with the number of channels.

5. Conclusions

The proposed new approach to extraction a source from multichannel data, using a
template and sparse representability of the source according to a signal dictionary is
most suitable for physiological and medical, as well as wide range of other applications.
Our simulations with complete dictionary demonstrate signi7cant superiority of the
method over the maximum correlation approach.
A more extensive study has yet to be conducted using overcomplete representations

(14), which are more sparse, but also more expensive computationally.
The optimization problems (14) and (16) can be also reformulated as a quadratic or

linear programming problems, when h(·) is exactly the absolute value function. This
can be done in the spirit of the previous studies [5,15]. It provides a possibility of
using the polynomial complexity algorithms, like Interior Point Methods. One can
use also a special Augmented Lagrangian method for sum-max optimization problems
[14], which reduces twice the number of variables as compared to the quadratic=linear
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Fig. 5. Shifted template (top); max. correlation estimate (middle); sparse estimate (bottom).

programming approach, and provides better accuracy of solution. Practical comparison
of all these approaches remains open for future research.

Appendix A. Gradient and Hessian of the objective function

Here we obtain derivatives of the objective function (18). Denoting s=Yw, z=XTŝ,
and r = zTw, expression (18) becomes

F(w) =
K∑
k=1

h(sk) + �u(r): (A.1)

A.1. Derivation of the gradient formula

Let h′(s) denotes the vector column of the 7rst derivatives h′(sk), the di?erential of
the objective is

dF(w) = dsT h′(s) + �u′(r) dr: (A.2)

Recalling that ds = Y dw and dr = zT dw= dwT z, we get

dF(w) = dwT(YT h′(s) + �u′(r)z): (A.3)
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Let g denotes the gradient of F . Comparing (A.3) with

dF(w) = gT dw= dwT g

we obtain 7nally

g(w) = YT h′(s) + �u′(r)z: (A.4)

A.2. Derivation of the Hessian formula

Let D denotes the diagonal matrix of the second derivatives h′′(sk). It is easy to
obtain from (A.4)

dg(w) = YTDds + �u′′(r)z dr: (A.5)

Taking into account that ds = Y dw and dr = zT dw, we get

dg(w) = YTDY dw+ �u′′(r)zzT dw: (A.6)

Comparing this with the known expression

dg(w) =H(w) dw;

where H(w) is a Hessian matrix, we 7nally obtain

H(w) = YTDY + �u′′(r)zzT:
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