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Abstract— Denoising algorithms based on gradient dependent The Euler-Lagrange (E-L) equation is
regularizers, such as nonlinear-diffusion processes and total via VI
ation denoising, modify images towards piecewise constant func- = di TANE 7 =
tions. Although edge sharpness and location is well preserved, F=dv ((I) ( )|VI|) Ao = 1) =0 (3)
important information, encoded in image features like textures or . . L .
certain details, is often compromised in the process of denoising. WhereA € IR is ascalarcontrolling the fidelity of the solution
We propose a mechanism that better preserves fine scale featsre t0 the input image (inversely proportional to the measure of
in such denoising processes. A basic pyramidal structure-texter denoising). Neumann boundary conditions are assumed. The

decomposition of images is presented and analyzed. A first level of s |ytion is usually found by a steepest descent method:
this pyramid is used to isolate the noise and the relevant texture

components in order to compute spatially varying constraints I, =—F, Il =Ip. 4)
based on local variance measures. A variational formulation with
a spatially varying fidelity term controls the extent of denoising When the noise is approximated by an additive white
over image regions. Ogr results s.how v!sual |mprovem_ent. as well process of standard deviatienthe problem can be formulated
as an increase in the signal-to-noise ratio over scalar fidelity term L
: : . as finding

processes. This type of processing can be used for a variety of
tasks in PDE-based image processing and computer vision, and ming fQ (|VI|)dzdy
is stable and meaningful from a mathematical viewpoint. : 5

g P subject tordy [, (I — Io)*dudy = P, ®)

Keywords: image denoising, texture processing, spatiall}llvh P
varying fidelity term, nonlinear diffusion, variational age ere” = o
processing.

2, [Note that for noise of impulsive type this
method is not suitable, see e.g. [23], [6]]. In this formidat
A can be considered as a Lagrange multiplier, computed by:

. nraonucrion vt [ (w0 T - s @
PDE-based methods have been widely used over the past 121 /g Vil

decade for image denoising with edge preservation. Thek@e solution is attained by iteratively evolving (4) and up-

methods are either based on the axiomatic approach of nating (6) until convergence. As (5) uses a scalar constrain

linear scale-space (nonlinear diffusions), or on the viaral (and a scalan) we refer to it as thescalar  problem The

approach of energy functional minimization. Details refjag actual function with which we work in this paper &(z) =

the interaction and close relations between these appesack/l + 3%2%. The process that results from this function is an

can be found, for example, in [1], [35]. approximation of TV which is easy to implement by standard
A classical variational denoising algorithm is the totativa discretization of the E-L equations since it has no singtylar

ation (TV) minimizing process of Rudin-Osher-Fatemi (ROF}t zero gradient. Also, when the descent is implemented by

[28]. This algorithm seeks an equilibrium state (minima®n explicit method, the time step bound is maximal (bounded

energy) of an energy functional comprised of the TV norry the standard CFL). . o N
of the image] and the f|de||ty of this image to the noisy We choose it as a I’epl’esentatlve of variational denOISlng

input imagely: processes.
The performance of this, and other PDE-based methods,
Ery = /(|v[| + EA([ — Iy)?)dxdy. (1) have shown ?mpr_e_ssive resu!ts, especially _for non-tegture
JQ 2 images. The implicit assumption that underlies the formula

This is further generalized by the-formulation [10] with the tion of these flows/equations is the approximation of images
functional by piecewise constant functions, which are in the space of

bounded variations (BV). We recall that a sigmais in BV if

_ INTIE Y
Fo = /Q (@(v1|)+ AT~ To) )dmdy. @) / o s
Q
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A good cartoon model captures much of the image intherefore, as a simple pyramid (scale-space) of rough image
portant information. Yet, it has several obvious drawbacksketches at different scales. Let us define a cartoon of scale
textures are excluded, significant small details may be lefsing thed® process, as follows:
out, and even large-scale features, that are not charzexddsy )
dominant edges, may be disregarded. The purpose of this pape Cs = Iq"A:é ™
is to show that a relatively simple modification of the abov@here I is the steady state of (4). See [30], [31] for a
equation yields a denoising algorithm that better preserveimilar definition of the scale. Let us define the residue as
both the structural and textural information of the image. the difference between two scales of cartoons:

Following Meyer's work [19] recent studies in the field )
suggested the use of weaker norms tti&n such asG and Bpm = Cp = Cp (0 <m). (8)
H~', for the data fidelity term [33], [25], [3], [2]. These e shall refer to the Non-Cartoon part of scalas the residue
modern techniques can better distinguish between stalctom |evel zero:
and oscillatory components and tend to reduce less contrast
of the structural part. However, when used for denoising NCs = Ros = Co — Cs. 9)

(as opposed to decomposition), these procedures Sti“"*’ecoThis cartoon and residue data structure is analogous of the

mainly the strur::tural Lmage compongnts, vyhere texturgs m@yramid of wavelet approximations. By using the definitions
lqe ovgr-smoot ed. T G-norm (and its various approxima- (7) and (8) and integrating the E-L equation (3) we deduce
tions) is low for oscillating patterns, and therefore does Nthe following basic properties:

penalize much both noise and most types of textures. Thepyqsition 1: The cartoon pyramid model has the follow-
TV norm, on the other hand, penalizes strongly oscnlatumg scale properties:

patterns. Therefore this type of energy minimization id sti '
not very well adapted to capture textural parts of the image . ‘ :
(see Fig. 6 for a comparison example). 2) The cartoon of scaleo is the mean of the input image.

Recent studies which perform decomposition to three cate-.. &> = Jo To(w,y)dedy.
gories — structure, texture and noise — by PDE’s and Wavelets3) The mean pf any residue is _zerf?l R"*’”d_wdy =0
[4], [29] seem to be an appropriate solution also for dengisi 4) A cartoon |magoe can be built from residues of larger
of natural images. We believe that our approach can comple- scalesCs =5, Rnnt1 + Cos.

ment and improve the results presented in these paperseAsl;h Proof. ~To prove Property 1 we denotef =

1) The cartoon of scale 0 is the input image, = I,.

i 2
weight parameters of these methods are not spatially \@gryid® (D(|V{0|)da:;ly.SLet .fl.JS l‘?ss;md 7 _I&m tgij L Eetzset
a constant “ratio” is implicitly assumed between structure zgnﬁ Earge Olanzeg;l(cj?)ﬁ Ezr(elo(;‘x:‘zr )\€> i—;,jlfcwherz

textures and noise components throughout the image. Wher%L

noise can often be regarded as spatially invariant (e.gtewh +h=1Io. Then

Gaussian noise), textures and structures are not homoglgnouEs (Io) — Eo(I) = [, ®(|VIo|) — ®(|VI|)dzdy — 1|73
spread in the image (in terms of variance). Another new < M- %)\62

approach is the use of Bregman iterations proposed by Osher < 0,

et al. [24]. In this method as well, a scalar weight parameter . -n contradicts our assumption.

A is used. Our approach may therefore be introduced in theProperty 2 can be proved using [1] (p. 79, Prop. 3) where
future also for these new types of more sophisticated (awé deduce thaf’,, converges to the mean image value in the
complicated) denoising schemes. L senselim, . [|Cs — [, Todzdy| 1 = 0.

In order to keep the presentation of the idea simple andFor Property 3 we use [1] (p. 79, Prop. 2) to show that
focused, we retain in this paper the more classical variatio Jiy Cadady = [, Todzdy, Vs > 0, and therefore

regularization based on the gradient magnitude Ehéldelity
term. / Ry mdzdy = / (Cy — Cy)dady = 0.
Q Q

II. THE CARTOON PYRAMID MODEL Property 4 is verified by expanding the sum expression:
The cartoon model has been defined and investigated in,

the early 80’s [12], [7], was further elaborated in [20], [21 Z«n=s Bopi1+Coc = Rosp1+ Roprspa + ..

and is widely used as the basic underlying model for many coot Ro1,00 + Coo

image denoising methods. In the continuous case, the cartoo = G = Cop1+Csp1 = Coa it

has a curvel’ of discontinuities, but everywhere else it is o+ Coom1 = Coo + O

assumed to have a small or a null gradi¢wt/|. A multi- = G

layered image representation was suggested by [18], mainly ]

for compression purposes. However, the wavelet compmessio In Table | a cartoon pyramid example is shown. See [32]

(thresholding) technique for extracting the cartoon phyt, for an alternative pyramidal structure suggested recently

using a very high compression factor, produces blurry tesul In the case®(z) = z in Eq. (2) where we have the ROF

which do not preserve well edges. model [28] one can relate the scale and residue directly with
The TV and other gradient-dependent filters are especiathe G-norm (or star norm) presented in [19] p. 30 (see also the

good for extracting the cartoon part of the image. We use thediscrete version defined in [3]). Th& space is closely related



. : I Non- Resi
to the dual of BV. The G norm || - || penalizes oscillatory ~|-=°© cartoon on-Cartoon esidueftn m

and piece-wise constant functions in an inverse manner to T\
whereas the TV norm of oscillatory signals is high and their
G norm is low, piece-wise constant signals have a low TV
norm and a highG norm. For example, a signaln(kz) in
x € [0, 27] and zero elsewhere hagsanorm approaching zero 0
ask — oo, whereas its total-variation in this case approaches
oo. For more on this subject we refer the reader to [19], [33],
[3], [4], [2], [25], [22].

Proposition 2: For the functional?(z) = z, we have

1) INCllc = . L

2) m—n<|Rymlec <m+n.

3) [Bnmlc =0,Yn = [[Co — Culla-

Proof: The first and third statements are direct conse-
guences of our pyramid definitions and Theorem 3 and Lemma
4 in [19]. The second statement is validated by the relation 10
Rym = NC,, — NC,, using the triangle inequality and
Statement 1. ]
Statement 1 states that tlienorm of the Non-Cartoon part
is strictly increasing (linearly), implying that larger cess
oscillatory features are incorporated in this part with thel 100
growth of s. From Statement 2, one can vigWy, ,,, as a texture
“band” of the original image with specified upper and lower
bounds of the&Z norm. Due to the convexity of the ROF model,
the solutions for similar values of are sufficiently close and
therefore we estimate th@iR,, ,,| ¢ should be in fact closer
to its lower boundm — n, at least whenn andn are of the
same order. Statement 3 shows that the telescopic buildup of TABLE I
the cartoon imagé€’; from larger texture bands, as formulated EXAMPLE OF A CARTOON PYRAMID . LEFT COLUMN - SCALE s = 1/A,
in Statement 4 Of Proposition 1, iS flnlte in practice (exmm SECOND COLUMN- CARTOON PARTC's, THIRD COLUMN - NON-CARTOON
the mean image valu€,). For other relations connecting the PART NCs, RIGHT COLUMN - RESIDUE Rn,m (WHERE THE VALUES OF
scale with the G-norm see [31]. (n,m) ARE (0, 1), (1,10), (10, 100), (100, c0), FROM SECOND ROW

In order to construct the pyramid, the desired scales should DOWN, RESPECTIVELY).
be specified. A simple mechanism, following Gaussian and
Laplacian pyramids or wavelet decompositions to detail and
approximation parts, is to use predefined scales, which grgw this simpler case a good representative scale could be
exponentially, such as, = so7*, where~ is some constant selected using an estimate of the noise variance. We employ
(e.9.y = 2 for a dyadic scale). In Table | three levels of ahe constrained problem, similar to (5) and impose
pyramid are shown fos, = 1, v = 10, k& = {0, 1,2}, as well 1
as the zero and infinite scales. P= 1l / (I — Ip)*dedy = ao?, (10)

In this pyramid larger scales retain high frequencies (sfige Q
and one does not re-sample or decimate the image tgvgerea > 0 controls the selected scale in terms of variance.
smaller size. This gives more freedom for choosing any sBPically 1 < « < 2 so that most noise and the relevant
of scale values. Specifically, the multi-scale decompmsiti textures of that scale are included in the residual part.uin o
can be image driven. This topic demands more study aRgtural images experiment we set= 1.5.
would not be elaborated in this paper. For some preliminary Qur model consists of three componemts:= /¢ + Inc +
directions suggested by the authors and colleagues on howitoWherelori; = Ic + Inc is the original image/c is the

select image-driven structure-texture splitting paramesee Cartoon approximation/yc is the remainder Non-Cartoon
[15], [5]. part, andl,, is an additive noise. Note that we left the definition

of “non-cartoon” part vague. lIt, typically, consists of tieses,
. small-scale details, thin lines etc. The only assumption we
Use for Denoising make is that it has zero mean. Under this decomposition, the
The cartoon pyramid has a broad context and may give somaidue of the filtered image is:
gqnogesér;?:retlcal insight on issues regarding structuretute In=To—I=ive+i,. (11)
For our denoising purposes of the next section we use oMipte that we distinguish between the “true” non-oscillgtor
one decomposition level which should contain the noise apdrt and its approximation by th& diffusion process by the
the textures at a similar scale or below that of the noistlde upperscript.

o0




I1l. THE ADAPTIVE & PROBLEM A. Automatic Texture Preserving Denoising

To obtain an adaptive scheme, we generalize ¢hele- In the general case, we do not have much prior knowledge
noising problem by imposing a spatially varying variancen the image that can facilitate the denoising process. tn ou
constraint. Let us define first a measure to which we refgrodel we assume that the noise is additive, uncorrelated wit
as thelocal variance the signal (e.g. additive white Gaussian or uniform noise) a

that its variance can be estimated.
1 o ) o Our aim is to use the denoising mechanism in a more
i (I (Z,9) = nll:]) ws,y (Z,9)dZdg, (12) accurate and precise manner. Images which can be well rep-
resented by large scale cartoon model are the best carglidate
where w, ,(Z,9) = w(|T — z|,|§ — y|) is a normalized for successful denoising. Images with much fine texture and
(Jo wz,y(Z,§)didy = 1) and radially symmetric smoothing details will not benefit that much from the operation; while
window, 7[] is the expected value taken with respect teeducing most of the noise, this type of processing will
the probability densityw, ,(7,7)//2| on the set x Q of inevitably degrade important image features. The first jerob
all quadruples(z,y, 7, 7). From the definition of the local is to distinguish between good and bad candidates dfor
variance it follows thatf,, P.(z,y)dzdy = P, , where denoising. The task becomes even more complex if this is done
P. = var(l.) (13) adaptively. Many natural images exhibit a mosaic of piesewi
i = smooth and texture patches. This type of image structute cal
We reformulate the scalaF problem, stated in Eq. (5), in thefor position (spatial)-varying filtering operation.
context of the adaptivé® problem as follows: The performance of the scalab denoising process is
illustrated in Fig. 1, using a typical cartoon-type and a tex
miny Jo &(|V1])dxdy (14) tured image. The SNR’s of these three processed images are
subject toPp(z,y) = S(x, y), summarized in Fig. 2, and plotted as a function of the residua
wherel; = (I — I, — C), C'is a constant and(z,y) > 0 variance (normalized variance of the residue). Obvioussy,
is assumed to be givea-priori. We solve the optimization these examples illustrate, cartoon-type images are dmhois
problem using Lagrange multipliers: much better than textured images (both in terms of SNR and
1 visually). Another important observation is that the maxim
E= / (®(|VI|) + s Az, y)Pg(z,y))dedy.  (15) SNR of cartoon and non-cartoon images is reached at differen
Q 2 levels of denoising. Whereas cartoon-type images reach thei
The Euler-Lagrange (EL) equation for the variation witpeak SNR at high denoising level®£ ~ ¢2), non-cartoon

P.(z,y) =

respect tol is images degrade faster and require less denoishg< o2).
- v/ For deeper analysis and some bounds on the resulting SNR of
Mz, y)(I — Iy — C) —div <<I>’(~)|V—I> =0, (16) @ process denoising see [14], [13].

We present here a relatively simple method that can approx-
where for any quantit)X(x y) we define the locally averagedimate the desired level of denoising in a region. In our above
quantity X (z,y) = [, X (&, §)wsy(Z, §)dzdj. We solve this formulation (Eq. 14), the problem reduces to findisigz, y).

equation for/ by a gradient descent: We use the cartoon pyramid model for this purpose. Our first
B VI aim is to differentiate between the cartoon part of the image
I = Maz,y)(Io — I + C) +div ((I)’(-)W> (17) Ic and the noise and texture patsc + I,,. Our splitting

parameter\ (or scales = %) is selected by imposing (10)
In order to compute the value of we multiply the EL and solving (5) using (4) and (6). We assign

equation (16) by(I — Iy — C) and integrate over the domain ot
Q. After a change in the order of integrals in theterm we S(x,y) = ——, (21)
get PR('Tv y)

o where Pr(x,y) is the local variance of the residug.
/QO‘(x’y)S(x’y) — Q(z,y))dzdy =0, (18) In the case wherdr ~ I, (basic cartoon model without
textures or fine scale details) this scheme is similar to the
scalar® process. In this case should be close td. The local
Qla,y) = (I — I — C)div (Q)/(_)E> . variance of the residue is almost constaRi(z,y) ~ o2)
VI and henceS(z,y) ~ o2. We get a high quality denoising
A sufficient condition is process wherd ~ Ic = I,.i4. In the case of most natural
images, however, textures will also be filtered and included
Nz, y) = (I’y). (19) in the residue part. As the noise is uncorrelated with the
S(@,y) signal, we can approximate the total variance of the residue
Finally, the constanC is obtained by solvingdcE = 0, Pnc(z,y)+ P.(x,y), the sum of local variances of the non-
yielding cartoon part and the noise, respectively. Thus, texturgidme
= = are characterized by high local variance of the residuerdero
fﬂ Mz, y)U (2, ) — oz, y))dxdy, (20) to preserve the detailed structure of such regions, the tdve
fQ , y)dwdy filtering there should be reduced over these regions.

where

C =




this case that portion of the image accounting for the textur
and fine details that may be filtered out by tfeprocess.
Formally, substituting forPr(z,y) in Eq. (21) the relation
PR(mvy) ~ PNC(%?J) +Pn = PNC(xay) +02 , We get
9 1

1+ Pyc(z,y)/o?

S(x,y)~o (23)

B. Algorithm

1) Separate the noise and relevant textures by minimizing
J ®(|VI|) subject to (10) and settinfiz = I — I.

2) Compute the local variance dfy by (12) and then
compute the local constrain(x, y) by (21).

3) Solve (14) by iteratively evolving (17) and update
A(z,y) and C according to (19) and (20).

C. Denoising with prior information

In cases where more information regarding the structure of
the original signal is available, the performance of deingis
process incorporating a spatially-varying fidelity coastit can
be substantially ameliorated. The specifics are applicatio
dependent and heuristic in nature. We therefore mentioa her
only a few related ideas. To preserve specific features in the
denoising process, such as long thin line or known types of
textures, one can pre-process with the correspondingréeatu
o 1 Scalard denoising of textured and texture-free | . detector (Hough transform, texture detector). The value of
L oS Calrh Senoisng of exired and edure fee Images. T 1%z, ) depends, then, locally on the feature detector response.
Patches of the two types of images combined in one. Left colunpice Cases of spatially varying noise also fit the model. For
the original images, middle column - noisy image;s, right columesult of  example, in low-quality JPEG images, the boundaries betwee
scalar® processing (Eq. 3) at convergencey = o). 8x8 pixel-blocks are often more noisy and the fidelity to the
original data on these block boundaries should, theretuze,
decreasedq increased). See [17] for a different solution by
an adaptive window approach.

IV. EXAMPLES

S The effects of adaptive- versus scalar-fidelity denoisiregy a
| illustrated using a synthetic mosaic comprised of two teedu
TR et T T patches juxtaposed with two smooth patches (Fig. 3). The
_ N _ o ~scalar fidelity term requires that a global variance, eqoal t
Fig. 2. SNR of scalab denoising of images shown in Fig. 5. SNR isthe nojse variance, be filtered. As tileprocess is smoothing
plotted as a function of the residual variance, normalizethbynoise variance: ' . . L .
PR/U2. Dashed line piecewise constant image, dash-dot line &xage, bOth texture r?md nm;e,_ more variance 1S f'lter_ed in the t'exitu
solid line combined image. regions than in the originally smooth ones. This resultsviero
smoothing of textured regions, whereas smooth regionsare n
_ _ _ _ ~sufficiently denoised (Fig. 3, left side second row from top)
~Let us recall the classical Wiener filter (optimal linearhe adaptive fidelity term process (second row right) agplie
filter in the mean squared-error sense). Its formulatiorh@ tdifferent levels of denoising in different regions. Thisgroves

SNR [dB]

frequency domain is the result both visually (texture is better preserved, smoo
Ps(w) regions are better denoised) and in terms of signal-toenois
G(w) (22) ratio. At the third row of Fig. 3, we show how the required

Ps(w) + Pn{w) spatially varying varianceS(z,y) (middle), depends on the
where Ps(w) and Pn(w) are the power spectrum of thevalue of the residud (left). The value of the adaptive fidelity
signal and noise, respectively. The basic concept amoontstérm, A(z,y) (right), is shown for the converged process
reduction in the extent of filteringd — 1) at frequencies (lighter regions indicate higher value). Naturally, théues of
where the signal power exceeds that of the noise. A(z,y) are inversely related to the residual variance measure

In our case we have a similar principle, whereby reductio$i(z, y).
in the extent of filtering (i.eS — 0) is called for in regions  Processing a noisy version of the Barbara image (Fig. 4),
where signal power exceeds that of the noise. The signal isitiris demonstrated how the adaptitemethod performs well



Fig. 3. Processing of a noisy mosaic of textures (fabric andainheind

smooth areas. From top: Original mosaic made of patches ofcfatmil

metal textures, juxtaposed with two constant patches yI&ftisy version,

Ip, of the original with SNR=2.4dBg = 40 (right); Result of processing

with scalar) - SNR=6.4dB (left), result with adaptive- SNR=7.6dB (right); Fig. 4. An example of processing results obtained with a mhtimage.

Bottom row: Residud (left); S(z,y) calculated according to the residueFrom top: Original ‘Barbara image’ (left); Noisy version bigt original image,

(middle); A(z,y) at the convergence of the process (right). Io, with SNR=8.7dB,c = 20 (right); Result of processing with scalar
(SNR=12.6dB, left); Result of processing with adaptixe(SNR=14.2dB,
right); Residuelr (left); S(z,y) calculated according to residue (middle)

. . . o A(z,y) at convergence of process (right).
on natural images. Our simple local variance criterion seem

to be sufficient to differentiate textured from smooth regio
even in relatively complex images. Accordingly, approia
local requirements on the variance to be filtered are applied
In Fig. 5, Barbara’s right knee is enlarged to highlight $ami
phenomena to those obtained in the case of the synthetic
example, where textures are preserved and the denoising of
smooth regions is stronger.

Fi 6 shows the Teddv-bear from the Tovs imaage B\ig. 5. Enlargement of Barbara’s right knee (full images ar€im 3). Top

9- . . Yy -1 y ge. 7 result of scalar process, bottom - result of adaptive Eece

comparison is performed also to tleV — H—' model of
[25] and to [3] which implements MeyerSV — G model [19]
(with a smallZ? residual). The scalar fidelity terms are choseq finjte set of 30 optional values). This result naturally &en
such that the variance of the feS'O!U?'O'%_ (hereo = 10).  achieved only in simulations when the original clean image i
Our algorithm diminishes the denqsmg in the te>.<t.ural Park hand (see [13] for a way to approximate this parameter).
of the bear. TheI'V' — (G model is quite competitive, but Neyertheless, our algorithm consistently achieves &R
still degrades the shirt textures. Similar effects can bEnsejnen the optimal scalar. Note that with respect to the SNR
in Fig. 7 where the process is compared with the regularizggerion modern multiscale wavelet-based techniqueseseh
version of P-M [26] proposed by Catte et al. [8]. Relativelyetier performance (see e.g. [27]). This is due to theifitgbil
small regularization is used for the gradient computatién @, genoise well also the textural parts. However, in general
the diffusion coefficient (variance of Gaussian0Os). This \yayelet denoising produces less sharp results near edges an
causes some isolated points to remain. Stronger reguianza may have some oscillations. This affects the denoisingityual
in our experiments resulted in extensive over-smoothinhef 1t is less reflected by the SNR criterion. Convex gradient-
textures. One may observe that the textural snow backgroysigkeq variational denoising methods admit the maximum prin
is better preserved by our proposed method, while the smog{fje and do not produce oscillatory solutions. Our aldorit

coat parts are well denoised. _ retains these desired qualities.
In Table Il we show the comparison between scalar and

adaptive processes in terms of SNR. In the scalar process i i

we show two cases. The “Standard scalar” column refers [fgplementation details

the A chosen according to the constrained problem (5). TheWe used explicit Euler schemes to implement the iterative
“Optimal scalar” refers to choosing the parametesuch that processes. The averaging windawz,y) was selected to be
the maximal SNR of the recovered image is reached (out @fGaussian of standard deviatier}y = 5. The potential in
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Fig. 7. Comparison between regularized Perona-Malik and agiaptive
scheme. Top: original (left), image contaminated by additivetevGaussian
noise (right,c = 15). Bottom: image denoised using regularized Perona-
Malik (P-M) (left) and processing with adaptive Textures and small scale
features are kept better in our scheme.

Optimal | Standard| Ours -
Image SN Ry Scalar Scalar | Adaptive
Cameraman|| 15.86 19.56 19.32 20.81
Lena 13.47 18.19 17.65 18.59
Boats 15.61 20.23 19.83 20.62
Sailboat 10.36 1551 15.16 16.30
Toys 10.00 17.69 17.29 17.72

TABLE Il

DENOISING RESULTS OF A FEW CLASSICAL IMAGESFROM LEFT, SNROF

Fig. 6. Part of the Toys image. Top: original (left), noisyglr, o = 10). THE NOISY IMAGE (SN Rp), SNR'S OF SCALARA DENOISING
Each row depicts the denoised imaféleft) and the residualy — I (right)  ('OPTIMAL’ AND 'STANDARD’, SEE EXPLANATIONS FOR THIS TABLE FOR

of the following modelsT'V — L? (scalar), our proposed adapti¥d” — L2, DETAILS), SNROF OUR ADAPTIVE A DENOISING ((OURS - ADAPTIVE’).
scalarTV — H—1 [25] and scalaf"V —G [19,3], from second row to bottom,
ALL EXPERIMENTS WERE DONE ON IMAGES DEGRADED BY ADDITIVE

respectively.
WHITE GAUSSIAN NOISE (o = 10).

all images wasb(s) = v1+s2 (8 = 1). As we used gray
level images with values in the rand@ 255] the results are .
similar to TV denoising. We observed that the calculation gpnstraints.

the constant gives very little improvement. Therefore we set A pyramldal model of structure and texture was presente_d
C = 0. In the experiment on natural images (results showh which the structural component at any scale could be built

in Table 1) we set a constant residue variafe — 1.502 In a telescopic manner by texture bands of subsequent higher

(o = 1.5 in (10)). Texture patches were taken from the visTexcales. Some insight on the decomposition was given al$p wit
relation to Meyer’sG norm [19].

archive [34]. All images were processed automatically vt . e
fFollowing this image model we use the scalar process to

same parameters (no tuning of parameters was performed fo ; ;
each image). separate the noise and the relevant textures of the image

which could be degraded in the denoising process. Regions
of the residual part with higher local variance than thathef t
V. CONCLUSION noise are treated as textured regions where denoisingdhoul
The widely-used variational denoising algorithms wittbe inhibited (in a soft manner). This is accomplished by
global variance constraints perform well on simple cartooimtroducing a new variational formulation with local varze
type images, where most of the information is represented bgnstraints A-priori knowledge on the details to be preserved
the simple structural approximation of the image. Howeirer, can further enhance this method.
order to preserve texture and small scale details, mordesubt We have shown that the proposed scheme can filter noise
constraints are called for. We developed an adaptive vamat better than the scalar constraint process over a variety of
scheme that controls the level of denoising by local vagansynthetic and natural images. Visually, the processed ésag
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