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Variational Denoising of Partly-Textured Images by
Spatially Varying Constraints

Guy Gilboa∗, Nir Sochen and Yehoshua Y. Zeevi

Abstract— Denoising algorithms based on gradient dependent
regularizers, such as nonlinear-diffusion processes and total vari-
ation denoising, modify images towards piecewise constant func-
tions. Although edge sharpness and location is well preserved,
important information, encoded in image features like textures or
certain details, is often compromised in the process of denoising.
We propose a mechanism that better preserves fine scale features
in such denoising processes. A basic pyramidal structure-texture
decomposition of images is presented and analyzed. A first level of
this pyramid is used to isolate the noise and the relevant texture
components in order to compute spatially varying constraints
based on local variance measures. A variational formulation with
a spatially varying fidelity term controls the extent of denoising
over image regions. Our results show visual improvement as well
as an increase in the signal-to-noise ratio over scalar fidelity term
processes. This type of processing can be used for a variety of
tasks in PDE-based image processing and computer vision, and
is stable and meaningful from a mathematical viewpoint.

Keywords: image denoising, texture processing, spatially
varying fidelity term, nonlinear diffusion, variational image
processing.

I. I NTRODUCTION

PDE-based methods have been widely used over the past
decade for image denoising with edge preservation. These
methods are either based on the axiomatic approach of non-
linear scale-space (nonlinear diffusions), or on the variational
approach of energy functional minimization. Details regarding
the interaction and close relations between these approaches
can be found, for example, in [1], [35].

A classical variational denoising algorithm is the total vari-
ation (TV) minimizing process of Rudin-Osher-Fatemi (ROF)
[28]. This algorithm seeks an equilibrium state (minimal
energy) of an energy functional comprised of the TV norm
of the imageI and the fidelity of this image to the noisy
input imageI0:

ETV =

∫

Ω

(|∇I| + 1

2
λ(I − I0)

2)dxdy. (1)

This is further generalized by theΦ-formulation [10] with the
functional

EΦ =

∫

Ω

(

Φ(|∇I|) +
1

2
λ(I − I0)

2

)

dxdy. (2)
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The Euler-Lagrange (E-L) equation is

−F ≡ div

(

Φ′(·) ∇I

|∇I|

)

+ λ(I0 − I) = 0 (3)

whereλ ∈ IR is ascalarcontrolling the fidelity of the solution
to the input image (inversely proportional to the measure of
denoising). Neumann boundary conditions are assumed. The
solution is usually found by a steepest descent method:

It = −F , I|t=0 = I0. (4)

When the noise is approximated by an additive white
process of standard deviationσ, the problem can be formulated
as finding

minI

∫

Ω
Φ(|∇I|)dxdy

subject to 1

|Ω|

∫

Ω
(I − I0)

2dxdy = P,
(5)

where P = σ2. [Note that for noise of impulsive type this
method is not suitable, see e.g. [23], [6]]. In this formulation,
λ can be considered as a Lagrange multiplier, computed by:

λ =
1

P |Ω|

∫

Ω

div

(

Φ′(·) ∇I

|∇I|

)

(I − I0)dxdy. (6)

The solution is attained by iteratively evolving (4) and up-
dating (6) until convergence. As (5) uses a scalar constraint
(and a scalarλ) we refer to it as thescalar Φ problem. The
actual function with which we work in this paper isΦ(z) =
√

1 + β2z2. The process that results from this function is an
approximation of TV which is easy to implement by standard
discretization of the E-L equations since it has no singularity
at zero gradient. Also, when the descent is implemented by
an explicit method, the time step bound is maximal (bounded
by the standard CFL).

We choose it as a representative of variational denoising
processes.

The performance of this, and other PDE-based methods,
have shown impressive results, especially for non-textured
images. The implicit assumption that underlies the formula-
tion of these flows/equations is the approximation of images
by piecewise constant functions, which are in the space of
bounded variations (BV). We recall that a signalu is in BV if

∫

Ω

|Du| + ‖u‖L1 < ∞

where |Du| is the distributional gradient (see definition in
[11]). In some sense they produce an approximation of the
input image as the so-called “cartoon model” and, thus,
naturally dispose of the oscillatory noise while preserving
edges (in some cases even enhancing them, e.g. [26]).
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A good cartoon model captures much of the image im-
portant information. Yet, it has several obvious drawbacks:
textures are excluded, significant small details may be left
out, and even large-scale features, that are not characterized by
dominant edges, may be disregarded. The purpose of this paper
is to show that a relatively simple modification of the above
equation yields a denoising algorithm that better preserves
both the structural and textural information of the image.

Following Meyer’s work [19] recent studies in the field
suggested the use of weaker norms thanL2, such asG and
H−1, for the data fidelity term [33], [25], [3], [2]. These
modern techniques can better distinguish between structural
and oscillatory components and tend to reduce less contrast
of the structural part. However, when used for denoising
(as opposed to decomposition), these procedures still recover
mainly the structural image components, where textures may
be over-smoothed. TheG-norm (and its various approxima-
tions) is low for oscillating patterns, and therefore does not
penalize much both noise and most types of textures. The
TV norm, on the other hand, penalizes strongly oscillating
patterns. Therefore this type of energy minimization is still
not very well adapted to capture textural parts of the image
(see Fig. 6 for a comparison example).

Recent studies which perform decomposition to three cate-
gories – structure, texture and noise – by PDE’s and wavelets
[4], [29] seem to be an appropriate solution also for denoising
of natural images. We believe that our approach can comple-
ment and improve the results presented in these papers. As the
weight parameters of these methods are not spatially varying,
a constant “ratio” is implicitly assumed between structures,
textures and noise components throughout the image. Whereas
noise can often be regarded as spatially invariant (e.g. white
Gaussian noise), textures and structures are not homogenously
spread in the image (in terms of variance). Another new
approach is the use of Bregman iterations proposed by Osher
et al. [24]. In this method as well, a scalar weight parameter
λ is used. Our approach may therefore be introduced in the
future also for these new types of more sophisticated (and
complicated) denoising schemes.

In order to keep the presentation of the idea simple and
focused, we retain in this paper the more classical variational
regularization based on the gradient magnitude andL2 fidelity
term.

II. T HE CARTOON PYRAMID MODEL

The cartoon model has been defined and investigated in
the early 80’s [12], [7], was further elaborated in [20], [21]
and is widely used as the basic underlying model for many
image denoising methods. In the continuous case, the cartoon
has a curveΓ of discontinuities, but everywhere else it is
assumed to have a small or a null gradient|∇I|. A multi-
layered image representation was suggested by [18], mainly
for compression purposes. However, the wavelet compression
(thresholding) technique for extracting the cartoon part,by
using a very high compression factor, produces blurry results
which do not preserve well edges.

The TV and other gradient-dependent filters are especially
good for extracting the cartoon part of the image. We use them,

therefore, as a simple pyramid (scale-space) of rough image
sketches at different scales. Let us define a cartoon of scales,
using theΦ process, as follows:

Cs
.
= IΦ|λ= 1

s

(7)

where IΦ is the steady state of (4). See [30], [31] for a
similar definition of the scale. Let us define the residue as
the difference between two scales of cartoons:

Rn,m
.
= Cn − Cm (n < m). (8)

We shall refer to the Non-Cartoon part of scales as the residue
from level zero:

NCs
.
= R0,s = C0 − Cs. (9)

This cartoon and residue data structure is analogous of the
pyramid of wavelet approximations. By using the definitions
of (7) and (8) and integrating the E-L equation (3) we deduce
the following basic properties:

Proposition 1: The cartoon pyramid model has the follow-
ing scale properties:

1) The cartoon of scale 0 is the input image.C0 = I0.
2) The cartoon of scale∞ is the mean of the input image.

C∞ =
∫

Ω
I0(x, y)dxdy.

3) The mean of any residue is zero.
∫

Ω
Rn,mdxdy = 0.

4) A cartoon image can be built from residues of larger
scales.Cs =

∑∞
n=s Rn,n+1 + C∞.

Proof: To prove Property 1 we denoteM =
∫

Ω
Φ(|∇I0|)dxdy. Let us assumeI 6= I0 in the L2 sense

for any largeλ. Specifically, there existsh ∈ L2 such that
‖h‖2 = ε > 0 and EΦ(I) < EΦ(I0) for λ > 2M

ε2
, where

I + h = I0. Then

EΦ(I0) − EΦ(I) =
∫

Ω
Φ(|∇I0|) − Φ(|∇I|)dxdy − 1

2
λ‖h‖2

2

< M − 1

2
λε2

< 0,

which contradicts our assumption.
Property 2 can be proved using [1] (p. 79, Prop. 3) where

we deduce thatC∞ converges to the mean image value in the
L1 sense:lims→∞ ‖Cs −

∫

Ω
I0dxdy‖L1 = 0.

For Property 3 we use [1] (p. 79, Prop. 2) to show that
∫

Ω
Csdxdy =

∫

Ω
I0dxdy, ∀s ≥ 0, and therefore

∫

Ω

Rn,mdxdy =

∫

Ω

(Cn − Cm)dxdy = 0.

Property 4 is verified by expanding the sum expression:
∑∞

n=s Rn,n+1 + C∞ = Rs,s+1 + Rs+1,s+2 + . . .
. . . + R∞−1,∞ + C∞

= Cs − Cs+1 + Cs+1 − Cs+2 + . . .
. . . + C∞−1 − C∞ + C∞

= Cs.

In Table I a cartoon pyramid example is shown. See [32]
for an alternative pyramidal structure suggested recently.

In the caseΦ(z) = z in Eq. (2) where we have the ROF
model [28] one can relate the scale and residue directly with
theG-norm (or star norm) presented in [19] p. 30 (see also the
discrete version defined in [3]). TheG space is closely related



3

to the dual ofBV . The G norm ‖ · ‖G penalizes oscillatory
and piece-wise constant functions in an inverse manner to TV:
whereas the TV norm of oscillatory signals is high and their
G norm is low, piece-wise constant signals have a low TV
norm and a highG norm. For example, a signalsin(kx) in
x ∈ [0, 2π] and zero elsewhere has aG-norm approaching zero
ask → ∞, whereas its total-variation in this case approaches
∞. For more on this subject we refer the reader to [19], [33],
[3], [4], [2], [25], [22].

Proposition 2: For the functionalΦ(z) = z, we have

1) ‖NCs‖G = s.
2) m − n ≤ ‖Rn,m‖G ≤ m + n.
3) ‖Rn,m‖G = 0,∀n ≥ ‖C0 − C∞‖G.

Proof: The first and third statements are direct conse-
quences of our pyramid definitions and Theorem 3 and Lemma
4 in [19]. The second statement is validated by the relation
Rn,m = NCm − NCn, using the triangle inequality and
Statement 1.
Statement 1 states that theG-norm of the Non-Cartoon part
is strictly increasing (linearly), implying that larger and less
oscillatory features are incorporated in this part with the
growth ofs. From Statement 2, one can viewRn,m as a texture
“band” of the original image with specified upper and lower
bounds of theG norm. Due to the convexity of the ROF model,
the solutions for similar values ofλ are sufficiently close and
therefore we estimate that‖Rn,m‖G should be in fact closer
to its lower boundm − n, at least whenm andn are of the
same order. Statement 3 shows that the telescopic buildup of
the cartoon imageCs from larger texture bands, as formulated
in Statement 4 of Proposition 1, is finite in practice (excluding
the mean image valueC∞). For other relations connecting the
scale with the G-norm see [31].

In order to construct the pyramid, the desired scales should
be specified. A simple mechanism, following Gaussian and
Laplacian pyramids or wavelet decompositions to detail and
approximation parts, is to use predefined scales, which grow
exponentially, such assk = s0γ

k, whereγ is some constant
(e.g. γ = 2 for a dyadic scale). In Table I three levels of a
pyramid are shown fors0 = 1, γ = 10, k = {0, 1, 2}, as well
as the zero and infinite scales.

In this pyramid larger scales retain high frequencies (edges)
and one does not re-sample or decimate the image to a
smaller size. This gives more freedom for choosing any set
of scale values. Specifically, the multi-scale decomposition
can be image driven. This topic demands more study and
would not be elaborated in this paper. For some preliminary
directions suggested by the authors and colleagues on how to
select image-driven structure-texture splitting parameters see
[15], [5].

Use for Denoising

The cartoon pyramid has a broad context and may give some
more theoretical insight on issues regarding structure, texture
and scale.

For our denoising purposes of the next section we use only
one decomposition level which should contain the noise and
the textures at a similar scale or below that of the noise.

Scale Cartoon Non-Cartoon ResidueRn,m

0

1

10

100

∞
TABLE I

EXAMPLE OF A CARTOON PYRAMID . LEFT COLUMN - SCALE s = 1/λ,

SECOND COLUMN- CARTOON PARTCs , THIRD COLUMN - NON-CARTOON

PART NCs , RIGHT COLUMN - RESIDUERn,m (WHERE THE VALUES OF

(n, m) ARE (0, 1), (1, 10), (10, 100), (100,∞), FROM SECOND ROW

DOWN, RESPECTIVELY).

In this simpler case a good representative scale could be
selected using an estimate of the noise variance. We employ
the constrained problem, similar to (5) and impose

P =
1

|Ω|

∫

Ω

(I − I0)
2dxdy = ασ2, (10)

whereα > 0 controls the selected scale in terms of variance.
Typically 1 ≤ α ≤ 2 so that most noise and the relevant
textures of that scale are included in the residual part. In our
natural images experiment we setα = 1.5.

Our model consists of three components:I0 = IC + INC +
In, whereIorig = IC + INC is the original image,IC is the
Cartoon approximation,INC is the remainder Non-Cartoon
part, andIn is an additive noise. Note that we left the definition
of “non-cartoon” part vague. It, typically, consists of textures,
small-scale details, thin lines etc. The only assumption we
make is that it has zero mean. Under this decomposition, the
residue of the filtered imageI is:

IR ≡ I0 − I = ĨNC + Ĩn . (11)

Note that we distinguish between the “true” non-oscillatory
part and its approximation by theΦ diffusion process by the
tilde upperscript.
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III. T HE ADAPTIVE Φ PROBLEM

To obtain an adaptive scheme, we generalize theΦ de-
noising problem by imposing a spatially varying variance
constraint. Let us define first a measure to which we refer
as thelocal variance:

Pz(x, y) ≡ 1

|Ω|

∫

Ω

(Iz(x̃, ỹ) − η[Iz])
2wx,y(x̃, ỹ)dx̃dỹ, (12)

where wx,y(x̃, ỹ) = w(|x̃ − x|, |ỹ − y|) is a normalized
(
∫

Ω
wx,y(x̃, ỹ)dx̃dỹ = 1) and radially symmetric smoothing

window, η[·] is the expected value taken with respect to
the probability densitywx,y(x̃, ỹ)/|Ω| on the setΩ × Ω of
all quadruples(x, y, x̃, ỹ). From the definition of the local
variance it follows that

∫

Ω
Pz(x, y)dxdy = Pz , where

Pz ≡ var(Iz). (13)

We reformulate the scalarΦ problem, stated in Eq. (5), in the
context of the adaptiveΦ problem as follows:

minI

∫

Ω
Φ(|∇I|)dxdy

subject toP
R̂
(x, y) = S(x, y),

(14)

whereI
R̂

= (I − I0 − C), C is a constant andS(x, y) ≥ 0
is assumed to be givena-priori. We solve the optimization
problem using Lagrange multipliers:

E =

∫

Ω

(Φ(|∇I|) +
1

2
λ(x, y)P

R̂
(x, y))dxdy. (15)

The Euler-Lagrange (EL) equation for the variation with
respect toI is

λ̄(x, y)(I − I0 − C) − div

(

Φ′(·) ∇I

|∇I|

)

= 0, (16)

where for any quantityX(x, y) we define the locally averaged
quantity X̄(x, y) =

∫

Ω
X(x̃, ỹ)wx,y(x̃, ỹ)dx̃dỹ. We solve this

equation forI by a gradient descent:

It = λ̄(x, y)(I0 − I + C) + div

(

Φ′(·) ∇I

|∇I|

)

. (17)

In order to compute the value ofλ we multiply the EL
equation (16) by(I − I0 − C) and integrate over the domain
Ω. After a change in the order of integrals in theλ term we
get

∫

Ω

(λ(x, y)S(x, y) − Q(x, y))dxdy = 0, (18)

where

Q(x, y) = (I − I0 − C)div

(

Φ′(·) ∇I

|∇I|

)

.

A sufficient condition is

λ(x, y) =
Q(x, y)

S(x, y)
. (19)

Finally, the constantC is obtained by solving∂CE = 0,
yielding

C =

∫

Ω
λ(x, y)(Ī(x, y) − Ī0(x, y))dxdy

∫

Ω
λ(x, y)dxdy

. (20)

A. Automatic Texture Preserving Denoising

In the general case, we do not have much prior knowledge
on the image that can facilitate the denoising process. In our
model we assume that the noise is additive, uncorrelated with
the signal (e.g. additive white Gaussian or uniform noise) and
that its variance can be estimated.

Our aim is to use theΦ denoising mechanism in a more
accurate and precise manner. Images which can be well rep-
resented by large scale cartoon model are the best candidates
for successful denoising. Images with much fine texture and
details will not benefit that much from the operation; while
reducing most of the noise, this type of processing will
inevitably degrade important image features. The first problem
is to distinguish between good and bad candidates forΦ
denoising. The task becomes even more complex if this is done
adaptively. Many natural images exhibit a mosaic of piecewise
smooth and texture patches. This type of image structure calls
for position (spatial)-varying filtering operation.

The performance of the scalarΦ denoising process is
illustrated in Fig. 1, using a typical cartoon-type and a tex-
tured image. The SNR’s of these three processed images are
summarized in Fig. 2, and plotted as a function of the residual
variance (normalized variance of the residue). Obviously,as
these examples illustrate, cartoon-type images are denoised
much better than textured images (both in terms of SNR and
visually). Another important observation is that the maximal
SNR of cartoon and non-cartoon images is reached at different
levels of denoising. Whereas cartoon-type images reach their
peak SNR at high denoising levels (PR ≈ σ2), non-cartoon
images degrade faster and require less denoising (PR < σ2).
For deeper analysis and some bounds on the resulting SNR of
Φ process denoising see [14], [13].

We present here a relatively simple method that can approx-
imate the desired level of denoising in a region. In our above
formulation (Eq. 14), the problem reduces to findingS(x, y).

We use the cartoon pyramid model for this purpose. Our first
aim is to differentiate between the cartoon part of the image
IC and the noise and texture partsINC + In. Our splitting
parameterλ (or scales = 1

λ
) is selected by imposing (10)

and solving (5) using (4) and (6). We assign

S(x, y) =
σ4

PR(x, y)
, (21)

wherePR(x, y) is the local variance of the residueIR.
In the case whereIR ≈ In (basic cartoon model without

textures or fine scale details) this scheme is similar to the
scalarΦ process. In this caseα should be close to1. The local
variance of the residue is almost constant (PR(x, y) ≈ σ2)
and henceS(x, y) ≈ σ2. We get a high quality denoising
process whereI ≈ IC = Iorig. In the case of most natural
images, however, textures will also be filtered and included
in the residue part. As the noise is uncorrelated with the
signal, we can approximate the total variance of the residueas
PNC(x, y) + Pn(x, y), the sum of local variances of the non-
cartoon part and the noise, respectively. Thus, textured regions
are characterized by high local variance of the residue. In order
to preserve the detailed structure of such regions, the level of
filtering there should be reduced over these regions.
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Fig. 1. ScalarΦ denoising of textured and texture-free images. Top row:
Piecewise constant image, middle row: Textured image of grass,bottom row:
Patches of the two types of images combined in one. Left column depicts
the original images, middle column - noisy images, right column - result of
scalarΦ processing (Eq. 3) at convergence (PR = σ2).
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Fig. 2. SNR of scalarΦ denoising of images shown in Fig. 5. SNR is
plotted as a function of the residual variance, normalized bythe noise variance:
PR/σ2. Dashed line piecewise constant image, dash-dot line texture image,
solid line combined image.

Let us recall the classical Wiener filter (optimal linear
filter in the mean squared-error sense). Its formulation in the
frequency domain is

G(ω) =
Ps(ω)

Ps(ω) + Pn(ω)
, (22)

where Ps(ω) and Pn(ω) are the power spectrum of the
signal and noise, respectively. The basic concept amounts to
reduction in the extent of filtering (G → 1) at frequencies
where the signal power exceeds that of the noise.

In our case we have a similar principle, whereby reduction
in the extent of filtering (i.e.S → 0) is called for in regions
where signal power exceeds that of the noise. The signal is in

this case that portion of the image accounting for the texture
and fine details that may be filtered out by theΦ process.
Formally, substituting forPR(x, y) in Eq. (21) the relation
PR(x, y) ≈ PNC(x, y) + Pn = PNC(x, y) + σ2 , we get

S(x, y) ≈ σ2 1

1 + PNC(x, y)/σ2
. (23)

B. Algorithm

1) Separate the noise and relevant textures by minimizing
∫

Φ(|∇I|) subject to (10) and settingIR = I0 − I.
2) Compute the local variance ofIR by (12) and then

compute the local constraintsS(x, y) by (21).
3) Solve (14) by iteratively evolving (17) and update

λ(x, y) andC according to (19) and (20).

C. Denoising with prior information

In cases where more information regarding the structure of
the original signal is available, the performance of denoising
process incorporating a spatially-varying fidelity constraint can
be substantially ameliorated. The specifics are application-
dependent and heuristic in nature. We therefore mention here
only a few related ideas. To preserve specific features in the
denoising process, such as long thin line or known types of
textures, one can pre-process with the corresponding feature
detector (Hough transform, texture detector). The value of
S(x, y) depends, then, locally on the feature detector response.
Cases of spatially varying noise also fit the model. For
example, in low-quality JPEG images, the boundaries between
8x8 pixel-blocks are often more noisy and the fidelity to the
original data on these block boundaries should, therefore,be
decreased (S increased). See [17] for a different solution by
an adaptive window approach.

IV. EXAMPLES

The effects of adaptive- versus scalar-fidelity denoising are
illustrated using a synthetic mosaic comprised of two textured
patches juxtaposed with two smooth patches (Fig. 3). The
scalar fidelity term requires that a global variance, equal to
the noise variance, be filtered. As theΦ process is smoothing
both texture and noise, more variance is filtered in the textured
regions than in the originally smooth ones. This results in over-
smoothing of textured regions, whereas smooth regions are not
sufficiently denoised (Fig. 3, left side second row from top).
The adaptive fidelity term process (second row right) applies
different levels of denoising in different regions. This improves
the result both visually (texture is better preserved, smooth
regions are better denoised) and in terms of signal-to-noise
ratio. At the third row of Fig. 3, we show how the required
spatially varying variance,S(x, y) (middle), depends on the
value of the residue,IR (left). The value of the adaptive fidelity
term, λ(x, y) (right), is shown for the converged process
(lighter regions indicate higher value). Naturally, the values of
λ(x, y) are inversely related to the residual variance measure
S(x, y).

Processing a noisy version of the Barbara image (Fig. 4),
it is demonstrated how the adaptiveΦ method performs well
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Fig. 3. Processing of a noisy mosaic of textures (fabric and metal) and
smooth areas. From top: Original mosaic made of patches of fabric and
metal textures, juxtaposed with two constant patches (left); Noisy version,
I0, of the original with SNR=2.4dB,σ = 40 (right); Result of processing
with scalarλ - SNR=6.4dB (left), result with adaptiveλ - SNR=7.6dB (right);
Bottom row: ResidueIR (left); S(x, y) calculated according to the residue
(middle); λ(x, y) at the convergence of the process (right).

on natural images. Our simple local variance criterion seems
to be sufficient to differentiate textured from smooth regions,
even in relatively complex images. Accordingly, appropriate
local requirements on the variance to be filtered are applied.
In Fig. 5, Barbara’s right knee is enlarged to highlight similar
phenomena to those obtained in the case of the synthetic
example, where textures are preserved and the denoising of
smooth regions is stronger.

Fig. 6 shows the Teddy-bear from the Toys image. A
comparison is performed also to theTV − H−1 model of
[25] and to [3] which implements Meyer’sTV −G model [19]
(with a smallL2 residual). The scalar fidelity terms are chosen
such that the variance of the residual isσ2 (here σ = 10).
Our algorithm diminishes the denoising in the textural parts
of the bear. TheTV − G model is quite competitive, but
still degrades the shirt textures. Similar effects can be seen
in Fig. 7 where the process is compared with the regularized
version of P-M [26] proposed by Catte et al. [8]. Relatively
small regularization is used for the gradient computation of
the diffusion coefficient (variance of Gaussian is0.1). This
causes some isolated points to remain. Stronger regularization
in our experiments resulted in extensive over-smoothing ofthe
textures. One may observe that the textural snow background
is better preserved by our proposed method, while the smooth
coat parts are well denoised.

In Table II we show the comparison between scalar and
adaptive processes in terms of SNR. In the scalar process
we show two cases. The “Standard scalar” column refers to
the λ chosen according to the constrained problem (5). The
“Optimal scalar” refers to choosing the parameterλ such that
the maximal SNR of the recovered image is reached (out of

Fig. 4. An example of processing results obtained with a natural image.
From top: Original ’Barbara image’ (left); Noisy version of the original image,
I0, with SNR=8.7dB,σ = 20 (right); Result of processing with scalarλ
(SNR=12.6dB, left); Result of processing with adaptiveλ (SNR=14.2dB,
right); ResidueIR (left); S(x, y) calculated according to residue (middle)
λ(x, y) at convergence of process (right).

Fig. 5. Enlargement of Barbara’s right knee (full images are inFig. 3). Top
- result of scalar process, bottom - result of adaptive process.

a finite set of 30 optional values). This result naturally canbe
achieved only in simulations when the original clean image is
at hand (see [13] for a way to approximate this parameter).
Nevertheless, our algorithm consistently achieves betterSNR
then the optimal scalar. Note that with respect to the SNR
criterion modern multiscale wavelet-based techniques achieve
better performance (see e.g. [27]). This is due to their ability
to denoise well also the textural parts. However, in general
wavelet denoising produces less sharp results near edges and
may have some oscillations. This affects the denoising quality
but is less reflected by the SNR criterion. Convex gradient-
based variational denoising methods admit the maximum prin-
ciple and do not produce oscillatory solutions. Our algorithm
retains these desired qualities.

Implementation details

We used explicit Euler schemes to implement the iterative
processes. The averaging windoww(x, y) was selected to be
a Gaussian of standard deviationσw = 5. The potential in
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Fig. 6. Part of the Toys image. Top: original (left), noisy (right, σ = 10).
Each row depicts the denoised imageI (left) and the residualI0 − I (right)
of the following models:TV −L2 (scalar), our proposed adaptiveTV −L2,
scalarTV −H−1 [25] and scalarTV −G [19,3], from second row to bottom,
respectively.

all images wasΦ(s) =
√

1 + s2 (β = 1). As we used gray
level images with values in the range[0, 255] the results are
similar to TV denoising. We observed that the calculation of
the constantC gives very little improvement. Therefore we set
C = 0. In the experiment on natural images (results shown
in Table 1) we set a constant residue variancePR = 1.5σ2

(α = 1.5 in (10)). Texture patches were taken from the VisTex
archive [34]. All images were processed automatically withthe
same parameters (no tuning of parameters was performed for
each image).

V. CONCLUSION

The widely-used variational denoising algorithms with
global variance constraints perform well on simple cartoon-
type images, where most of the information is represented by
the simple structural approximation of the image. However,in
order to preserve texture and small scale details, more subtle
constraints are called for. We developed an adaptive variational
scheme that controls the level of denoising by local variance

Fig. 7. Comparison between regularized Perona-Malik and ouradaptive
scheme. Top: original (left), image contaminated by additive white Gaussian
noise (right,σ = 15). Bottom: image denoised using regularized Perona-
Malik (P-M) (left) and processing with adaptiveλ. Textures and small scale
features are kept better in our scheme.

Optimal Standard Ours -
Image SNR0 Scalar Scalar Adaptive
Cameraman 15.86 19.56 19.32 20.81
Lena 13.47 18.19 17.65 18.59
Boats 15.61 20.23 19.83 20.62
Sailboat 10.36 15.51 15.16 16.30
Toys 10.00 17.69 17.29 17.72

TABLE II

DENOISING RESULTS OF A FEW CLASSICAL IMAGES. FROM LEFT, SNROF

THE NOISY IMAGE (SNR0), SNR’S OF SCALARλ DENOISING

(’OPTIMAL’ AND ’STANDARD ’, SEE EXPLANATIONS FOR THIS TABLE FOR

DETAILS), SNROF OUR ADAPTIVEλ DENOISING (’OURS - ADAPTIVE’).

ALL EXPERIMENTS WERE DONE ON IMAGES DEGRADED BY ADDITIVE

WHITE GAUSSIAN NOISE (σ = 10).

constraints.
A pyramidal model of structure and texture was presented

in which the structural component at any scale could be built
in a telescopic manner by texture bands of subsequent higher
scales. Some insight on the decomposition was given also with
relation to Meyer’sG norm [19].

Following this image model we use the scalar process to
separate the noise and the relevant textures of the image
which could be degraded in the denoising process. Regions
of the residual part with higher local variance than that of the
noise are treated as textured regions where denoising should
be inhibited (in a soft manner). This is accomplished by
introducing a new variational formulation with local variance
constraints.A-priori knowledge on the details to be preserved
can further enhance this method.

We have shown that the proposed scheme can filter noise
better than the scalar constraint process over a variety of
synthetic and natural images. Visually, the processed images
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look more natural and less ’cartoon-like’. With respect to
SNR, our algorithm consistently achieves higher SNR than
the optimal that could be achieved with a single scalar value
of λ. This study assumed a simple regularizing model based
on the gradient magnitude andL2 fidelity. The ability to
effectively reduce noise from textural parts is therefore limited.
Further improvement may be gained by combining PDE-based
and wavelet-based methods in a spatially-varying manner, for
structures and textures, respectively.

Local variance constraints can be used in almost any vari-
ational denoising schemes including ones with more sophis-
ticated fidelity terms that are better adequate for oscillatory
patterns [19], [33], [25], [3], [2].
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