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Abstract. The uncertainty principle is a fundamental concept in the context of signal and image processing, just
as much as it has been in the framework of physics and more recently in harmonic analysis. Uncertainty principles
can be derived by using a group theoretic approach. This approach yields also a formalism for finding functions
which are the minimizers of the uncertainty principles. A general theorem which associates an uncertainty principle
with a pair of self-adjoint operators is used in finding the minimizers of the uncertainty related to various groups.

This study is concerned with the uncertainty principle in the context of the Weyl-Heisenberg, the SIM(2), the
Affine and the Affine-Weyl-Heisenberg groups. We explore the relationship between the two-dimensional affine
group and the SIM(2) group in terms of the uncertainty minimizers. The uncertainty principle is also extended to
the Affine-Weyl-Heisenberg group in one dimension. Possible minimizers related to these groups are also presented
and the scale-space properties of some of the minimizers are explored.

Keywords: uncertainty principles, minimal uncertainty states, affine weyl-heisenberg group, scale-space
properties

1. Introduction

Various applications in signal and image processing
call for deployment of a filter bank. The latter can
be used for representation, de-noising and edge en-
hancement, among other applications. A key issue is
the definition of the best filter bank for the applica-
tion at hand. One possible criterion lends itself to us-
ing functions which achieve minimal uncertainty. For
example, the Gaussian window minimizes the uncer-
tainty of the combined representation of the signal in
the time-frequency (or position–frequency) space. The
short time Fourier transform, implementing a gaussian
window function, is well known in signal processing as
the Gabor transform. The minimal uncertainty quality,

together with the fact that Gabor functions are tuned
to orientation and scale, led to an intensive usage of
Gabor functions and Gabor-Morlet wavelets in com-
puter vision and image processing.

The Gabor transform can be viewed as a represen-
tation obtained by the action of the Weyl-Heisenberg
group on a Gaussian window [31], or, alternatively, as
a convolution of the signal with Gaussian-modulated
complex exponentials (Gabor elementary functions
(GEF) [10]). These GEF are equivalent to a family
of canonical coherent states of the Weyl-Heisenberg
group [16]. The Gaussian function appears as a pivot
in scale-space theory as well, where its successive
applications to images produce coarser resolution im-
ages [8].
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The wavelet transform emerged as an important the-
oretical and applicative tool in signal and image pro-
cessing, while it is rooted in several research domains,
such as pure mathematics, physics and engineering.
Specifically, Gabor wavelets which sample the fre-
quency domain in a log-polar manner play an im-
portant role in texture representation and segmenta-
tion, evaluation of local features in images and other.
Gabor wavelets can be considered as a sub-group of
the family of canonical coherent states related to the
Weyl-Heisenberg group. However, they are generated
according to the operations of the affine group in one
dimension, or the similitude group in two dimensions.
Therefore, it is interesting to look for the canonical
coherent states of the affine or the similitude groups.
Moreover, it is interesting to investigate whether these
minimizers have any scale-space like attributes, sim-
ilar to those exhibited by the Gaussian function. It
turns out that this problem does not have a single de-
terministic solution, similar to the one that exists in the
case of the Weyl-Heisenberg group. Based on previous
work of Dahlke and Maass [4] and of Ali, Antoine and
Gazeau [1], one may conclude that the full significance
of the scale-space properties of possible minimizers is
not yet fully understood.

The motivation for this study comes from our pre-
vious studies on texture segmentation and representa-
tion [24–28]. A major concern encountered in dealing
with these issues is the selection of an appropri-
ate filter bank. In several studies Gabor-wavelets are
chosen because they are believed to provide the best
trade-off between spatial resolution and frequency res-
olution [2, 12, 20]. However, this is true in terms
of the Weyl-Heisenberg group, i.e. with respect to
Gabor-functions which sample the joint spatial-
frequency space via constant-value translations.
Gabor-wavelets can be generated by a logarithmic
distortion of Gabor functions (the minimizers of the
Weyl-Heisenberg group) [19] or alternatively by us-
ing multi-windows, so that a collection of the func-
tions generated by both the Weyl-Heisenberg group and
the affine group are considered [32]. As these Gabor-
wavelets are generated using the affine group, the
joint spatial-frequency space is sampled in an octave-
like manner. The general question arises whether
Gabor-wavelets provide the minimal combined uncer-
tainty with respect to the affine group. Since the Gabor
wavelets combine both time (position) and frequency
translations, along with dilations, it seems that it may be
related to the Affine-Weyl-Heisenberg (AWH) group.
The canonical representation U of the AWH group on

L2(R) is given by:

[U (b, ω, a, ϕ)ψ](t) = 1√
a

eiϕeiωtψ

(
t − b

a

)
(1)

and the coefficients generated by the inner product
〈 f, U (x)ψ〉 provide the Gabor-wavelets transform, if
ψ is selected to be a Gaussian. Thus, searching for
the minimizer of the uncertainty principle related to
the AWH group, may provide a mother-wavelet which
allows for maximal accuracy in the time-frequency-
scale combined space. This may be significant in terms
of optimal representations of signals. The applications
are numerous yet one notable motivation is an affine
invariant treatment of texture. Since one of the most
important transformations in vision is the perspective
transformation, which is well approximated in many
cases by the affine group, it is of major interest to gener-
alize the analysis from the Euclidean case to the Affine
case. While we have a reason to believe that affine
based transform can facilitate an invariant treatment of
texture we believe that this issue deserves a separate
publication.

The rest of this paper is organized as follows:
First, we provide some review of background and re-
lated work. Next, we apply the uncertainty principle
theorem to the Weyl-Heisenberg group in one and
two-dimensions, to obtain the Gaussian function.
Motivated by the need to define the minimizers for the
uncertainty associated with the affine group, we follow
the analysis of Dahlke and Maass [4] and that of Ali,
Antoine, and Gazeau [1], and apply the uncertainty
theorem to the affine group in one and two dimen-
sions. Moreover, we explore this issue in the context
of the AWH group. We conclude by pointing out the
scale-space properties of some of the obtained mini-
mizers [29].

2. Background and Related Work

The uncertainty principle is a fundamental concept in
the context of signal and information theory. It was
originally stated in the framework of quantum mechan-
ics, where it is known as the Heisenberg uncertainty
principle. In this context it does not allow to simulta-
neously observe the position and momentum of a parti-
cle. In 1946, Gabor [10] has extended this idea to signal
and information theory, and has shown that there ex-
ists a trade off between time resolution and frequency
resolution for one-dimensional signals, and that there
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is a lower bound on their joint product. These results
were later extended to 2D signals [3, 19].

The functions which attain the lower bound of the
inequality defining the uncertainty principle have been
the subject of ongoing research. In quantum mechan-
ics they are regarded as a family of canonical coher-
ent states generated by the Weyl-Heisenberg group. In
information and signal theory, Gabor discovered that
Gaussian-modulated complex exponentials provide the
best trade-off for time resolution and frequency reso-
lution.

A general theorem which is well known in quantum
mechanics and harmonic analysis [9] relates an
uncertainty principle to any two self-adjoint operators
and provides a mechanism for deriving a minimizing
function for the uncertainty equation.

Theorem 1. Two self-adjoint operators, A and B
obey the uncertainty relation:

�Aψ�Bψ ≥ 1

2
|〈[A, B]〉| ∀ψ, (2)

where �Aψ, �Bψ denote the variances of A and B
with respect to the signal ψ . The triangular parenthesis
mean an average over the signal i.e. 〈X〉 = ∫

ψ∗ Xψ .
The mean of the action of an operator P on a function ψ

is denoted by: μP (ψ) = 〈P(ψ)〉, and the commutator
[A, B] is given by: [A, B] := AB − B A. A function
ψ is said to have minimal uncertainty if the inequality
turns into an equality. This happens iff there exists an
η ∈ i R such that

(A − μA)ψ = η(B − μB)ψ. (3)

This last relation yields a differential equation for each
non-commuting couple of self-adjoint operators.

The Weyl-Heisenberg and the affine groups are both
related to well known transforms in signal processing:
the windowed-Fourier and wavelet transforms. Both
can be derived from square integrable representations
of these groups. The windowed-Fourier transform is
related to the Weyl-Heisenberg group, and the wavelet
transform is related to the affine group. Deriving the
infinitesimal generators of the unitary group represen-
tations, we obtain self-adjoint operators. Thus, the gen-
eral uncertainty theorem [9] stated above provides a
tool for obtaining uncertainty principles using these
infinitesimal generators of the group representations.

In the case of the Weyl-Heisenberg group, the canoni-
cal functions which minimize the corresponding uncer-
tainty relation are Gaussian functions. The canonical
functions which minimize the uncertainty relations for
the affine group in one dimension and for the similitude
group in two dimensions, were the subject of previous
studies [1, 4, 33].

In these studies, it was shown that there is no
non-trivial canonical function which minimizes the un-
certainty equation associated with the similitude group
of R2, SIM(2) = R2 × (R+ × SO(2)). Thus, there
is no non-zero solution to the set of differential equa-
tions obtained for this group generators. Rather than
using the original generators of the SIM(2) group,
Dahlke and Maass [4] used a different set of opera-
tors that includes elements of the enveloping algebra,
i.e. polynomials in the generators of the algebra, to ob-
tain the 2D isotropic Mexican hat as a minimzer. Ali,
Antoine and Gazeau [1] proposed a solution based on
the ideas presented in the work of Antoine, Murenzi
and Vandergheynst [33]. They have noted a symmetry
in the set of commutators obtained for the SIM(2) group
and derived a possible minimizer in the frequency do-
main for some fixed direction. Their solution is a real
wavelet which is confined to some convex cone in the
positive-half-plane of the frequency space and is expo-
nentially decreasing inside.

The representation theory of the Affine-
Weyl-Heisenberg group and its possible exten-
sions/modifications have already been addressed in
this context in the early 90′s. Torresnai [23] considered
wavelets associated with representations of the AWH
group, as well as associated with resolutions of the
identity. He had also shown that the canonical repre-
sentation of the AWH group is not square integrable,
but can be regularized with some density function.
This work was later extended to N-dimensional AWH
wavelets [13]. Segman and Schempp [30] introduced
ways to incorporate scale in the Heisenberg group with
an intertwining operator and presented the resulting
signal representations. More recently, Teschke [22]
proposed a mechanism for construction of generalized
uncertainty principles and their minimizing wavelets in
anisotropic Sobolev spaces. He derived a new set of un-
certainties by weakening the two operator relations and
by introducing a multi-dimensional operator setting.

3. The Weyl-Heisenberg Group

The uncertainty principle related to the Weyl-
Heisenberg group has a tremendous importance in two
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main fields: In quantum mechanics, the uncertainty
principle prohibits the observer from exactly knowing
the location and momentum of a particle. In signal pro-
cessing, the uncertainty principle provides a limit on
the localization of the signal in both time (or position)
and frequency domains.

Let G be the Weyl-Heisenberg group,

G := {(ω, b, τ )|b, ω ∈ IR, τ ∈ IC, |τ | = 1} , (4)

with group law

(ω, b, τ ) ◦ (ω′, b′, τ ′) =
(
ω + ω′, b+b′, ττ ′ei (ωb′−ω′b)

2

)
.

(5)

We assume that the toral component, τ , of the
group representation, is fixed. Let π be its canoni-
cal left action on L2(IR); the coefficients generated
by 〈 f, π (x)ψ〉 are known as the windowed Fourier
transform of the function f , with ψ being the window
function. The windowed Fourier transform is defined
by:

〈 f, π (x)ψ〉 = (Wψ f )(ω, b)

=
∫

f (x)ψ(x − b)e−iωx dx (6)

The Fourier transform is a tool of profound importance
in signal processing and in quantum physics, where it
is used for the study of coherent states. The Gaussian
window function ψ(x) = e− x2

2 has an important role
in the windowed Fourier analysis as it minimizes the
Weyl-Heisenberg uncertainty principle.

Next, we review the derivation of the uncertainty
principles for the Weyl-Heisenberg group in one and
two dimensions using the uncertainty principle theo-
rem. The reader may find the classical proofs of the
uncertainty principle for the Weyl-Heisenberg group
in the work of Gabor [10] for one-dimensional signals
and in the work of Daugman [3] for two-dimensional
signals.

3.1. The One-Dimensional Case

The unitary irreducible representation of the
Weyl-Heisenberg group in L2(R) is given by:
[U (ω, b, τ )ψ](x) = τe

−iωb
2 eiωxψ(x − b). If the toral

component of the group representation is fixed, then
the representation can be defined as: [U (ω, b)ψ](x) :=

eiωxψ(x − b). The following infinitesimal generators
of the group can be defined as:

(Tωψ)(x) : = i
∂

∂ω
[U (ω, b)ψ](x)|ω=0,b=0 = −xψ(x)

(7)

(Tbψ)(x) : = i
∂

∂b
[U (ω, b)ψ](x)|ω=0,b=0

= −i
d

dx
ψ(x) (8)

The one-dimensional uncertainty principle for the
Weyl-Heisenberg group can be derived using the
general uncertainty principle.

Corollary ([9]) Let Tω = −x and Tb = −i ∂
∂x be the in-

finitesimal operators of the Weyl-Heisenberg group. If
ψ ∈ L2(IR) we have: ‖(Tω −μω)ψ‖2‖(Tb −μb)ψ‖2 ≥
1
4
‖ψ‖2, where: ‖‖2 is defined as:

∫
ψ(x)ψ∗(x)dx .

Equality is obtained iff

ψ(x) = Ce−iμb x e− i
2η

(x−μω)2

, (9)

where C = ( i
2πη

)
1
4 and η ∈ iIR+.

3.2. The Two-Dimensional Case

The unitary irreducible representation of the Weyl-
Heisenberg group in two dimensions is given by:
[U (ω1, ω2, b1, b2, τ )ψ](x, y) = τei(ω1x+ω2 y)ψ(−→u −−→
b ), where −→u = (x, y),

−→
b = (b1, b2). The following

infinitesimal generators of the group can be defined as:

(T−→ω ψ)(−→u ) := i
∂

∂−→ω [Uψ](−→u )|−→ω =0,
−→
b =0

= −−→u ψ(−→u ) (10)

(T−→
b

ψ)(−→u ) := i
∂

∂
−→
b

[Uψ](−→u )|−→ω =0,
−→
b =0

= −i
−→∇ ψ(−→u ), (11)

where −→ω = (ω1, ω2). The only non-vanishing com-
mutators of these four operators are:

[Twk , Tbk ] = −i, k = 1, 2. (12)

Thus, an uncertainty principle can be obtained for
translations in the spatial and frequency domains. This
can be executed for each dimension separately. It is in-
teresting to note that using the Weyl-Heisenberg group,
there is no coupling between the x and y components.
Thus attaining a certain accuracy in the x component
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does not affect the degree of accuracy in the y compo-
nent.

If we derive the minimization equation, we sim-
ply get the result of the one-dimensional analysis for
both x and y coordinates. The separability of the
Weyl-Heisenberg group results in separable Gaussian
functions as the minimizers of the combined uncer-
tainty. This is, in fact, an inherent property of the Gaus-
sian function.

4. The Affine Group

Let A be the affine group, and let π be its canoni-
cal left action on L2(IR); the coefficients generated by
〈 f, π (x)ψ〉 are known as the wavelet transform of a
function f , where ψ is the mother wavelet, or tem-
plate. The wavelet transform is defined by:

(Wψ f )(a, b) =
∫

R
f (x)|a|− 1

2 ψ

(
x − b

a

)
dx, (13)

where x denotes the complex conjugate of x .

4.1. The One-Dimensional Case

Let A be the affine group,

A := {(a, b)|(a, b) ∈ IR2, a �= 0} (14)

with group law

(a, b) ◦ (a′, b′) = (aa′, ab′ + b). (15)

A unitary group representation is obtained by the action
of A on ψ(x):

[U (a, b)ψ](x) = |a|− 1
2 ψ

(
x − b

a

)
(16)

In preparation for our extension of this approach to
two-dimensions and other groups, we quote the main
results presented in the work of Dahlke and Maass
[4] for the one-dimensional affine group. First, the
self-adjoint infinitesimal operators are calculated by
computing the derivatives of the representation at the
identity element:

Ta = −i

(
1

2
− x

∂

∂x

)
(17)

Tb = −i
∂

∂x
.

Using these operators, the affine uncertainty princi-
ple is given [4], and the following differential equation
is obtained

(Ta − μa)ψ(x) = η ((Tb − μb)ψ(x)) , (18)

which is explicitly given by:

−1

2
iψ(x) − i xψ ′(x) − μaψ(x)

= −iηψ ′(x) − ημbψ(x). (19)

The solution to this equation is: ψ(x) = c(x − η)α,

where α = − 1
2

− iημa + iμb, and some constraints
on the value of α are imposed to guarantee that the
obtained solution is in L2(IR).

4.2. The Two-Dimensional Case

This section is divided into two parts. In the first part
we recall previous results that concern the SIM(2)
group [1, 4, 33]. In the second part, we extend their
findings to account for the full Affine group in two
dimensions.

The 2D Similitude Group of IR2, SIM(2) =
IR2 × (IR+ × SO(2)). Consider the group SIM(2)
with group law (a, b, τθ ) ◦ (a′, b′, τθ ′ ) = (aa′, b +
aτθb′, τθ+θ ′ ). The unitary representation of SIM(2) in
L2(IR2) is given by:

[U (a, b, θ ) f ](x, y) = 1

a
f

(
τ−θ

(
x − b1

a
,

y − b2

a

))
,

(20)

where the rotation τθ ∈ SO(2) acts on a vector (x, y)
in the following way:

τθ (x, y) = (x cos(θ ) − y sin(θ ), x sin(θ ) + y cos(θ )),

(21)

and θ ∈ [0, 2π ). The self-adjoint infinitesimal opera-
tors are given by:

Tθ = i(−→u ⊥
)t · ∇, Ta = −i(1 + −→u t · ∇),

T−→
b

= −i∇.

where (−→u ⊥
)t = (−y, x). These operators yield four

non-zero commutators, which generate in turn a system
of four differential equations. It turns out that there does
not exist a non-zero solution to this system of differ-
ential equations. Therefore, Dahlke and Maass [4] find
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a solution for a different set of operators from the en-
veloping algebra. The solution they find is a minimizer
to the uncertainty principles associated with the opera-
tors: Ta, Tθ and Tb = T 2

b1 + T 2
b2. A possible solution is

the Mexican hat function: ψ(x, y) = [2 − 2βr2]e−βr2

,
where r =

√
x2 + y2. Ali et al. [1] and Antoine et al.

[33] observe that the relationships between Ta and Tb1
,

and between Tθ and Tb2
, can be transformed into the

relationships between Ta and Tb2
, and Tθ and Tb1

by a
π
2

-rotation. Thus, they define a new translation opera-
tor Tb = Tb1

cos(γ ) + Tb2
sin(γ ), so that a minimizing

function can be obtained for this new operator as well
as for Ta and Tθ with respect to a fixed direction γ . The
minimizer they obtain in the frequency space kx , ky is
a function which vanishes outside some convex cone in
the half-plane kx > 0 and is exponentially decreasing
inside:

ˆψ(k) = c|−→k |se−iηkx , (22)

where s > 0 and iη > 0.

The Affine Group in 2D. Let us explore the most
straightforward representation of the Affine group. De-

fine an invertible matrix s = [ s11 s12
s21 s22

]. Its determinant

is D = |s11s22−s21s12|, −→b = (b1, b2) and −→x = (x, y).
The representation corresponding to the action of the
Affine group is accordingly given by:

[U (s, −→b )ψ](−→x ) =
√

Dψ(s(−→x − −→
b )). (23)

Let us calculate the infinitesimal operators associated
with: s11, s12, s21, s22, b1, b2:

Ts11
(x, y) = i

(
1

2
+ x

∂

∂x

)
,

Ts22
(x, y) = i

(
1

2
+ y

∂

∂y

)
,

Ts12
(x, y) = iy

∂

∂x
, Ts21

(x, y) = i x
∂

∂y
,

Tb1
(x, y) = −i

∂

∂x
, Tb2

(x, y) = −i
∂

∂y
. (24)

As these operators were derived from a unitary rep-
resentation, they are self-adjoint. The non-vanishing

commutation relations are:[
Ts11

, Tb1

] = iTb1
,
[
Ts11

, Ts12

] = iTs12
,[

Ts22
, Tb2

] = iTb2
,
[
Ts12

, Ts22

] = iTs12
,[

Ts12
, Tb2

] = iTb1
,
[
Ts11

, Ts21

] = −iTs21
,[

Ts21
, Tb1

] = iTb2
,
[
Ts21

, Ts22

] = −iTs21
,[

Ts12
, Ts21

] = −i(Ts11
− Ts22

)

Thus, of the fifteen possible commutation relations,
we obtain nine uncertainty principles. It is interesting
to note that the scaling in the x direction (s11) is not
constrained by the scaling in the y direction (s22). The
same goes for the x and y translations. Using the un-
certainty theorem for self-adjoint operators, we ob-
tain a set of differential equations, whose solution is
the function which obtains the minimal uncertainty.
A simultaneous solution for all equations necessar-
ily imposes: ψ ≡ 0. Thus, we attempt to find pos-
sible solutions over sub-sets. We define new operators
which are derived from the group’s infinitesimal gener-
ators, and are elements of the enveloping algebra. First,
we look at the linear combinations of the infinitesi-
mal operators: Tθ = Ts12

− Ts21
= i(y ∂

∂x − x ∂
∂y ) and

Tscale = Ts11
+ Ts22

= i + i x ∂
∂ x + iy ∂

∂y . We may
consider these new operators as representing the total
orientation and scale changes due to the operation of the
affine group. Moreover, these operators, along with the
translation operators, are identical to those obtained for
the SIM(2) group and, thus, we can easily implement
the analysis offered for this group. It is also possible to
use rotation invariant functions which can be presented
by: ψ(x, y) = g(

√
x2 + y2). These are the minimizers

of the following three operators, which are defined as
polynomials in the existing six operators:

Tθ = Ts12 − Ts12,

Tscale = Ts11 + Ts22 = i

(
1 + r

∂

∂r

)
,

Tr = T 2
b1

+ T 2
b2

= 1

r
− ∂2

∂r2
.

The equations to be solved are:

(Tθ − μθ )g(r ) = η1(Tr − μr )g(r ) (25)

(Tθ − μθ )g(r ) = η2(Tscale − μscale)g(r ) (26)

(Tr − μr )g(r ) = η3(Tscale − μscale)g(r ). (27)

Naturally, the motivation for defining these new op-
erators is the rotation invariance property of Tθ , i.e.
Tθ g(r ) = 0. Thus, instead of seven equations to be
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solved, we are left with only three. We can simply se-
lect η1 = η2 = 0, and are left with:

−g′′(r ) − 1

r
g′(r ) − μr g

= −η3i(g(r ) + rg′(r )) − η3μscaleg. (28)

As already mentioned, a possible solution of this
equation is the Mexican hat function. Another pos-
sible solution, in the spirit of [1], can be obtained by
observing that the set of commutators:

[Ts11
, Ts12

], [Ts11
, Ts21

], [Ts11
, Tb1

], [Ts12
, Ts21

], [Ts12
, Tb2

]

transforms under π
2

-rotation into the complementary
set of commutators:

[Ts22
, Ts21

], [Ts22
, Ts12

], [Ts22
, Tb2

], [Ts21
, Ts12

], [Ts21
, Tb1

].

If the commutator relation between Ts21
and Ts12

is ig-
nored, we may obtain the following set of differential
equations:

i

(
ψ(x, y)

2
+ xψx (x, y)

)
− μ11ψ(x, y)

= η1(iyψx (x, y) − μ12ψ(x, y))

Figure 1. The real part of the minimizer for the Affine group: ψ(x, y) = x−iμ11− 1
2 eiμb2

y which does not belong to L2.

i

(
ψ(x, y)

2
+ xψx (x, y)

)
− μ11ψ(x, y)

= η2(i xψy(x, y) − μ21ψ(x, y))

i

(
ψ(x, y)

2
+ xψx (x, y)

)
− μ11ψ(x, y)

= η3(−iψx (x, y) − μb1
ψ(x, y))

−iψy(x, y) − μb2
ψ(x, y) = η4(iyψx (x, y)

−μ12ψ(x, y)), (29)

where μi j = μψ (Tsi j ). Selecting all η’s to be ze-
ros, a possible solution for this system is: ψ(x, y) =
x−iμ11− 1

2 eiμb2
y . The real part of this solution is depicted

in Fig. 1. This solution, however, does not belong to
L2(R2) in terms of both x and y. If we restrict our anal-
ysis to the differential equations which relate Ts11

to Tb1

and Ts12
to Tb2

:

i

(
ψ(x, y)

2
+ xψx (x, y)

)
− μ11ψ(x, y)

= η3(−iψx (x, y) − μb1
ψ(x, y)) − iψy(x, y)

−μb2
ψ(x, y) = η4(iyψx (x, y) − μ12ψ(x, y)),

(30)

then, under the selection of η3 to be non-zero,
we may obtain a solution of the form ψ(x, y) =
(η3 + x)−

1
2
−iμ11+iη3μb1 eiμb2

y . The solution may become
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Figure 2. The real part of the minimizer for the sub-Affine group: ψ(x, y) = (η3 + x)−
1
2 −iμ11+iη3μb1 eiμb2

y that belongs to L2 with respect to

x , and is periodic with respect to y.

square integrable with respect to the variable x if we se-
lect: |η3| ≥ 1

2μb1

. This solution is not square integrable

in terms of the variable y, although it is periodic. It is
shown in Fig. 2 for a selection of η3 = i and μb1

= 1.

5. The Affine Weyl-Heisenberg Group

The AWH group is generated by time (or spatial coor-
dinate) and frequency translations, and time (or spatial
coordinate) dilations. The AWH group can be viewed
as the extension of the affine group, incorporating fre-
quency translations or, alternatively, as the extension of
the Weyl-Heisenberg group by dilations. Its canonical
representation in L2(R) fails, however, to be square in-
tegrable, but can be regularized in an appropriate way,
by the introduction of a density function [23].

5.1. The One-Dimensional Case

The unitary irreducible representation of the AWH
group in L2(R) is given by:

[U (ω, a, b)ψ](t) = 1√
a

eiωtψ

(
t − b

a

)
. (31)

Following are the infinitesimal generators of the group:

Ta(t) := i
∂U

∂a
|a=1,b=0,ω=0 = −i

(
1

2
+ t

∂

∂t

)
Tb(t) := i

∂U

∂b
|a=1,b=0,ω=0 = −i

∂

∂t
(32)

Tω(t) := i
∂U

∂ω
|a=1,b=0,ω=0 = −t

Next, we calculate the commutation relations be-
tween the four operators. The non-zero commutation
relations are given by:

[Ta, Tb] = iTb, [Ta, Tω] = −iTw, [Tb, Tω] = −i (33)

Using the uncertainty theorem, the following set of
differential equations is derived:

−iψ ′(t) − μbψ(t) = η1

iψ(t)

2
− η1i tψ ′(t) − η1μaψ(t)

−tψ(t) − μωψ(t) = η2

iψ(t)

2
− iη2tψ ′(t) − η2μaψ(t)

−iψ ′(t) − μbψ(t) = −η3tψ(t) − η3μωψ(t), (34)

The solution of this set of equations is the minimizer
of the uncertainty of the AWH group. However, there
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is no non-trivial solution for these equations. The first
equation brings us back to the one-dimensional affine
group, whose solution was already discussed. The third
equation is the same one obtained for the one-
dimensional Weyl-Heisenberg group. If we solve the
second equation, which relates the scaling and fre-
quency translations, we obtain a polynomial solution
which is not in L2. In order to find a minimizing func-
tion for the uncertainty principle for the AWH group,
we substantiate the work of Torresani [23], which pro-
vides the permitted relationships between scale and fre-
quency.

6. A Gabor-Wavelet Type Subgroup of the Affine
Weyl-Heisenberg Group

In his work, Torresani [23] considers a subgroup of
the AWH, where frequency translations are functions
of the scale parameter. This sub-group is represented
by Gλ. He proves that the relationship between the
scale a and the frequency �(a) has the following form:
�λ(a) = λ[ 1

a − 1], where λ ∈ R. This reciprocal rela-
tions are in agreement with the structure of the Gabor
wavelets, where the frequency depends on the scale,
so that smaller scales are related to higher frequencies
and vise-versa. The canonical action of Gλ on L2(R)
is inherited from that of the AWH group:

[U (b, a)ψ](t) = [U (b, �λ(a), a, 0)ψ](t)

= 1√
a

eiλt( 1
a −1)ψ

(
t − b

a

)
.

This representation is then proved to be square inte-
grable [23].

6.1. The Uncertainty Principle for Gλ

First, we derive the self-adjoint differential operators
which are associated with the Gλ group. For ease of
presentation, we look at the following representation:

[U (b, a)ψ](t) = √
aeikatψ(a(t − b)).

The two associated self-adjoint operators are defined
by:

Ta(t) = eikt

(
− kt + i

2
+ i t

∂

∂t

)
(35)

Tb(t) = −ieikt ∂

∂t
.

The associated differential equation is:

(Ta − μa)ψ(t) = η(Tb − μb)ψ(t), (36)

explicitly given by:

eikt

(
− ktψ(t) + i

2
ψ(t) + i tψ ′(t)

)
− μaψ(t)

= −ηieiktψ ′(t) − ημbψ(t). (37)

After rearranging the terms, we obtain:

ds = dψ(t)

ψ(t)
= (−i)

(
kt + (μa − ημb)e−ikt − i

2
)
)

t + η
.

(38)

This integral may be well defined if the integration
bounds are finite (e.g. some finite t0 and the variable
t), but not otherwise. The solution is thus given by:
ψ = const ∗ es , where

s =
∫ t

t0

−i
(
kq + (μa − ημb)e−ikq − i

2
)
)

q + η
dq.

The integration of the terms
∫ t

t0
dq

q+η
and

∫ t
t0

q
q+η

dq
presents no analytical difficulty, while the calculation

of
∫ t

t0
e−ikq

q+η
dq is not analytically defined. We, therefore,

must use some approximations to be presented in the
next section. The solution is given by:

s = − ik

(
(t−t0)−ηlog

(
η + t

η + t0

))
−1

2
log

(
η + t

η + t0

)
− i(μa − ημb)H (t), (39)

where H (t) = ∫ t
t0

e−ikq

q+η
dq. Thus, the solution for ψ(t)

is:

ψ(t) = eikt0 (η + t0)
1
2
−ikηe−ikt (η + t)ikη− 1

2 e−i AH (t),

(40)

where A = μa − ημb. In order for the solution to
belong to L2(R), I m(η) > 1

2k if k > 0 or, I m(η) < 1
2k

if k < 0.
Our main interest in this approximation is derived

from the need to explore the behavior of the function
which provides the minimum value for the AWH un-
certainty rule, and to assess the validity of this approx-
imation. Next, we elaborate on the numerical approx-
imations of the complex exponential integral we have
to solve.
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6.2. The Complex Exponential Integral

The integral H (t) = ∫ t
t0

e−ikq

q+η
dq should be calculated

for both t and q being real. Following the change of
variables, w = ik(q + η), we obtain: H (z) = eikη∫ z

z0

e−w

w
dw, where z0 = ik(t0 + η) and z = ik(t + η).

The following approximation can be obtained for
small values of z using the Taylor expansion:

H (z) = eikη

∫ z

z0

e−w

w
dw = eikη

×
(

ln(z) + �∞
s=1

(−1)s zs

ss!
− ln(z0)− �∞

s=1

(−1)s(z0)s

ss!

)
.

Thus, inserting this expression into our function, we
obtain:

ψ(t) = C1(t0)e−ikt (t + η)ikη− 1
2 (ik(t + η))−i(μa−ημb)eikη

× e−i(μa−ημb)eikη�∞
s=1(−1)s (ik(t+η))s

ss!

= C1(t0)e−ikt (t + η)ikη− 1
2 (ik(t + η))−i(μa−ημb)eikη

× exp{i(μa − ημb) (ik(t + η)) eikη}

× exp

{
− i(μa − ημb)

(ik(t + η))2

2 ∗ 2!
eikη

}
. . . ,

(41)

where

C1(t0) = eikt0 (t0 + η)
1
2
−ikη (ik(t0 + η))i(μa−ημb)eikη

× eieikη(μa−ημb)�∞
s=1(−1)s (ik(t0+η))s

ss!

Figure 3. The behavior of the absolute value of a possible minimizing function of the AWH uncertainty. The right and left figures demonstrate

the behavior of this function according to the asymptotic expansion in ±∞. The center figure demonstrates the behavior close to zero.

Evaluating the exponential integral in the case of large
values of z, we can use asymptotic approximation via
successive integration by parts to obtain:

H (z) = eikη

∫ z

z0

e−w

w
dw

= eikη−z

{
1

z
− 1

z2
+ 2!

z3
− 3!

z4
+ · · ·

}
−eikη−z0

{
1

z0

− 1

z2
0

+ 2!

z3
0

− 3!

z4
0

+ · · ·
}
,

where the general term in the series has the form
(−1)n+1(n−1)!

zn for an arbitrary n. Inserting this into the
expression for ψ(t) we obtain:

ψ(t) = C2(t0)e−ikt (t + η)ikη− 1
2

× exp {−i(μa − ημb)e−ikt V (t, η)}),

where

C2(t0) = eikt0 (t0 + η)
1
2
−ikη

× exp {i(μa − ημb)e−ikt0 V (t0, η)},

and

V (t, η) = 1

(ik(t + η))
− 1

(ik(t + η))2

+ · · · + (−1)n+1(n − 1)!

(ik(t + η))n
.
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Figure 4. The behavior of the absolute value of the possible minimizing function of the AWH uncertainty, shown in Fig. 3, plotted on a

logarithmic scale.

A plot of the absolute value of this function is de-
picted in Figs. 3 and 4.

7. Scale-Space Nature of the Uncertainty
Principle Minimizers

As has already been shown, the Gaussian function
is the minimizer of the uncertainty related to the
Weyl-Heisenberg group. It also has an important role
in the framework of scale-space [21]. Application of
Gaussian functions with different values of variances to
some image, result in smoother versions of the original
image, where the degree of smoothness is determined
by the standard deviation of the Gaussian. Moreover,
successive applications of two Gaussian functions with
parameters t1 = 1

2
σ 2

1 and t2 = 1
2
σ 2

2 , are equivalent to
application of a Gaussian with t = t1 + t2. Thus, the
Gaussian functions with the parameter t = 1

2
σ 2 form

a semi-group with respect to convolution.
The concept of linear and non-linear scale-space is

important in image processing, in terms of represen-
tation of images, image denoising, features extraction
and image analysis. Therefore, we would like to ex-
plore whether functions which are minimizers of uncer-
tainty principle encompass scale-space like attributes,

and thus may be used in image interpretation. This
mathematical curiosity is rooted in a deeper question:
is the Gaussian function really so unique, or is it one in
many other functions that may posses attributes such
as: smoothness, separability, self-similarity (in time
and frequency), scale-space generation, minimizers of
an uncertainty principle and being the kernel (Green
function) of a heat-like (diffusion) equation. This sec-
tion serves as an appetizer, and provides evidence that
minimizers of uncertainty principles related to groups
other than the Weyl-Heisenberg, also posses scale-
space generation properties.

In this study we have considered the minimizers of
the uncertainties related to the SIM(2) and the AWH
group. We now proceed to present some preliminary
results, indicating that there are scale-space attributes
to minimizers of uncertainty relations, other than the
Gaussian function [29].

The solution offered by Dahlke and Maass for
the minimizer with respect to the SIM(2) group
is scale-space by nature. The minimizer that they
found is the Mexican hat function: ψ(x, y) =
β(1 − βr2) exp(−βr2), where r :=

√
x2 + y2. Its

Fourier transform is π2k2 exp(−π2k2

β
). Clearly, if we

define β = 1/t then the semi-group property is triv-
ially satisfied with t as the semi-group parameter. Note
that this is a scale-space of an edge detector and not of
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Figure 5. The one-dimensional Cauchy wavelets in the frequency domain given by: ψ̂(ξ ) = cξ se−rξ for ξ ≥ 0 where ψ̂(ξ ) = 0 for ξ < 0,

and s > 0. We present the different functions obtained for different values of s and r .
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Figure 6. The one-dimensional Cauchy wavelets in the time domain. This is a numerical approximation obtained by taking the inverse Fourier

transform of the function. The functions depend on both s and r . As r increases, the size of the window increases, thus it may be associated

with a higher degree of smoothing, while as s increases the window becomes smaller.

the image smoothness as usual. It is in fact an element of
the jet-space of the traditional Gaussian scale-space. It
is interesting to note the similarity with the scale-space
generated by the complex diffusion operator [11], as

well as the study of α-scale-spaces [5,6] and the Pois-
son Scale-Space [7].

The rest of this section is devoted to exploring
the scale-space nature of the minimizer given by Ali,
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Figure 7. The two-dimensional solution of Ali, Antoine and Gazeau [1] in the frequency domain given by: ψ̂(k̂) = c|−→k |se−rkx where s > 0,

r > 0 and kx > 0. We present the different functions obtained for different values of s and r.

Figure 8. The 2D solution of Ali et al [1] in the spatial domain. This is a numerical approximation obtained by taking the inverse Fourier

transform of the function. As r increases, the size of the window increases (a higher degree of smoothing). As s increases the window becomes

smaller.
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Figure 9. A one-dimensional rectangular pulse function.

Antoine and Gazeau for the uncertainty related to the
SIM(2) group [1]. Their solution is given in the the
wave number (frequency) space (kx , ky). It is a func-
tion which vanishes outside some convex cone in the
half-plane kx > 0 and is exponentially decreasing in-
side:

ψ̂(k) = c|−→k |se−rkx , (42)

where s = iη〈P1〉 > 0, η ∈ iIR, 〈P1〉 is the mean
value of the translation operator in the kx direction,
and r = iη > 0. The one-dimensional equivalent of
this solution is known as the Cauchy wavelets [14,18]:
ψ̂(ξ ) = cξ se−rξ for ξ ≥ 0 where ψ̂(ξ ) = 0 for ξ < 0,
and s > 0. The characteristic responses of the one- and
two-dimensional filters are depicted in Figs. 5, 6, 7and
8, respectively, in both the Fourier and time/position
domains. It is quite obvious, from the mere definition
of the function, that successive applications of the fil-
ters with two values of either s or r correspond to a
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Figure 10. When the 1D Cauchy wavelets are applied to a rectangular pulse, the larger s is the more noticeable the edges are (left to right).

The larger r is the smoother the edges become (up to bottom).

single application of an effective parameter. Moreover,
this function has the following properties. The term
|−→k |s = (k2

x +k2
y)

s
2 in frequency space is actually equiv-

alent (up to a sign) to a power of the Laplacian operator

( ∂2

∂x2 + ∂2

∂y2 )
s
2 in the spatial space and, thus, can be consid-

ered as an edge enhancement operator. The term e−rkx

can be considered as a smoothing operator in the x
direction.

Applications of the Cauchy wavelets to a rectangular
pulse function (Fig. 9) yields the following results: as
s increases, the edges become more pronounced, while
as r increases, the signal becomes smoother (Fig. 10).

We next apply the two-dimensional minimizer filter
to a test image of a clown, symmetrizing the filter as
follows: ψ̂(k̂) = c|−→k |se−r |kx |. When the value of r
is kept constant, increasing the value of s results in
a progressive edge enhancement (Fig. 11). When the
value of s is kept constant, increasing the value of r
results in a motion blurring effect in the x-direction
(Fig. 12).

To conclude, we have shown in this section that the
minimizers of the uncertainty related to the SIM(2)
group posses intrinsic scale-space generation proper-
ties. Further research is required in order to tackle
the more general question regarding the existence
of “Gaussian-like” functions for other groups, in the
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Figure 11. For a constant value of r = 0.00001, increasing the value of s the value of s is increased: 0.01, 0.2, 0.5, 1 (up left to bottom right),

results in an edge enhancement effect.

Figure 12. For a constant value of s = 0.2, increasing the value of r : 0.001, 0.01, 0.05, 0.1 (up left to bottom right) results in an effect of

motion-blurring in the x-direction.

context of the issues discussed at the beginning of this
section.

8. Discussion and Conclusions

The use of Gabor wavelets for texture analysis and syn-
thesis is frequently justified with the well-known fact
that Gabor functions provide the best combined time-
frequency resolution. This fact can be easily derived

using the basic uncertainty theorem for self-adjoint
operators. Moreover, it can be easily extended to higher
dimensions, as for the Weyl-Heisenberg group, we al-
ways obtain a Gaussian solution. Dahlke and Maass, as
well as Ali, Antoine and Gazeau presented an extension
of this notion to other groups: the affine group in one
dimension and the SIM(2) group in two dimensions. It
turned out that finding the unique function that simul-
taneously minimizes the uncertainties in these cases is
impossible.
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One of the declared justifications for using Ga-
bor wavelets in image processing is that Gabor
functions are the minimizers of the uncertainty of the
Weyl-Heisenberg group. However, these filters are not
minimizers of the uncertainty principle related to the
affine group and the wavelet transform. Some intuitive
understanding of this phenomenon can be achieved by
looking at the presentations of the Weyl-Heisenberg
group and the affine group. The unitary irreducible rep-
resentation of the two-dimensional Weyl-Heisenberg
group in L2(R2), is given by:

[U (ω1, ω2, b1, b2, τ )ψ](x, y)

= τeiω1x+iω2 yψ(−→u − −→
b ),

where −→u = (x, y),
−→
b = (b1, b2). The unitary irre-

ducible representation of the two-dimensional affine
group in L2(R2) is given by:

u = Dψ(s−1(−→x − −→
b )).

Thus, a noticeable difference between the two repre-
sentations is the fact that the x and y components are
independent of each other in the Weyl-Heisenberg rep-
resentation, while in the affine representation there is
a coupling between the x and y variables. This may
also be the reason for having a multi-dimensional min-
imizer for the Weyl-Heisenberg group, and not for the
affine group.

In this study we focused our efforts on finding pos-
sible solutions for the minimizers of the affine and
AWH groups. We applied the results of Dahlke and
Maass [4] and of Ali, Antoine and Gazeau [1] to the
two-dimensional affine group, and showed that solu-
tions can be found for a sub-set of the affine group, or
when elements of the enveloping algebra are involved.
We also presented a possible candidate for the mini-
mizer of the AWH group in one dimension, where a
Gabor-wavelet type subgroup is considered.

Moreover, the scale-space properties of some of
the minimizers have been considered. We examined
the minimizer offered by Ali, Antoine and Gazeau,
and found that modifying the function’s parameters
results in either edge enhancement or motion-like
blurring.

Our preliminary results point to the need to further
explore the attributes of the uncertainty minimizers,
obtained in this study, as well as their scale-space prop-
erties. Gabor wavelets are still an important tool when

considering the joint time (spatial) frequency uncer-
tainty. Nevertheless, using these functions cannot guar-
antee the maximal joint accuracy.
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