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Abstract. It is often advantageous in image processing and computer
vision to consider images as surfaces imbedded in higher dimensional
manifolds. It is therefore important to consider the theoretical and ap-
plied aspects of proper sampling of manifolds. We present a new sam-
pling theorem for surfaces and higher dimensional manifolds. The core
of the proof resides in triangulation results for manifolds with or with-
out boundary, not necessarily compact. The proposed method adopts
a geometric approach that is considered in the context of 2-dimensional
manifolds (i.e surfaces), with direct applications in image processing. Im-
plementations of these methods and theorems are illustrated and tested
both on synthetic images and on real medical data.

1 Introduction and Related Works

In recent years it became common amongst the signal processing community,
to consider images as Riemannian manifolds embedded in higher dimensional
spaces (see, e.g. [10], [12], [22]). Usually, the embedding manifold is taken to
be R

n yet, other possibilities are also considered ([5]). For example, a gray scale
image is a surface in R

3, whereas a color image is a surface embedded in R
5, each

color channel representing a coordinate. In both cases the intensity, either gray
scale or color, is considered as a function of the two spatial coordinates (x, y)
and thus the surface may be equipped with a metric induced by this function.
The question of smoothness of the function is in general omitted, if numerical
schemes are used for the approximations of derivatives, whenever this is neces-
sary. A major advantage of such a viewpoint of signals is the ability to apply
mathematical tools traditionally used in the study of Riemannian manifolds,
for image/signal processing as well. For example, in medical imaging it is of-
ten convenient to treat CT/MRI scans, as Riemannian surfaces in R

3. One can
then borrow techniques from differential topology and geometry and geometric
analysis in the representation and analysis of the considered images.

Sampling is an essential preliminary step in processing of any continuous signal
by a digital computer. This step lies at the heart of any digital processing of any
(presumably continuous) data/signal. Undersampling causes distortions due to
the aliasing of the post processed sampled data. Oversampling, on the other
hand, results in time and memory consuming computational processes which, at
the very least, slows down the analysis process. It is therefore important to have a
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measure which is instrumental in determining what is the optimal sampling rate.
For 1-dimensional signals such a measure exists, and, consequently, the optimal
sampling rate is given by the fundamental sampling theorem of Shannon, that
yielded the foundation of information theory and led technology into the digital
era. Shannon’s theorem indicates that a signal can be perfectly reconstructed
from its samples, given that the signal is band limited within some bound on
its highest frequency. Ever since the introduction of Shannon’s theorem in the
late 1940’s, deducing a similar sampling theorem for higher dimensional signals
has become a challenge and active area of research, especially recently, in view
of methods based on representation of images as manifolds (mostly surfaces)
embedded in higher dimensional manifolds. This is further emphasized by the
broad interest in its applications in image processing, and by the growing need
for fast yet accurate techniques for processing high dimensional data such as
medical and satellite images.

Recently a surge in the study of fat triangulations (Section 2 below) and man-
ifold sampling in computational geometry, computer graphics and their related
fields has generated many publications (see [1], [4], [8], [9], [13], [14], [17], to name
just a few). For example, in [1] Voronoi filtering is used for the construction of
fat triangulations of compact, C2 surfaces embedded in R

3. Note that Voronoi cell
partitioning is also employed in “classical” sampling theory (see [23]). Cheng et
al. [8] used these ideas for manifold reconstruction from point samples. In [14] an
heuristic approach to the problem of the relation between curvature and sampling
density is given. Again, in these studies the manifolds are assumed to be smooth,
compact n-dimensional hyper-surfaces embedded in R

n+1.
In this paper we present new sampling theorems for manifolds of dimension ≥ 2.

Thesetheoremsarederivedfromfundamental studies inthreeareasofmathematics:
differential topology, differential geometry and quasi-regular maps. Both classical
and recent results in these areas are combined toyield a rigorous andcomprehensive
sampling theory for suchmanifolds.Our approach lends itself also to anew, geomet-
rical interpretation of classical results regarding proper interpretation of images.

In Section 3 we present geometrical sampling theorems for images/signals given
as Riemannian manifolds, for both smooth and non-smooth images/signals. In
preparation for that we provide, in Section 2, the necessary background regarding
the main results on the existence of fat triangulations of manifolds, and the relation
to sampling and reproducing ofRiemannianmanifolds.Wealso review the problem
of smoothing of manifolds. Finally, in Section 4, we examine some delicate aspects
of our study, and discuss extensions of this work, relating both to geometric aspects
of sampling, as well as to its relationship to classical sampling theory.

2 Notations, Preliminaries and Background

2.1 Triangulation and Sampling

While for basic definitions and notation regarding triangulations and Piecewise
Linear (PL) Topology we refer the reader to [15], we begin this section by re-
calling a few classical definitions:
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Definition 1. Let f : K → R
n be a Cr map, and let δ : K → R

∗
+ be a continuous

function. Then g : |K| → R
n is called a δ-approximation to f iff:

(i) There exists a subdivision K ′ of K such that g ∈ Cr(K ′, Rn) ;
(ii) deucl

(
f(x), g(x)

)
< δ(x) , for any x ∈ |K| ;

(iii) deucl

(
dfa(x), dga(x)

)
≤ δ(a) · deucl(x, a) , for any a ∈ |K| and for all x ∈

St(a, K ′).
(Here and below |K| denotes the underlying polyhedron of K.)

Definition 2. Let K ′ be a subdivision of K, U =
◦
U ⊂ |K|, and let f ∈

Cr(K, Rn), g ∈ Cr(K ′, Rn). g is called a δ-approximation of f on U , iff con-
ditions (ii) and (iii) of Definition 2.6. hold for any a ∈ U .

The most natural and intuitive δ-approximation to a given mapping f is the
secant map induced by f :

Definition 3. Let f ∈ Cr(K) and let s be a simplex, s < σ ∈ K. Then the
linear map: Ls : s → R

n, defined by Ls(v) = f(v), where v is a vertex of s, is
called the secant map induced by f .

Fat Triangulation. We now proceed to show that the apparent “naive” secant
approximation of surfaces (and higher dimensional manifolds) represents a good
approximation, insofar as distances and angles are concerned, provided that the
secant approximation induced by a triangulations that satisfies a certain non-
degeneracy condition called “fatness” (or “thickness”).

We first provide the following informal, intuitive definition: A triangle in R
2

is called fat (or ϕ-fat, to be more precise) iff all its angles are larger than some
ϕ. In other words, fat triangles are those that do not “deviate” to much from
being equiangular (regular), hence fat triangles are not too “slim”. One can de-
fined fat triangles more formally by requiring that the ratio of the radii of the
inscribed and circumscribed circles of the triangle is bounded from bellow by ϕ,
i.e. r/R ≥ ϕ, for some ϕ > 0, where r denotes the radius of the inscribed circle
of τ (inradius) and R denotes the radius of the circumscribed circle of τ (circum-
radius). This definition easily generalizes to triangulations in any dimension:

Definition 4. A k-simplex τ ⊂ R
n, 2 ≤ k ≤ n, is ϕ-fat if there exists ϕ > 0

such that the ratio r
R ≥ ϕ; where r denotes the radius of the inscribed sphere

of τ and R denotes the radius of the circumscribed sphere of τ . A triangulation
of a submanifold of R

n, T = {σi}i∈I is ϕ-fat if all its simplices are ϕ-fat. A
triangulation T = {σi}i∈I is fat if there exists ϕ ≥ 0 such that all its simplices
are ϕ-fat; for any i ∈ I.

One recuperates the “big” angle characterization of fatness through the following
proposition:

Proposition 1 ([7]). There exists a constant c(k) that depends solely upon the
dimension k of τ such that

1
c(k)

· ϕ(τ) ≤ min
σ<τ

�(τ, σ) ≤ c(k) · ϕ(τ) , (1)
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and

ϕ(τ) ≤ V olj(σ)
diamj σ

≤ c(k) · ϕ(τ) , (2)

where ϕ denotes the fatness of the simplex τ , �(τ, σ) denotes the (internal) dihe-
dral angle of the face σ < τ and V olj(σ); and where diam σ stand for the Euclid-
ian j-volume and the diameter of σ respectively. (If dim σ = 0, then V olj(σ) = 1,
by convention.)

Condition (1) is just the expression of fatness as a function of dihedral an-
gles in all dimensions, while Condition (2) expresses fatness as given by “large
area/diameter”. Diameter is important since fatness is independent of scale.

The importance of fatness of triangulations, for attaining good approxima-
tions, is underlined in the following proposition that represents the desired ap-
proximation result:

Proposition 2 ([15], Lemma 9.3). Let f : σ → R
n be of class Ck. Then, for

δ, ϕ0 > 0, there exists ε > 0, such that, for any τ < σ, such that diam(τ) < ε
and such that ϕ(τ) > ϕ0, the secant map Lτ is a δ-approximation of f |τ .

2.2 Fat Triangulation Results

In this section we review, in chronological order, existence theorems dealing with
fat triangulations on manifolds. For detailed proofs see the original papers.

Theorem 1 (Cairns, [6]). Every compact C2 Riemannian manifold admits a
fat triangulation.

Theorem 2 (Peltonen, [18]). Every open (unbounded) C∞ Riemannian man-
ifold admits a fat triangulation.

Theorem 3 (Saucan, [19]). Let Mn be an n-dimensional C1 Riemannian
manifold with boundary, having a finite number of compact boundary compo-
nents. Then, any uniformly fat triangulation of ∂Mn can be extended to a fat
triangulation of Mn.

Remark 1. Theorem 3 above holds, in fact, even without the finiteness and com-
pactness conditions imposed on the boundary components (see [20]).

Corollary 1. Let Mn be a manifold as in Theorem 3 above. Then Mn admits
a fat triangulation.

In low dimensions one can also discard the smoothness condition:

Corollary 2. Let Mn be an n-dimensional, n ≤ 4 (resp. n ≤ 3), PL (resp.
topological) connected manifold with boundary, having a finite number of compact
boundary components. Then, any fat triangulation of ∂Mn can be extended to a
fat triangulation of Mn.
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2.3 Smoothing of Manifolds

In this section we focus our attention on the problem of smoothing of manifolds.
That is, approximating a manifold of differentiability class Cr, r ≥ 0, by mani-
folds of class C∞. Of special interest is the case where r = 0. Later, when stating
our sampling theorem we will make a use of this in two respects. One of them
will be as a post-processing step where, after reproducing a PL manifold out of
the samples, we can smoothen it to get a smooth reproduced manifold. Another
aspect in which smoothing is useful is as a pre-processing step, when we wish
to extend the sampling theorem to manifolds which are not necessarily smooth.
Smoothing will take place followed by sampling of the smoothed manifold, yield-
ing a sampling for the non-smooth one as well. As a major reference to this we
use [15], Chap 4. Similar results can also be found in [11] and others.

Lemma 1. For every 0 < ε < 1 there exists a C∞ function ψ1 : R → [0, 1] such
that, ψ1 ≡ 0 for |x| ≥ 1 and ψ1 = 1 for |x| ≤ (1 − ε). Such a function is called
partition of unity.

Let cn(ε) be the ε cube around the origin in R
n (i.e. X ∈ R

n ; −ε ≤ xi ≤
ε , i = 1, ..., n). We can use the above partition of unity in order to obtain a non-
negative C∞ function, ψ, on R

n, such that ψ = 1 on cn(ε) and ψ ≡ 0 outside
cn(1). Define ψ(x1, ..., xn) = ψ1(x1) · ψ1(x2) · · · ψ1(xn).

We now introduce the main theorem regarding smoothing of PL-manifolds.

Theorem 4 ([15]). Let M be a Cr manifold, 0 ≤ r < ∞, and f0 : M → R
k

a Cr embedding. Then, there exists a C∞ embedding f1 : M → R
k which is a

δ-approximation of f0.

The above theorem is a consequence of the following classical lemma concerning
smoothing of maps:

Lemma 2 ([15]). Let U be an open subset of R
m. Let A be a compact subset

of an open set V such that V ⊂ U , is compact. Let f0 : U → R
n be a Cr map,

0 ≤ r. Let δ be a positive number. Then there exists a map f1 : U → R
n such

that

1. f1 is C∞ on A.
2. f1 = f0 outside V .
3. f1 is a δ-approximation of f0
4. f1 is Cr-homotopic to f0 via a homotopy ft satisfying (2) and (3) above. i.e.

f0 can be continuously deformed to f1.

Remark 2. A modified version of the smoothing process presented herein was
developed by Nash [16]. His idea was to define a radially symmetric convolution
kernel ϕ, by taking its Fourier transform, ϕ̂, to be a radially symmetric partition
of unity. Nash’s method renders an approximation that is faithful not only to
the signal and its first derivative, as in the classical approach, but also to higher
order derivatives (if they exist).
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3 Sampling Theorems

We employ results regarding the existence of fat triangulations, to prove sampling
theorems for Riemannian manifolds embedded in some Euclidean space.

Theorem 5. Let Σn, n ≥ 2 be a connected, not necessarily compact, smooth
manifold, with finitely many compact boundary components. Then there exists
a sampling scheme of Σn, with a proper density D with respect to the volume
element on Σn, D = D(p) = D

(
1

k(p)

)
, where k(p) = max{|k1|, ..., |k2n|} > 0,

and where k1, ..., k2n are the principal (normal) curvatures of Σn, at the point
p ∈ Σn.

Proof. The existence of the sampling scheme follows immediately from Corollary
1, where the sampling points(points of the sampling) are the vertices of the trian-
gulation. The fact that the density is a function solely of k = max{|k1|, ..., |k2n|}
follows from the proof of Theorem 2 (see [18], [19]) and from the fact that the
osculatory radius ωγ(p) at a point p of a curve γ equals 1/kγ(p), where kγ(p)
is the curvature of γ at p ; hence the maximal osculatory radius (of Σ) at p is:
ω(p) = max{|k1|, ..., |k2n|} = max{ 1

ω1
, ..., 1

ω2n
}. (Here ω2i, ω2i+1 , i = 1, ..., n − 1

denote the minimal, respective maximal sectional osculatory radii at p.)

Corollary 3. Let Σn, D be as above. If there exists k0 > 0, such that k(p) ≤ k0,
for all p ∈ Σn, then there exists a sampling of Σn of finite density everywhere.

Proof. Immediate from the theorem above.

In particular we have:

Corollary 4. If Σn is compact, then there exists a sampling of Σn having uni-
formly bounded density.

Proof. It follows immediately from a compactness argument and from the con-
tinuity of the principal curvature functions.

The implementation of Theorem 5 is illustrated in Figure 3. Note the fat tri-
angulation and the good reconstruction (see below) obtained from it. Compare
with the “flat” triangles in Figure 1, obtained by a “naive” sampling method.

Remark 3. Obviously, Theorem 5 above is of little relevance for the space forms
(Rn, Sn, Hn). Indeed, as noted above, this method is relevant for manifolds con-
sidered (by the Nash embedding theorem [16]) as submanifolds of R

N , for some
N large enough.

We approach the problem of sampling for non-smooth manifolds; a case that is
of interest and practical importance in the context of image processing and com-
puter vision (see, e.g. Figure 1). We begin by proposing the following definition:

Definition 5. Let Σn, n ≥ 2 be a (connected) manifold of class C0, and let Σn
δ

be a δ-approximation to Σn. A sampling of Σn
δ is called a δ-sampling of Σn.
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Theorem 6. Let Σn be a connected, non-necessarily compact manifold of class
C0. Then, for any δ > 0, there exists a δ-sampling Σn

δ of Σn, such that if
Σn

δ → Σn uniformly, then Dδ → D in the sense of measures, where Dδ and D
denote the densities of Σn

δ and Σn, respectively.

Proof. The proof is an immediate consequence of Theorem 2 and its proof, and
the methods exposed in Section 2.3. We take the sampling of some smooth δ-
approximation of Σn.

Corollary 5. Let Σn be a C0 manifold with finitely many points at which Σn

fails to be smooth. Then every δ-sampling of a smooth δ-approximation of Σn

is in fact, a sampling of Σn apart of finitely many small neighborhoods of the
points where Σn is not smooth.

Proof. From Lemma 2 and Theorem 4 it folows that any such δ-approximation,
Σn

δ , coincides with Σn outside of finitely many such small neighborhoods.

Remark 4. In order to obtain a better approximation it is advantageous, in this
case, to employ Nash’s method for smoothing, cf. Remark 5 of Section 3 (see
[16], [2] for details).

Reconstruction. We use the secant map as defined in Definition 3 in order
to reproduce a PL-manifold as a δ-approximation for the sampled manifold. As
stated in the beginning of Section 2.3, we may now use smoothing in order to
obtain a C∞ approximation. This approach is illustrated in Figure 2, for the case
of an analytic surface.

In the special case of surfaces (i.e. n = 2), more specific, geometric conditions
can be obtained:

Corollary 6. Let Σ2 be a smooth surface. In the following cases there exist k0
as in Corollary 3 above:

1. There exist H1, H2, K1, K2, such that H1 ≤ H(p) ≤ H2 and K1 ≤ K(p) ≤
K2, for any p ∈ Σ2, where H, K denote the mean, respective Gauss curva-
ture. (That is both mean and Gauss curvatures are pinched.)

2. The Willmore integrand W (p) = H2(p) − K(p) and K (or H) are pinched.

Proof. 1. Since K = k1k2, H = 1
2 (k1 + k2), the bounds for K and H imply the

desired one for k.
2. Analogue reasoning to that of (2.), since W = 1

4 (k1 − k2)2.

Remark 5. Condition (ii) on W is not only compact, it has the additional advan-
tage that the Willmore energy

∫
Σ WdA (where dA represents the area element

of Σ) is a conformal invariant of Σ.

Note that such geometric conditions, are hard to impose in higher dimensions,
and the precise geometric constraints remain to be further investigated.
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Fig. 1. The triangulation (upper image) obtained from a “naive” sampling (second
image from above) resulting from a CT scan of the back-side of the human colon
(second image from below). Note the “flat” triangles and the uneven mesh of the
triangulation. This is a result of the high, concentrated curvature, as revealed in a
view obtained after a rotation of the image (bottom). These and other images will be
accessible through an interactive applet on the website [25].
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Fig. 2. The triangulation (upper image) obtained from the uniform sampling (second
image from above) of the surface S =

�
x, y, cos

�
x2 + y2/(1 +

�
x2 + y2 )

�
(bottom

image). Note the low density of sampling points in the region of high curvature.
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Fig. 3. Hyperbolic Paraboloid: Analytic representation, z = xy – top image. Sampling
according to curvature – second image from above. PL reconstruction – second image
from bellow. Bottom – Nyquist reconstruction. To appreciate the triangulation results
a full size display of color images [25] is required.
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4 Conclusions and Discussion

The methods for sampling and reconstructing of images, introduced in this pa-
per, extend previous studies based on the viewpoint that images and other types
of data structures should be considered as surfaces and manifolds embedded in
higher dimensional manifolds. In particular, the methods presented in this pa-
per are based on the assertion that surfaces and manifolds should be properly
sampled in Shannon’s sense. This led to consideration of a sampling theorem for
Riemannian manifolds. The sampling scheme presented in this paper, is based
on the ability to triangulate such a manifold by a fat triangulation. This in turn,
relies on geometric properties of the manifold and basically on its curvature. The
sampling theorems are applicable to images/signals that can be represented as
Riemannian manifolds, a well established viewpoint in image processing. Con-
sidering this viewpoint in rigorous manner still remains as a challenge for further
study. It is common for instance, to consider a color image as a surface in R

5 yet,
it is more prone and probably more accurate to consider it as a three-dimensional
manifold embedded in some higher dimensional Euclidian space. Another inter-
esting issue currently under investigation, is whether the geometric framework
for sampling of surfaces and manifolds present in this study can be degenerated
to one-dimensional signals as an alternative to the classical sampling theorem
of Shannon and how the two approaches are related. Some relevant results are
already at hand [21]. Other theoretical and applied facets of this problem are
currently under investigation.
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