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Abstract. We address the issue of regularizing Osher and Rudin’s
shock filter, used for image deblurring, in order to allow processes
that are more robust against noise. Previous solutions to the problem
suggested adding some sort of diffusion term to the shock equation.
We analyze and prove some properties of coupled shock and diffusion
processes. Finally we propose an original solution of adding a complex
diffusion term to the shock equation. This new term is used to smooth
out noise and indicate inflection points simultaneously. The imaginary
value, which is an approximated smoothed second derivative scaled by
time, is used to control the process. This results in a robust deblurring
process that performs well also on noisy signals.

Keywords: Shock filters, deblurring, denoising, image enhancement,
complex diffusion, image features.

1 Introduction

1.1 Background

In the past decade there has been a growing amount of research concerning par-
tial differential equations in the fields of computer vision and image processing.
Applications, supported by rigorous theory, were developed for purposes such
as image denoising and enhancement, segmentation, object tracking and many
more. A review of topics in the subject can be seen in [14]; see [9] for more
recent studies. The research is focused mostly on linear and nonlinear parabolic
schemes of diffusion-type processes. In [11] Osher and Rudin proposed a hyper-
bolic equation called shock filter that can serve as a stable deblurring algorithm
approximating deconvolution.

1.2 Problem Statement

The formulation of the shock filter equation is:

It = −|Ix|F (Ixx), (1)
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where F should satisfy F (0) = 0, F (s)sign(s) ≥ 0. Note: the above equa-
tion and all other evolutionary equations in this paper have initial conditions
I(x, 0) = I0(x) and Neumann boundary conditions ( ∂I

∂n = 0 where n is the
direction perpendicular to the boundary).

Choosing F (s) = sign(s) gives the classical shock filter equation:

It = −sign(Ixx)|Ix|. (2)

In the 2D case the shock filter equation is commonly generalized to:

It = −sign(Iηη)|∇I|, (3)

where η is the direction of the gradient.
The 1D process (Eq. 2) is approximated by the following discrete scheme:

In+1
i = In

i −∆t|DIn
i |sign(D2In

i ), (4)

where
DIn

i
.= m(∆+I

n
i , ∆−In

i )/h,
D2In

i
.= (∆+∆−In

i )/h
2,

(5)

m(x, y) is the minmod function:

m(x, y) .=
{
(signx)min(|x|, |y|) if xy > 0,
0 otherwise,

and ∆±
.= ±(ui±1 − ui) . The CFL condition in the 1D case is ∆t ≤ 0.5h.

The shock filter main properties are:

– Shocks develop at inflection points (second derivative zero-crossings).
– Local extrema remain unchanged in time. No new local extrema are created.
The scheme is total variation preserving (TVP).

– The steady state (weak) solution is piece-wise constant (with discontinuities
at the inflection points of I0).

– The process approximates deconvolution.

Most rigorous analysis and proofs of these properties were based on the discrete
scheme (Eq. 4).

As already noted in the original paper, any noise in the blurred signal will
also be enhanced. As a matter of fact this process is extremely sensitive to noise.
Theoretically, in the continuous domain, any white noise added to the signal may
add an infinite number of inflection points, disrupting the process completely.
Discretization may help somewhat, but in general the same sensitivity to noise
occurs. In Fig. (1) we compare the process acting on a sine wave without noise
and with very low additive white Gaussian noise (SNR=40dB). Clearly the sig-
nal in the noisy case is not enhanced and the process results mainly in noise
amplification.
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Fig. 1. Signal (sine wave) and its steady state shock filter solution without noise (top)
and with very low additive white Gaussian noise, SNR=40dB (bottom).

2 Previous Works

The noise sensitivity problem is critical and unless properly solved - might pre-
vent most practical uses of shock filters. Previous studies addressed the issue
suggesting several solutions. The common way seen in literature to increase ro-
bustness ([1,3,10,12]) is to convolve the signal’s second derivative with a lowpass
filter, such as a Gaussian:

It = −sign(Gσ ∗ Ixx)|Ix|, (6)

where Gσ is a Gaussian of standard deviation σ.
This is generally not sufficient to overcome the noise problem: convolving

the signal with a Gaussian of moderate width will in many cases not cancel the
inflection points produced by the noise. Their magnitude will be considerably
lower, but there will still be a change of sign at these points, which will lead
the flow to go in opposite direction at each side. For very wide (large scale)
Gaussians - most inflection points produced by the noise are diminished, but at
a cost: the location of the signal’s inflection points are less accurate. Moreover,
the effective Gaussian’s width σ is in many cases larger than the length of the
signal, thus causing the boundary conditions imposed on the process to strongly
affect the solution. Lastly, from a computational point of view, the convolution
process in each iteration is costly.

A more complex approach, that we will also follow later, is to address the issue
as an enhancing-denoising problem: smoother parts are denoised, whereas edges
are enhanced and sharpened. The main idea is to add some sort of anisotropic
diffusion term with an adaptive weight between the shock and the diffusion
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processes. Alvarez and Mazorra were the first to couple shock and diffusion in
[1] proposing an equation of the form:

It = −sign(Gσ ∗ Iηη)|∇I|+ cIξξ (7)

where c is a positive constant and ξ is the direction perpendicular to the gradient
∇I. This equation, though, degenerates to (6) in the 1D case and the diffusion
part is lost.

In [10] the process suggested by Kornprobst et al. is:

It = αr(hτIηη + Iξξ)− αe(1− hτ )sign(Gσ ∗ Iηη)|∇I|, (8)

where hτ = hτ (|Gσ̃ ∗ ∇I|) = 1 if |Gσ̃ ∗ ∇I| < τ, and 0 otherwise. The original
scheme has another fidelity term αf (I − I0), which can be added to any such
schemes, that was omitted here.

In [3] the proposed scheme of Coulon and Arridge is:

It = div(c∇I)− (1− c)αsign(Gσ ∗ Iηη)|∇I|, (9)

where c = exp(− |Gσ̃∗∇I|2
k ) . Originally, the process was used for classification,

based on a probabilistic framework. Eq. (9) is the adaptation for direct processing
on images.

Later we will show examples of these schemes and compare the results to
ours.

3 Coupling Shock and Diffusion

In the following section we analyze two discrete schemes involving shock fil-
ter and diffusion. We provide a few theorems regarding the behavior of these
schemes. The proofs are in Appendix I. For simplicity, our analysis is done in
one dimension.

3.1 Shock and Linear Diffusion

We start by adding a linear diffusion term to the shock filter equation:

It = −sign(Ixx)|Ix|+ λIxx, (10)

where λ > 0 is a constant weight parameter. The discrete scheme of (10) is:

In+1
i = In

i +∆t(−sign(D2In
i )|DIn

i |+ λD2In
i ), (11)

with CFL condition λ∆t ≤ 0.5h2, (h ≤ 1).

Theorem 1. The scheme of (11) obeys the strong minimum-maximum principal
(no new local extrema are created and the global maximum and minimum at any
time are bounded by those of the initial condition) and reaches a trivial constant
steady state solution limn→∞ In(x) = const for any λ > 0.
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This process is a mix between denoising and enhancement processes, where
for low λ it behaves more like an enhancing shock filter and for large λ denoising
is more dominant (with some edge preservation). Some characteristics of the
shock filter are lost: Real shocks are actually not created; the scheme is not
total-variation preserving; the signal diminishes with time - the steady state
solution is a constant function.

3.2 A TVP Shock and Diffusion Process

An interesting modification of equation (10) is:

It = −sign(Ixx)|Ix|+ λIxx|sign(Ix)|, (12)

and its discrete equivalent:

In+1
i = In

i +∆t(−sign(D2In
i )|DIn

i |+ λD2In
i |sign(DIn

i )|). (13)

The diffusion term is multiplied by |sign(Ix)|. The value of this expression is
always 1 except for the case Ix = 0, in which the value is 0. This relatively
small change makes an important difference in the behavior of the equation. We
should comment that (12) has the most simple shock-diffusion coupling for the
sake of straitforward analysis, it is not intended for use on noisy signals.

Theorem 2. The scheme of (13) is total variation preserving (TVP), local ex-
trema remain unchanged in time and no new local extrema are created.

Let us define In
i+ 1

2
as a discrete inflection point if (D2In

i )(D
2In

i+1) < 0.

Theorem 3. If there is a single discrete inflection point between two points of
extrema, then its location is preserved through the evolution of (13).

Theorem 2 implies Eq. (13) can have a nontrivial steady state. Assuming
these properties are valid in the continuous domain of Eq. (12) we can simplify
the equation locally and calculate in some cases the steady state solution ana-
lytically. Here we give an example of how to do it. We consider the case where
there is a finite set E of local extrema points of the initial condition I0(x) ∈ C2,
x ∈ [0, 1]. Between every two extrema points there is one inflection point. The
calculation of the solution is as follows:

– Let us define by S the set of location of extrema points of I0(x) and by
SV their value: S .= {s1, s2, .., sL} : I0x(si) = 0, s1 < s2.. < sL , SV

.=
{v1, v1, .., vL} : vi = I0(si), 1 < i < L.

– Let us define by T the set of location of inflection points of I0(x), T
.=

{t1, t1, .., tL−1} : I0xx(ti) = 0, t1 < t2.. < tL−1. In this example we assume
0 < s1 < t1 < s2 < .. < tL−1 < sL < 1.

– Let us define the value at the 2 boundary points v0 = I0(0), vL+1 = I0(1)
and denote s0 = 0, sL+1 = 1.
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– Following Theorems 2,3 - the location of extrema and inflection points do not
change in time. Therefore we can separate the original equation on x ∈ [0, 1]
to 2L equations with appropriate boundary conditions. Each equation is
between an extrema point and an inflection point, except at the boundaries.
The 2L equations are defined on [0, s1], [s1, t1], [t1, s2], ..[tL−1, sL], [sL, 1].

– For each equation the first and second derivatives do not change their sign
in the entire region. Therefore Eq. (12) can be rewritten at each region as:
It = ±Ix ± λIxx depending on the signs of Ix and Ixx at that region. At
steady state (It(x) ≡ 0) at each region the equation reduces to two possible
options: Ix = ±λIxx and the solution is: I(x) = c1 exp(±x/λ) + c2, where
c1, c2 are arbitrary constants.

– Imposing the following boundary conditions:

I(si) = vi 0 < i < L+ 1,
I(s−

i ) = I(s+i ) 1 < i < L,
I(t−i ) = I(t+i ) 1 < i < L− 1,
Ix(t−i ) = Ix(t+i ) 1 < i < L− 1,

We get 4L linear equations from the boundary conditions which allow us
to calculate the 4L constants appearing in the 2L equations. Actually there
is almost no coupling and we can solve separately every two equations be-
tween extrema points, that is on neighboring regions [si, ti], [ti, si+1]. The
two equations on the boundary regions [0, s1], [sL, 1] are independent. The
weak solution is piece-wise differentiable (for the entire domain x ∈ [0, 1] we
get I(x, t → ∞) ∈ C0).
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Fig. 2. Three examples of numerical solutions to equation (10) for different values of
λ. From top: Initial condition (I0 = sin 7x + sin 10x), I(x,t) after 1000 iterations for
λ = 0.1, 1, 10, respectively.
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Fig. 3. Three examples of numerical solutions to equation (12) for different values
of λ. From top: Initial condition (I0 = sin 7x + sin 10x), I(x,t) at steady state for
λ = 10−4, 1, 104, respectively.

In Fig. 3 we show the behavior of equation (12) for different values of λ.

3.3 Considering the Second Derivative’s Magnitude

in order to account for the magnitude of the second derivative controlling the
flow - we return to the original shock filter formulation of (1) and choose F (s) =
2
π arctan(as). This function is a ”soft” sign, where a is a parameter that controls
the sharpness of the slope near zero. The equation is therefore:

It = − 2
π
arctan(aIxx)|Ix|+ λIxx. (14)

In this way the inflection points are not of equal weight anymore; regions near
edges, with large magnitude of the second derivative near the zero crossing, will
be sharpened much faster than relatively smooth regions.

3.4 Incorporating Time Dependency to the Process

Another desirable goal is the ability to change the process behavior with time
in a controlled manner. In [5] we elaborate the idea of explicitly incorporating
the time t to Perona-Malik type schemes ([13]). The basic idea is that processes
controlled by the gradient magnitude have large errors in estimating gradients
at the initial stages, where the signal is still very noisy. Therefore a preliminary
phase of mainly noise removal can be advantageous. We suggested two processes
with continuous transition in time, beginning with linear diffusion at time zero
(strong denoising), advancing towards high nonlinearity (strong edge-preserving
properties).
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Similar ideas can be applied in our case. We would like to decrease the shock
affects of the process at the beginning (when estimating the signal’s inflection
points is difficult) - allowing the diffusion process to smooth out the noise. As
the evolution advances, false inflection points produced by the noise are greatly
reduced and the enhancing shock part can gain dominance. A simple way to do
that is to multiply the second derivative of the shock part by the time t:

It = − 2
π
arctan(aIxxt)|Ix|+ λIxx. (15)

In the next section we give a brief background on complex diffusion. Later
we will use this type of process to formulate a new regularized shock filter.

4 Complex Diffusion

4.1 Introduction

Complex diffusion-type processes are encountered i.e. in quantum physics and
in electro-optics. In [4] we analyzed a diffusion equation with a complex diffu-
sion coefficient and showed some applications for image filtering. This process
is a generalization of the diffusion equation and the time dependent Schrödinger
equation with zero potential. There are little related studies in that field in the
vision community. A recent paper by Barbaresco ([2]) presented the closely re-
lated issues of calculus of variations in the complex domain and its applications
to spectral analysis. In this section we summarize the relevant results of [4].

4.2 Linear Complex Diffusion

Problem Definition. Let us consider the following initial value problem:

It = cIxx, t > 0, x ∈ R (16)
I(x; 0) = I0 ∈ R, c, I ∈C.

We rewrite the complex diffusion coefficient as c .= reiθ, and, since there does
not exist a stable fundamental solution of the inverse diffusion process, restrict
ourselves to a positive real value of c, that is θ ∈ (−π

2 ,
π
2 ).

The fundamental solution is:

h(x; t) = Gσ(x; t)eiα(x), (17)

where

α(x) =
x2 sin θ
4tr

, σ(t) =

√
2tr
cos θ

. (18)
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Fig. 4. Complex diffusion of a small theta applied to a step signal (θ = π/30). Left -
real values, right - imaginary values. Each frame depicts from top to bottom: original
step, diffused signal after times: 0.025, 0.25, 2.5, 25.

Fig. 5. Complex diffusion of the cameraman image for small theta (θ = π/30) after
10 iterations. Left - real values, right - imaginary values (factored by 20).

Approximate Solution for Small Theta. We showed in our previous study
that as θ → 0 the imaginary part can be regarded as a smoothed second deriva-
tive of the initial signal, factored by θ and the time t. Generalizing the solution to
any dimension with Cartesian coordinates x .= (x1, x2, ..xN ) ∈ R

N , I(x; t) ∈ C
N

and denoting that in this coordinate system Gσ(x; t)
.=

∏N
i Gσ(xi; t), we get:

lim
θ→0

Im(I)
θ

= t∆Gσ̂ ∗ I0, (19)

where Im(·) denotes the imaginary value and σ̂ =
√
2t.

In Figs. (4), (5) 1D and 2D examples are shown of the complex diffusion
evolution process for small θ. The edge detection (smoothed second derivative)
properties are clearly apparent in the imaginary part, whereas the real value
depicts the properties of ordinary Gaussian scale-space.
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4.3 Nonlinear Complex Diffusion

Nonlinear complex processes can be derived from the above mentioned properties
of the linear complex diffusion for purposes of signal and image denoising or
enhancement. Numerical evidence show that the qualitative characteristics of the
imaginary part in nonlinear processes are similar to the linear case, especially at
the zero-crossing locations. In [4] a nonlinear ramp denoising process is presented.

5 Complex Shock Filters

From (15) and (19) we derive the complex shock filter formulation:

It = − 2
π
arctan(aIm(

I

θ
))|Ix|+ λIxx, (20)

where λ = reiθis a complex scalar. Implementation of equation (20) is done by
the same discrete approximations (except that all computations are complex);
the CFL condition in 1D is ∆t ≤ 0.5h2 cos θ

r .
The complex shock filter generalization to 2D is:

It = − 2
π
arctan(aIm(

I

θ
))|∇I|+ λIηη + λ̃Iξξ, (21)

where λ̃ is a real scalar.
The complex filter is an elegant way to avoid the need of convolving the sig-

nal in each iteration and still get smoothed estimations. The time dependency
of the process is inherent, without the need to explicitly use the evolution time
t. Moreover, the imaginary value receives feedback - it is smoothed by the dif-
fusion and enhanced at sharp transitions by the shock, thus can serve better for
controlling the process then a simple second derivative.

In Fig. 6 a noisy sine wave is processed by several shock-filter based processes
described earlier. The original shock filter (Eq. (2)) and the one with Gaussian
convolved second derivative (Eq. (6)) are clearly not suitable for this task. The
process of Kornprobst et al. (Eq. (8)) performs relatively well but the minimum
and maximum of the signal decay quite fast and the deblurring is not so strong.
Moreover there are 5 parameters that need to be adjusted and from our expe-
rience the performance of the process is quite sensitive to a few of them (esp.
to τ). The process of Coulon and Arridge (Eq. (9)) behaves somewhat better in
this 1D example, it produces shock structures but is strongly affected by to the
boundary conditions and tends to move the shocks towards the center. Our com-
plex shock filter scheme (Eq. (20)) seems to produce the best result, compared
to the ideal result shown at the top right. The scheme is stable in time, decays
slowly and preserves well the location of the shocks. Another advantage of our
scheme is that we basically have only two parameters: |λ| and a (in the 1D case,
three in 2D). Note: as the process is normalized - it is not affected by the exact
value of θ as long as it is small. In all our experiments we took θ = 0.01. At the
bottom right we can see the imaginary value of the complex process (the scale
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Fig. 6. Noisy signal (sine wave) processed by several algorithms. From top, left: signal
with additive white Gaussian noise (SNR=5dB), right: ideal steady state shock result;
left: steady state of original shock filter Eq. (2), right: steady state of Eq. (6) - Gaussian
convolved derivative, σ = 100; left: evolution of Eq. (8) - Kornprobst et al. (αr =
1, αe = 0.5, τ = 0.04, σ = 30, σ̃ = 5), right: evolution of Eq. (9) - Coulon-Arridge
(k = 0.01, α = 1, σ = 30, σ̃ = 5); bottom: evolution of Eq. (20) - complex shock filter
(our proposed scheme), left: real values, right: imaginary values, (|λ| = 0.5, a = 5). All
evolution graphs depict 3 time points along the evolution: 300 (dotted), 3,000 (dashed)
and 30,000 (solid) iteration.



410 G. Gilboa, N.A. Sochen, and Y.Y. Zeevi

is 100 times smaller). One can see that the zero crossings are at the inflection
points and that the imaginary value energy grows with time - thus enabling good
preservation of the shocks.

In Fig. 7 a blurred and noisy tools image is processed. In the two dimensional
case only the schemes of Kornprobst et at. and our complex scheme have accept-
able results at this levels of noise. Though, the complex process have sharper
edges and is closer to the shock process (as can be seen in comparison to ideal
shock response, for a blurred image without noise - top right). At the bottom
right a plot of one horizontal line of the image shows the denoising achieved by
the complex scheme along with sharper large edges.

6 Conclusion

Some processes based on the shock and diffusion equations were presented. The
paper focused on reducing the inherent noise sensitivity of the shock filter in
order to allow more practical uses of it. We analyzed the coupling of shock and
linear diffusion in the discrete domain, showed that the process converges to a
trivial constant steady state and suggested a modification for a total variation
preserving scheme. For the purpose of regularizing the shock filter our sugges-
tion is to add a complex diffusion term and to use the imaginary value as the
controller for the direction of the flow instead of the second derivative. This re-
sults in a robust and stable deblurring process that can still be effective in noisy
environments.
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Minerva Center, by the Fund for the Promotion of Research at the Technion, by
the Israeli Ministry of Science, Israeli Academy of Science and by the Technion
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APPENDIX I

Proof of Theorem 1

All lemmas refer to the evolution of Eq. (11). In
i is a discrete signal of N points

(1 ≤ i ≤ N) at iteration n.

Lemma 1. If (In
i ≥ In

i+1 and In
i > In

i−1) or (In
i > In

i+1 and In
i ≥ In

i−1) then
In+1
i < In

i .

Proof. From the definition of the minmod function it follows that DIn
i = 0.

From (5) D2In
i < 0 and therefore In+1

i = In
i +∆t(λD2In

i ) < In
i .

Lemma 2. If In
i = In

i−1 = In
i+1 then In+1

i = In
i .

Proof. DIn
i = 0, D2In

i = 0.
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Fig. 7. Top row (from left): Original tools image, Gaussian blurred (σ = 2) with added
white Gaussian noise (SNR=15dB), ideal shock response (of blurred image without
the noise); middle row: evolutions of Eq. (7) - Alvarez-Mazorra (σ = 10), Eq. (8) -
Kornprobst et al. (αr = 0.2, αe = 0.1, τ = 0.2, σ = 10, σ̃ = 1), Eq. (9) - Coulon-Arridge
(k = 5, α = 1, σ = 10, σ̃ = 1); bottom: evolution of Eq. (20) - complex process, left:
real values, middle: imaginary values (|λ| = 0.1, λ̃ = 0.5, a = 0.5), right: one horizontal
line showing the gray level values of the complex evolution (thin line - iteration 1, bold
line - iteration 100). All evolution results are for 100 iterations, dt=0.1.
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Lemma 3. The value of any maximum point In
i where In

i−M1
< In

i−M1+1 = .. =
In
i = .. = In

i+M2−1 > In
i+M2

will be reduced after min(M1,M2) steps, that is:
I

n+min(M1,M2)
i < In

i .

Proof. Let us assume M1 = min(M1,M2), without loss of generality (wlog).
Following Lemma 1 In+1

i−M1+1 < In
i−M1+1. Following Lemma 2 I

n+1
i = In

i . We can
repeat this M1 − 1 steps until In+M1−1

i−1 < In+M1−2
i−1 = In

i . Then the conditions
of Lemma 2 are not holding anymore and following Lemma 1 we get In+M1

i <

In+M1−1
i = In

i .

Lemma 4. At the boundary points: If In
1 > In

2 then In+1
1 < In

1 ; if In
N > In

N−1
then In+1

N < In
N .

Proof. Let us examine the point In
1 . The Neumann BC dictates DIn

1 = 0. This
condition is equivalent to extending the signal (to i = 0) and setting In

0 ≡ In
1 for

any n. Thus D2In
1 is well defined. As In

1 > In
2 we get D2In

1 < 0 and therefore
In+1
1 < In

1 . Similar arguments are valid for the boundary point In
N .

Theorem 1

Proof. From Lemma 3 any local maximum point decreases after a finite number
of steps. Similarly, it can be shown that any local minimum point increases after
a finite number of steps. At steady state In+M

i = In
i for any positive integer

M , therefore it contains no local extrema. Lemma 4 forbids the maximum or
minimum to be at the boundaries at steady state. We conclude that the only
possible steady state solution is a constant function.

Proof of Theorem 2

All lemmas refer to the evolution of Eq. (13).

Lemma 5. If In
i is an extrema point then In+1

i = In
i .

Proof. Let us assume In
i is a maximum point: In

i ≥ In
i−1, I

n
i+1. ThereforeDI

n
i = 0

and we get In+1
i = In

i . The same applies for minimum points.

Lemma 6. If In
i is a maximum/minimum point then In+1

i is a maxi-
mum/minimum point.

Proof. Let us assume In
i is a maximum point: In

i ≥ In
i−1, I

n
i+1. We should prove

the relations at the next step are: In+1
i ≥ In+1

i−1 , I
n+1
i+1 . We examine the point

In
i−1. There are two possible cases: if In

i−1 is an extrema point itself, then by
Lemma 5 it is not changed and we have In+1

i = In
i ≥ In

i−1 = In+1
i−1 . If I

n
i−1 is not

an extrema point then In
i > In

i−1 > In
i−2, DI

n
i−1 �= 0 ⇒ |sign(DIn

i−1)| = 1 and
we get: In+1

i−1 = In
i−1 +∆t[|In

i−1 − In
i |/h+ (In

i − 2In
i−1 + In

i−2)/h
2]. The last term

((..)/h2) is negative. using the CFL relation: ∆t ≤ 0.5h2 ≤ 0.5h for any h ≤ 1
we get In+1

i−1 < In
i−1 + 0.5(In

i − In
i−1) = 0.5(In

i + In
i−1) < In

i = In+1
i . The same

can be proven for In+1
i+1 and similar arguments hold for minimum points.
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From Lemmas 5,6 it follows that extrema points are stable and their value
does not change through the evolution process. As extrema points are unchanged
and no new local extrema are created - the scheme is TVP.

Theorem 3

The proof of this theorem is somewhat more lengthy and will appear in our
technical report ([7]). The intuition behind it is that near inflection points the
diffusion is weaker than the shock. Therefore in the evolution process there will
be a point where |D2I| < |DI| and the shock will prevent the inflection point
from being vanished or moved.
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