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Abstract. Blind deconvolution is considered as a problem of quasi maximum
likelihood (QML) estimation of the restoration kernel. Simple closed-form ex-
pressions for the asymptotic estimation error are derived. The asymptotic perfor-
mance bounds coincide with the Cramér-Rao bounds, when the true ML estima-
tor is used. Conditions for asymptotic stability of the QML estimator are derived.
Special cases when the estimator is super-efficient are discussed.

1 Introduction

Blind deconvolution arises in various applications related to acoustics, optics, medical
imaging, geophysics, communications, control, etc. In the noiseless setup of single-
channel blind deconvolution, the observed sensor signal x is created from the source
signal s passing through a convolutive system with impulse response a, x = a ∗ s.
The setup is termed blind if only x is accessible, whereas no knowledge on w and s
is available. Blind deconvolution attempts to find such a deconvolution (restoration)
kernel w, that produces a possibly delayed waveform-preserving source estimate ŝn =
(w ∗ x)n ≈ c · sn−∆, where c is a scaling factor and ∆ is an integer shift. Equivalently,
the global system response g = a ∗ w should be approximately a Kroenecker delta, up
to scale factor and shift. A commonly used assumption is that s is non-Gaussian.

Asymptotic performance of maximum-likelihood parameter estimation in blind sys-
tem identification and deconvolution problems was addressed in many previous studies
(see, for example, [1–4]). In all these studies, the Cramér-Rao lower bound (CRLB)
for the system parameters are found, and lower bounds on signal reconstruction qual-
ity are derived. However, sometimes the true source distribution is either unknown, or
not suitable for optimization, which makes the use of ML estimation impractical. In
these cases, a common solution is to replace the true source PDF by some other func-
tion, leading to a quasi ML estimator. Such an estimator generally does not achieve
the CRLB and a more delicate performance analysis is required. In [5, 6], asymptotic
performance analysis of QML estimators for blind source separation was presented.

In this study, we derive asymptotic performance bounds for a QML estimator of
the restoration kernel in the single-channel blind deconvolution problem, and state the
asymptotic stability conditions. We show that in the particular case when the true ML
procedure is used, our bounds coincide with the CRLB, previously reported in literature.
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2 QML Blind Deconvolution

Under the assumption that the restoration kernel w has no zeros on the unit circle, and
the source signal is real and i.i.d., the normalized minus-log-likelihood function of the
observed signal x in the noise-free case is [7]

�(x; w) = − 1
2π

∫ π

−π

log
∣∣W (eiθ)

∣∣ dθ +
1
T

T−1∑
n=0

ϕ (yn) , (1)

where W (eiθ) stands for the discrete Fourier transform of w, y = x ∗ w is a source
estimate, ϕ(s) = − log p (s) and p(s) is the probability density function (PDF) of the
source sn. We will henceforth assume that the restoration kernel wn has a finite impulse
response, supported on n = −N, ..., N . We also assume without loss of generality that
Esn = 0.

Consistent estimator can be obtained by minimizing �(x; w) even when ϕ(s) is not
exactly equal to − log p (s). Such QML estimation has been shown to be practical in
instantaneous blind source separation [5, 8] and blind deconvolution [9, 10] when the
source PDF is unknown or not well-suited for optimization. For example, when the
source is super-Gaussian (e.g. it is sparse or sparsely representable), a smooth approx-
imation of the absolute value function is a good choice for ϕ(s) [8]. It is convenient to
use a family of convex smooth functions, e.g.

ϕλ(s) = |s| − λ log
(

1 +
|s|
λ

)
(2)

with λ being a positive smoothing parameter, to approximate the absolute value [8].
ϕλ(s) → |s| as λ → 0+.

In case of sub-Gaussian sources, the family of functions

ϕµ(s) = |s|µ (3)

with the parameter µ > 2 is usually a good choice for ϕ(s) [9, 10].

2.1 Equivariance

A remarkable property of the QML estimator ŵ(x) of a restoration kernel w given the
observation x, obtained by minimization of �(x; w) in (1), is its equivariance, stated in
the following proposition:

Proposition 1. The estimator ŵ(x) obtained by minimization of �(x; w) is equivariant,
i.e., for every invertible h, ŵ(h ∗ x) = h−1 ∗ ŵ(x), where h−1 stands for the impulse
response of the inverse of h.

Proof. Observe that for an invertible h,

�(h ∗ x; h−1 ∗ w) = − 1
2π

∫ π

−π

log
∣∣∣∣W (eiθ)
H(eiθ)

∣∣∣∣ dθ +
1
T

T−1∑
n=0

ϕ ((x ∗ w)n)

= �(x; w) +
1
2π

∫ π

−π

log
∣∣H(eiθ)

∣∣ dθ.
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Let w = argmin �(x; w). Then �(h ∗ x; h−1 ∗ w) = �(x; w) + const, hence w is a
minimizer of �(h ∗ x; h−1 ∗ w) as well. Consequently, ŵ(h ∗ x) = h−1 ∗ ŵ(x). ��
Equivariance implies that the parameters to be estimated (in our case, the coefficients,
wn, specifying the restoration kernel) form a group. This is indeed the case for invertible
kernels with the convolution operation. In view of equivariance, we may analyze the
properties of �(w ∗ x; δn) instead of �(x; w).

2.2 The Gradient and the Hessian of �(x; w)

The gradient and the Hessian of �(x; w) in (1) are given by

∂�(x; w)
∂wk

=
∂

∂wk

(
− 1

2π

∫ π

−π

log
∣∣W (eiθ)

∣∣ dθ +
1
T

T−1∑
n=0

ϕ (yn)

)
=

= − 1
4π

∫ π

−π

(
e−iθk

W (eiθ)
+
(

e−iθk

W (eiθ)

)∗)
dθ +

1
T

T−1∑
n=0

ϕ′ (yn)
∂yn

∂wk

= −w−1
−k +

1
T

T−1∑
n=0

ϕ′ ((x ∗ w)n)xn−k, (4)

and

∂2�(x; w)
∂wk∂wl

=
∂

∂wl

(
− 1

2π

∫ π

−π

e−iθk

W (eiθ)
dθ +

1
T

T−1∑
n=0

ϕ′ ((x ∗ w)n)xn−k

)

= w−2
−(k+l) +

1
T

T−1∑
n=0

ϕ′′ ((x ∗ w)n)xn−kxn−l, (5)

where w−1 denotes the impulse response of the inverse of w, and w−2 = w−1 ∗ w−1.
At the solution point, where w = ca−1, it holds that x ∗ w = cs. Consequently the
Hessian of �(cs; δn) is

(∇2�
)
kl

= δk+l +
c2

T

T−1∑
n=0

ϕ′′ (csn) sn−ksn−l.

For a large sample size T , the average 1
T

∑T−1
n=0 ϕ′′ (csn) sn−ksn−l approaches the

expected value Eϕ′′ (csn) sn−ksn−l. Since sn is assumed to be zero-mean i.i.d., the
following structure of the Hessian at the solution point is obtained asymptotically:

∇2�(cs; δn) ≈




. . .
...

γσ′2 1
αc2 + 1

1 γσ′2

...
. . .




, (6)

where σ2 = Es2, σ′2 = (cσ)2, α = Eϕ′′(cs)s2, and γ = Eϕ′′(cs).
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3 Asymptotic Error Covariance Matrix

Let the restoration kernel, w, be estimated by minimizing the minus log likelihood func-
tion �(x; w) defined in (1), where the true − log p(s) of the source is replaced by some
other function ϕ(s). We assume that w has sufficient degrees of freedom to accurately
approximate the inverse of a. For analytic tractability, we assume that Eϕ′′(cs), Es2,
Eϕ′′(cs)s2, Eϕ′2(cs), Eϕ′(cs)s and Eϕ′2(cs)s2 exist and are bounded. Note that the
expected values are computed with respect to the true PDF of s.

Let w∗ = ca−1 be the exact restoration kernel (up to a scaling factor). It can be
shown that w∗ satisfies [11] w∗ = argminw Ex�(x; w). Let ŵ be the estimate of
the exact restoration kernel w∗, based on the finite realization of the data x, ŵ =
argminw �(x; w). Note that ∇�(x; ŵ) = 0, whereas ∇�(x; w∗) �= 0; yet E∇�(x;
w∗) = 0. Denote the estimation error as ∆w = w∗ − ŵ. Then, assuming ‖∆w‖ is
small, second-order Taylor expansion yields

∇�(x; w∗) ≈ ∇2�(x; w∗) · (w∗ − ŵ) = ∇2�(x; w)
∣∣
w=a−1 · ∆w.

Due to the equivariance property, the former relation can be rewritten as

∇�(w∗ ∗ x; δn) ≈ ∇2�(w∗ ∗ x; δn) · ∆w.

Since w∗ = ca−1, we can substitute w∗ ∗ x = cs, and obtain ∇�(cs;
δn) ≈ ∇2�(cs; δn) · ∆w, or, alternatively, ∆w ≈ ∇2�(cs; δn)−1 · ∇�(cs; δn). For
convenience, we will denote ∇�(cs; δn) and ∇2�(cs; δn) as g and ∇2�, respectively.
The covariance matrix of ∆w is therefore given by

Σ∆w = E∆w∆wT ≈ (∇2�
)−1 · E∇�∇�T · (∇2�

)−T
=
(∇2�

)−1 · Σ∇� ·
(∇2�

)−1
.

For a large sample size, the asymptotic Hessian structure (6) can be used, allowing to
split the asymptotic covariance matrix, Σ∆w, into a set of 2 × 2 symmetric matrices of
the form

Σ
(k)
∆w =

(
E(∆w−k)2 E∆wk∆w−k

E∆wk∆w−k E(∆wk)2

)
≈
(

γσ′2 1
1 γσ′2

)−1

Σ
(k)
∇�

(
γσ′2 1

1 γσ′2

)−1

(7)

for k �= 0, where Σ
(k)
∇� is the covariance matric of g−k, gk, and an additional 1 × 1

element

Σ
(0)
∆w =

Eg2
0

(αc2 + 1)2
. (8)

That is, the asymptotic error covariance matrix has a digaonal-anti-diagonal form. This
implies that cov∆wk∆wk′ , for k �= k′, k �= −k′, decreases in the order of 1/T 2 as
T → ∞. Taking the expectation of the gradient gk, one obtains Egk = −δk +Eϕ′(csn)
csn−k. Demanding Egk = 0, we obtain the following condition:

Eϕ′(cs)cs = 1, (9)
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from where the scaling factor c can be found. Let us now evaluate the 2 × 2 gradient
covariance matrix, Σ

(k)
∇� , for k �= 0. Substituting w = δn, x = cs into (4) yields

gk =
∂�(cs; δn)

∂wk
= −δk +

c

T

∑
n

ϕ′(csn)sn−k, (10)

which for k �= 0 reduces to gk = 1
T

∑
n ϕ′(csn)csn−k. Taking the expectation w.r.t. s,

and neglecting second-order terms, we obtain

Eg2
k =

c2

T 2

∑
n,n′

E {ϕ′(csn)ϕ′(csn′) sn−ksn′−k} ≈ c2

T
Eϕ′2(cs)Es2 =

1
T

βσ′2

Eg−k gk =
c2

T 2

∑
n,n′

E {ϕ′(csn)ϕ′(csn′) sn+ksn′−k} ≈ 1
T

E
2ϕ′(cs)cs =

1
T

,

that is,

Σ
(k)
∇� ≈ 1

T
·
(

βσ′2 1
1 βσ′2

)
,

where β = Eϕ′2(cs). Substituting the former result to (7) yields after some algebraic
manipulations

var∆wk ≈ βσ′2 (γ2σ′4 + 1
)− 2γσ′2

T (γ2σ′4 − 1)2
(11)

cov∆w−k∆wk ≈ γσ′2 (γσ′2 − 2βσ′2)+ 1

T (γ2σ′4 − 1)2
(12)

for k �= 0. Note that the asymptotic variance depends on the sample size T and on
parameters β, γ, c and σ′2, which depend on the source distribution and on ϕ(s) only.

Let us now address the case of k = 0. Neglecting second-order terms, the second
moment of g0 is given by

Eg2
0 ≈ −1 − 2Eϕ′(cs)cs + E

2ϕ′(cs)cs +
1

T

(
Eϕ′2(cs)(cs)2 − E

2ϕ′(cs)cs
)

=
c2ϑ − 1

T
,

where ϑ = Eϕ′2(cs)s2. Hence, Σ
(0)
∇� ≈ (c2ϑ − 1)/T . Substituting Σ

(0)
∇� into (8) yields

var∆w0 ≈ c2ϑ − 1
T (αc2 + 1)2

. (13)

Using var∆wk, an asymptotical estimate of restoration quality in terms of signal-to-
interference ratio (SIR) can be expressed as

SIR =
E‖cs‖2

2

E‖w ∗ x − cs‖2
2

=
|w∗

0 |2
E‖∆w‖2

2

≈ T
(
γ2σ′4 − 1

)2
2N (βσ′2 (γ2σ′4 + 1) − 2γσ′2)

. (14)



682 Alexander M. Bronstein et al.

3.1 Cramér-Rao Lower Bounds

We now show that the asymptotic variance of the estimation error in (11), (13) matches
the CRLB on the asymptotic variance of ŵk, when the true MLE procedure is used, i.e.,
when ϕ(s) = − log p(s). In this case, c = 1, σ′2 = σ2, and under the assumption that
lims→±∞ p(s) = 0, it can be shown [12] that γ = β. Substituting c, σ′2, γ into (11),
we obtain for k �= 0

var∆wk ≈ βσ2

T (β2σ4 − 1)
=

1
T

· L
L2 − 1

,

where L = σ2 · Eϕ′2(s) is known as Fisher’s information for location parameter [4].
This result coincides with the CRLB on wk developed in [4]. Similarly, under the as-
sumption that lims→±∞ p(s)s = 0, it can be shown that θ = α + 2 [12]. Substituting
c = 1 and the latter result into (13) yields

var∆w0 ≈ 1
T

· ϑ − 1
(α + 1)2

=
1
T

· 1
α + 1

=
1

TS ,

where S = cum {ϕ′(s), ϕ′(s), s, s} + L + 1 is the Fisher information for the scale pa-
rameter [4]. This result coincides with the CRLB on w0 in [4]. Substituting the obtained
β and γ into (14), yields

SIR ≈ T
(L2 − 1

)
2N · L ≤ TL

2N
.

This result coincides with the asymptotic performance bound derived in [4].

3.2 Super-efficiency

Let us now consider the particular case of sparse sources, such sources that take the
value of zero with some non-zero probability ρ > 0. An example of such distribution
is the Gauss-Bernoully (sparse normal) distribution [12]. When ϕ(s) is chosen accord-
ing to (2), ϕ′

λ(s) → sign(s) and ϕ′′
λ(s) → 2δ(s) as λ → 0+. Hence, for a sufficiently

small λ,

γ = Eϕ′′(cs) ≈ 1
λ

∫ +λ/c

−λ/c

p(s) ds ≈ ρ

λ
,

whereas β and c are bounded. Consequently, for k �= 0

plim
T→∞

T · var∆wk ≤ β

γ2σ′2 ≤ const · λ2, (15)

where plim denotes the probability limit. Observe that this probability limit vanishes
for λ → 0+, which means that the estimator ŵk of wk is super-efficient. Similarly, the
sub-Gaussian QML estimator with ϕµ(s) defined in (3) is super-efficient for sources
with compactly supported PDF.
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4 Asymptotic Stability

A QML estimator ŵ(x) of w∗, obtained by minimization of �(x; w), is said to be asymp-
totically stable if w = w∗ is a local minimizer of �(x; w) for infinitely large sample
size. Asymptotic error analysis, presented in Section 3, is valid only when the QML
estimator is asymptotically stable.

Proposition 2. Let ŵ(x) be the QML estimator of w. ŵ(x) is asymptotically stable if
the following conditions hold:

γ > 0, (16)

γ2σ′4 > 1, (17)

αc2 > −1. (18)

Proof. The QML estimator is asymptotically stable if in the limit T → ∞, w = w∗ is
a local minimizer of �(x; w), or due to equivariance, w = δn is a local minimizer of
�(cs; w). The first- and the second-order Karush-Kuhn-Tucker conditions

plim
T→∞

∇�(cs; δn) = 0 (19)

plim
T→∞

∇2�(cs; δn) � 0 (20)

are the necessary and the sufficient conditions, respectively, for existence of the local
minimum. The necessary condition (19) requires that ∇� = 0 as the sample size ap-
proaches infinity. For k �= 0 we obtain from (10) that plimT→∞ gk = Eϕ′(cs) ·E cs =
0, and for k = 0, by choice of c, plimT→∞ g0 = Eϕ′(cs)cs − 1 = 0. The sufficient
condition (20) requires that ∇2� � 0 as the sample size approaches infinity. Using the
asymptotic Hessian given in (6), this condition can be rewritten as

(
γσ′2 1

1 γσ′2

)
� 0, αc2 + 1 � 0.

The latter holds if and only if γ > 0, γ2σ′4 > 1 and αc2 > −1. ��

It is observed that when ϕ(s) is chosen to be proportional to − log p(s), ŵ(x) is
never asymptotically unstable. When ϕ(s) is chosen according to (3), it can be shown
that c = (µ · E|s|µ)−1/µ, α = µ(µ−1)cµ ·E|s|µ, and γ = µ(µ−1)cµ−2 ·E|s|µ−2. For
µ > 2, it can be easily checked that conditions (16), (18) hold, hence, the asymptotic
stability condition is E|s|µ < (µ − 1)Es2

E|s|µ−2. In the particular case when µ = 4,
the latter condition becomes κ < 0, where κ is the kurtosis excess, meaning that the
estimator is asymptotically stable for sub-Gaussian sources.

When ϕ(s) is chosen according to (2), there exists no analytic expression for the
asymptotic stability conditions, except the case when λ → 0+. In the latter case, ϕ′ =
sign(s) and ϕ′′(s) = 2δ(s), from where c = 1/E|s|, α = 2Eδ(s)(cs)2 = 0, and
γ = 2Eδ(s) = 2p(0). Observe that conditions (16), (18) hold again, hence the estimator
is asymptotically stable if E|s| < 2p(0)σ2.
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5 Conclusion

In order to be in a position to utilize the QML estimator of the restoration kernel in
blind deconvolution, and to gain insight into the effect of the source distribution and
the choice of ϕ(s), it is important to quantify the asymptotic performance and es-
tablish stability conditions. For this purpose we derived simple closed-form expres-
sions for the asymptotic estimation error, and showed that its covariance matrix has a
diagonal-anti-diagonal form. An asymptotic estimate of the restoration quality in terms
of SIR was also presented. The main conclusion from the performance analysis is that
the asymptotic performance depends on the choice of ϕ(s) essentially through the ra-
tio Eϕ′2(s)/E

2ϕ′′(s) of non-linear moments of the source. We demonstrated that for
the true ML estimator, our asymptotic performance bounds coincide with the CRLB.
Asymptotic stability conditions for the QML estimator have been shown as well. Ex-
tension to the MIMO case is presented in [13]. Particular cases wherein the families of
functions ϕλ(s) and ϕµ(s) yield super-efficient estimators were highlighted. More del-
icate analysis is required to determine whether zero variance can be achieved on a finite
sample, and what is its minimum size. Such a result is important from both theoretical
and practical viewpoints.
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