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Abstract. Gabor Analysis is frequently used for texture analysis and
segmentation. Once the Gaborian feature space is generated it may be
interpreted in various ways for image analysis and segmentation. Image
segmentation can also be obtained via the application of ”snakes” or ac-
tive contour mechanism, which is usually used for gray-level images. In
this study we apply the active contour method to the Gaborian feature
space of images and obtain a method for texture segmentation. We cal-
culate six localized features based on the Gabor transform of the image.
These are the mean and variance of the localized frequency,orientation
and intensity. This feature space is presented, via the Beltrami frame-
work, as a Riemannian manifold. The stopping term, in the geodesic
snakes mechanism, is derived from the metric of the features manifold.
Experimental results obtained by application of the scheme to test im-
ages are presented.

1 Introduction

Gaborian approach to image processing and analysis has been motivated by
biological principles of image representation at the level of the primary visual
cortex. The Gabor framework has been extensively used over the last fifteen
years for texture analysis and segmentation [15,11,1].

The motivation for using Gabor filters in texture analysis is double fold.
First, it appears as though simple cells in the visual cortex can be well modeled
by Gabor functions [12,4], and that the Gabor scheme provides a suitable repre-
sentation for visual information in the combined frequency-position space [14].
Second, the Gabor representation is optimal in the sense of minimizing the joint
two-dimensional uncertainty in the combined spatial-frequency space [5].

Once the Gabor feature space of an image is generated, it may be used for
texture segmentation. The fundamental question is how to extract the features
which enable us to discriminate between textures. Porat and Zeevi have pro-
posed [15] to extract six localized features that can describe textures: the first
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two moments of the spatial frequency, orientation of the spatial frequency and
intensity information. The six resulting features were used for texture analysis
and synthesis.

Segmentation is another important task in image processing. Since the intro-
duction of ”snakes” or active contours [6], this method has been extensively used
for boundary detection in gray-level images. In this framework an initial contour
is deformed towards the boundary of an object to be detected. The evolution
equation is derived from minimization of an energy functional, which obtains a
minimum for a curve located at the boundary of the object.

The geodesic or geometric active contours model [3,7] offers a different per-
spective for solving the boundary detection problem; It is based on the obser-
vation that the energy minimization problem is equivalent to finding a geodesic
curve in a Riemannian space whose metric is derived from the image contents.
The geodesic curve can be found via a geometric flow. Utilization of the Os-
her and Sethian level set numerical algorithm [16] allows automatic handling of
changes of topology.

This snakes’ model was extended to the vector valued active contours to
handle more complex scenery such as color images [17] and multi-texture images.
Some recent related work includes the one of Paragios and Deriche [13] who
generate the image texture feature space by filtering the image using Gabor
filters. Texture information is then expressed using statistical measurements,
and segmentation is achieved by application of geodesic snakes to the statistical
feature space. Shah [18] developed and applied curve evolution and segmentation
algorithms where anisotropic metrics were considered. Lorigo et al [10] used both
image intensity and its variance for MRI image segmentation.

It was shown recently that the Gaborian spatial-feature space can be de-
scribed, via the Beltrami framework, as a 4D Riemannian manifold embedded in
R6 [8]. Based on this approach we aim to generalize the intensity based geodesic
active contours method to the Gabor-feature space of images. The stopping term,
in the geodesic snakes mechanism, is generalized and derived from the metric of
the Gabor spatial-feature manifold. We treat the localized texture features sug-
gested in [15] as a multi-valued image and apply the geodesic snakes mechanism
to it.

2 Geodesic Active Contours

In this section we review the geodesic and geometric active contours method in
the context of gray-level images [3,7].

Let C(q) : [0, 1] → R2 be a parametrized curve, and let I : [0, a] × [0, b] → R+

be the given image. Let E(r) : [0,∞[→ R+ be an inverse edge detector, so that
E approaches zero when r approaches infinity. Minimizing the energy functional
proposed in the classical snakes is generalized to finding a geodesic curve in a
Riemannian space by minimizing:

LR =
∫

E(|∇I(C(q))|) |C′(q)|dq. (1)
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The resultant evolution equation is the gradient descent flow:

∂C(t)
∂t

= E(|∇I|)kN − (∇E ·N) N, (2)

where k denotes curvature.
Defining a function U , such that C = ((x, y)|U(x, y) = 0), we may use the

Osher-Sethian Level-Sets approach [16] and obtain an evolution equation for the
embedding function U :

∂U(t)
∂t

= |∇U |Div
(

E(|∇I|) ∇U

|∇U |
)

. (3)

A popular choice for the stopping function E(|∇I|) is given by:

E(I) =
1

1 + |∇I|2 ,

but other functions have been considered as well.

3 Feature Space and Gabor Transform

The Gabor scheme and Gabor filters have been studied by numerous researchers
in the context of image representation, texture segmentation and image retrieval.
A Gabor filter centered at the 2D frequency coordinates (U, V ) has the general
form of:

h(x, y) = g(x′, y′) exp(2πi(Ux + V y)) (4)

where
(x′, y′) = (x cos(φ) + y sin(φ),−x sin(φ) + y cos(φ)), (5)

the 2D Gaussian window is

g(x, y) =
1

2πσ2
exp

(
− x2

2λ2σ2
− y2

2σ2

)
, (6)

λ is the aspect ratio between x and y scales, σ is the scale parameter, and the
major axis of the Gaussian is oriented at angle φ relative to the x-axis and to
the modulating sinewave gratings.

The Fourier transform of the Gabor function is, accordingly :

H(u, v) = exp
(
−2π2σ2((u′ − U ′)2λ2 + (v′ − V ′)2)

)
, (7)

where, (u′, v′) are rotated frequency axes and (U ′, V ′) are the rotated coordinates
of the central frequency. Thus, H(u, v) is a bandpass Gaussian with minor axis
oriented at angle φ from the u-axis, and the radial center frequency F is defined
by : F =

√
(U2 + V 2), with orientation θ = arctan(V/U). Since maximal reso-

lution in orientation is desirable, the filters whose sine gratings are cooriented



Geodesic Active Contours Applied to Texture Feature Space 347

with the major axis of the modulating Gaussian are usually considered (φ = θ
and λ > 1), and the Gabor filter is reduced to: h(x, y) = g(x, y) exp(2πiFx).

It is possible to generate Gabor-Morlet wavelets from a single mother-Gabor-
wavelet by transformations such as: translations, rotations and dilations. We can
generate, in this way, a set of filters for a known number of scales, S, and orienta-
tions K. We obtain the following filters for a discrete subset of transformations:

hmn(x, y) = a−mh(
x′

am
,

y′

am
), (8)

where (x′, y′) are the spatial coordinates rotated by πn
K and m = 0...S − 1.

Alternatively, one can obtain Gabor wavelets by logarithmically distorting the
frequency axis [14] or by incorporating multiwindows [20]. In the latter case one
obtains a more general scheme wherein subsets of the functions constitute either
wavelet sets or Gaborian sets.

The feature space of an image is obtained by the inner product of this set of
Gabor filters with the image:

Wmn(x, y) = Rmn(x, y) + iJmn(x, y) = I(x, y) ∗ hmn(x, y). (9)

Next, we follow Porat and Zeevi [15] and extract six localized texture features
from the Gabor feature space: dominant localized frequency (denoted MF ), vari-
ance of the dominant localized frequency (V F ), dominant orientation (MT ),
variance of the dominant orientation (V T ), mean of the local intensity (MI)
and variance of the localized intensity level (V I). This selection is based on the
assumption that the primitives of natural textures are localized frequency com-
ponents in the form of Gabor elementary functions. Therefore, texture analysis
takes the form of inner product or correlation of such primitives with textured
images.

The spatial frequencies are determined by the scale parameter a and a base
frequency F0 as: Fm = F0 ∗ am, where m is an integer. The dominant localized
frequency is given by:

MF (x, y) =
∑m

i=1

∑n
i=1 Wmn(x, y)Fm(x, y)∑m

i=1

∑n
i=1 Wmn(x, y)

(10)

The variance of the localized frequency V F is

V F (x, y) =
∑m

i=1 |Fm(x, y) − MF (x, y)|
m

(11)

This feature represents the bandwidth of the localized spatial frequency. If it is
normalized by the mean localized frequency we obtain a scale invariant feature.

V Fnormalized(x, y) =
V F (x, y)
MF (x, y)

(12)

The mean and variance of the orientation are defined by

MT (x, y) =
∑m

i=1

∑n
i=1 Wmn(x, y)Tn(x, y)∑m

i=1

∑n
i=1 Wmn(x, y)

(13)
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V T (x, y) =
∑n

i=1 |Tn(x, y) − MT (x, y)|
n

(14)

where Tn = πn
K .

The local mean intensity and its variance are extracted to complete the set
of features. If the image contains smooth segments then the gray level informa-
tion is the only way to separate these regions. The locality of these features is
accomplished by averaging the intensity level using a filter equal in size to the
Gabor filter used to generate the Gabor-feature-space:

MI(x, y) =

∑
x,y∈A I(x, y)

N
, (15)

where A is the set of N pixels belonging to the area defined by the averaging
filter window centered at (x, y) and I(x, y) is the intensity image. The variance
of the intensity level is given by

V I(x, y) =

∑
x,y∈A |I(x, y) − MI(x, y)|

N
(16)

4 Application of Geodesic Snakes to the
Localized-Texture-Features-Space

Application of the geodesic snakes mechanism to the localized texture feature
space, derived from the Gabor space of images, is achieved by generalizing the
inverse edge indicator function E, which attracts in turn the evolving curve
towards the boundary in the classical and geodesic snakes schemes. A special
feature of our approach is the metric introduced in the localized texture feature
space, and used as the building block for the stopping function E in the geodesic
active contours scheme.

Sochen et al [19] proposed to view images and image feature space as Rie-
mannian manifolds embedded in a higher dimensional space. For example, a
gray scale image is a 2-dimensional Riemannian surface (manifold), with (x, y)
as local coordinates, embedded in R3 with (X, Y, Z) as local coordinates. The
embedding map is (X = x, Y = y, Z = I(x, y)), and we write it, by abuse
of notations, as (x, y, I). When we consider feature spaces of images, e.g. color
space, statistical moments space, and the Gaborian space, we may view the
image-feature information as a N -dimensional manifold embedded in a N + M
dimensional space, where N stands for the number of local parameters needed
to index the space of interest and M is the number of feature coordinates. In
our case, we may view the localized features image as a 2D manifold with lo-
cal coordinates (x, y) embedded in a 8D feature space. The embedding map is
(x, y, MF, V F, MT, V T, MI, V I).

MF, V F, MT, V T, MI, V I are functions of the local coordinates (x, y) and
are the localized texture features, as described in the previous section.

A basic concept in the context of Riemannian manifolds is distance. For ex-
ample, we take a two-dimensional manifold Σ with local coordinates (σ1, σ2).
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Since the local coordinates are curvilinear, the distance is calculated using a pos-
itive definite symmetric bilinear form called the metric whose components are
denoted by gµν(σ1, σ2): ds2 = gµνdσµdσν , where we used the Einstein summa-
tion convention : elements with identical superscripts and subscripts are summed
over. The metric on the image manifold is derived using a procedure known as
pullback [19]. The manifold’s metric is then used for various geometrical flows.
We shortly review the pullback mechanism [19].

Let X : Σ → M be an embedding of Σ in M , where M is a Riemannian
manifold with a metric hij and Σ is another Riemannian manifold. We can use
the knowledge of the metric on M and the map X to construct the metric on
Σ. This pullback procedure is as follows:

(gµν)Σ(σ1, σ2) = hij(X(σ1, σ2))
∂X i

∂σµ

∂Xj

∂σν
, (17)

where we used the Einstein summation convention, i, j = 1, . . . , dim(M), and
σ1, σ2 are the local coordinates on the manifold Σ.

If we pull back the metric of a 2D image manifold from the Euclidean em-
bedding space (x,y,I) we get:

(gµν(x, y)) =
(

1 + I2
x IxIy

IxIy 1 + I2
y

)
. (18)

The determinant of gµν yields the expression : 1+Ix
2+Iy

2. Thus, we can rewrite
the expression for the stopping term E in the geodesic snakes mechanism as
follows:

E(|∇I|) =
1

1 + |∇I|2 =
1

det(gµν)
. (19)

The exact geometry of texture feature space is not known. Therefore, for simplic-
ity, we assume it is Euclidean. Moreover, since we have no previous knowledge
on the 2D feature-manifold metric, we assume that the distances measured on
the 2D manifold are the same as those measured in the 8D embedding space.
Thus, we may use the pullback mechanism to obtain the following metric:

(gµν) =
(

1 +
∑

i(CiA
i
x)2

∑
i CiCiA

i
xAi

y∑
i CiCiA

i
xAi

y 1 +
∑

i(CiA
i
y)2

)
(20)

where A = (MF,VF,MT,VT,MI,VI), Ci are regularization factors which
account for the different physical dimensions for each parameter, and i goes over
all members of this set.

The metric g derived in this section is strictly used for the purpose of cal-
culating an edge detector. It is used to measure distances on manifolds and its
components indicate the rate of change of the manifold given a certain direction.
Therefore, the determinant of the metric is used as a positive definite edge in-
dicator: A large value indicates a strong gradient, while a small value indicates
where the manifold is almost flat. Thus, it is reasonable to set E to be the inverse
of the determinant of gµν .
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5 Results and Discussion

In our application of geodesic snakes to textural images, we have used the
mechanism offered by Lee [9] to generate the Gabor wavelets for five scales
and eight orientations. In the geodesic snakes mechanism U was initiated to
be a signed distance function [3]. For simplicity, we have set the values of Ci

discussed in section 4 to be 1. Following are the results for a few test im-

Fig. 1. a. A synthetic image made up of 2D sinewave gratings containing back-
ground and object of different orientations (left). b. The stopping function E
(middle). c. The resultant boundary(right).

ages. For the complete set of full size images and a demo see the web-page:
http://www-visl.technion.ac.il/scalespace01.

In the first example (Fig. 1) the test image is a synthesized texture composed
of vertical and horizontal lines. Application of the geodesic snakes algorithm re-
sults in an accurate boundary. In the second example the test image is composed
of two textures which differ in their scale (Fig. 2). The resultant boundary is
located at the interior of the circles rather than on their exact boundary. The
reason for that might be that since the two textures are quite similar, the change
of scale is noted by the Gabor filters only when they are properly located within
the internal texture.

Our next example is composed of two different textures taken from the Bro-
datz album (Fig. 3). Since these textures are characterized by small variations
in their dominant scale and orientation the six localized features are submitted
to non linear smoothing prior to the generation of the stopping term E which
is also in turn smoothed by the same process. The non linear smoothing proce-
dure used is the Beltrami flow as described in [19]. The degree of smoothing was
empirically determined to obtain satisfactory results.

We have shown that it is useful to extend the definition of the stopping term
E used in the geodesic snakes scheme to features other than intensity gradients.
In the original work the six localized features are used as vector components to
determine distance between textures [15]. This allows for determining the mean
value of these features for each texture. In the proposed segmentation process
the localized features are calculated for each pixel and therefore hold a large

http://www-visl.technion.ac.il/scalespace01
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Fig. 2. a. A synthetic image made up of 2D sinewave gratings containing back-
ground and object of different scales (left). b. The stopping function E (middle).
c. The resultant boundary(right).

degree of intra-variation. Thus, if the texture is not homogeneous we may need
higher statistical moments such as kurtosis of the localized texture features. Yet,
we have shown that this algorithm can be successfully applied to textures that
are characterized by a small degree of intra-variation.

Fig. 3. a. An image comprised of two textures taken from Brodatz album of
textures [2] (left). b. The stopping function E (middle). c. The resultant bound-
ary(right).
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