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Two-Dimensional Orthogonal 
Wavelets with Vanishing Moments 

David Stanhill and Yehoshua Y. Zeevi 

Abstruct- We investigate a very general subset of 2-D, or- 
thogonal, compactly supported wavelets. This subset includes all 
the wavelets with a corresponding wavelet (polyphase) matrix 
that can be factored as a product of factors of degree-1 in one 
variable. In this paper, we consider, in particular, wavelets with 
vanishing moments. The number of vanishing moments that can 
be aichieved increases with the increase in the McMillan degrees 
of the wavelet matrix. We design wavelets with the maximal 
number of vanishing moments for given McMillan degrees by 
solving a set of nonlinear constraints on the free parameters 
defining the wavelet matrix and discuss their relation to regular, 
smooth wavelets. Design examples are given for two fundamental 
sampling schemes: the quincunx and the four-band separable 
sampling. The relation of the wavelets to the well-known I-D 
Daubechies wavelets with vanishing moments is discussed. 

I. INTRODUCTION 

HE M-band 2-D discrete wavelet transform (DWT) is T defined by M functions, one scaling function, yii"(z), 
( M  - 1) wavelet functions yiiP(z), and a sampling matrix 
D .  For wavelets associated with multiresolution analysis, the 
DWT can equally be specified by M wavelet filters H ~ ( w )  
instead of the M wavelet functions. In this work, we restrict 
the discussion to compactly supported functions that define 
an orthogonal DWT. The orthogonal compactly supported 
wavelet filters are a special case of lossless FIR multirate 
fi1te:r banks. Since a considerable number of studies have been 
devoted to lossless filter banks, we adopt, in part, the notation 
and terminology used in this field. Specifically, we limit most 
of the analysis to the polyphase matrix defined by the wavelet 
filteirs (wavelet matrix) rather than to the wavelet functions. 

Most current applications of the 2-D DWT use 1-D wavelet 
functions and filters to construct 2-D separable wavelets [I]. 
Using separable functions preserves orthogonality but imposes 
severe limitations on the 2-D wavelets. For example, the com- 
monly used four-band filters cannot have linear phase, except 
for the Haar wavelet, and their orientation cannot be adjusted 
for given specifications. Various other methods were proposed 
for the design of 2-D perfect reconstruction filter banks [2]-[4], 
which do not require orthogonality (paraunitarity) or finite sup- 
port The restrictions imposed on the functions/filters still leave 
considerable freedom in choosing the wavelet functions/filters. 
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Motivated by the work of Daubechies in one dimension [5] ,  we 
examine the design of 2-D, orthogonal, compactly supported 
wavelets with maximal number of vanishing moments. In the 
1-D case, these have become the standard wavelets, and they 
can be considered suboptimal in a large class of applications, 
such as the representation, processing, and compression of 
1-D signals. For detailed experimental results in image com- 
pression using separable wavelets showing the optimality of 
wavelets with vanishing moments, see [6]. The generalization 
of the 1-D notion of vanishing moments to higher dimensions 
is straightforward, but its nature and importance has yet to 
be determined. In 1-D two-band wavelets, the number of 
vanishing moments is closely related to the flatness of the 
frequency response of the wavelet filters at the aliasing points, 
When dealing with more than two bands, even in 1-D, the M 
functions are no longer uniquely defined by each other, and 
the vanishing moment constraints ensure flatness of the scaling 
filter but not of the other wavelet filters. The regularity of 
the wavelet functions is also closely related to the number of 
vanishing moments in the 1-D case [7]-[9]. Yet in more than 1- 
D, no such relation has been rigorously shown, although it was 
suggested to hold by Daubechies and Lagarias [8]. The work 
of Villemoes in 2-D (quincunx) [lo] introduces a different 
approach to the general 2-D regularity measurement and is 
uced here to obtain lower bounds of the Holder exponent. 

The factorization method used by Daubechies [5] in 1-D 
to design orthogonal wavelets with N vanishing moments has 
no straightforward generalization to more than 1-D since the 
fundamental theorem of algebra holds only for 1-D. We there- 
fore construct 2-D wavelets by first parameterizing the space 
of orthogonal wavelets with compact support and then impose 
a set of constraints on the parameters in order to achieve the 
desired number of vanishing moments. The shortcoming of this 
method is that no complete parameterization of the space of 2- 
D, orthogonal, compactly supported wavelets exists. In most 
of this work, we limit the design to wavelets with wavelet 
matrices that are factorable as a product of 1-D degree-1 
factors. Such wavelets were proposed by Karlsson and Vetterli 
[ 111. The issue of parameterization of 2-D lossless FIR transfer 
matrices has been investigated by Venkataraman and Levy 
[12], [ 131. They have shown that the set of lossless FIR transfer 
matrices (wavelet matrices in our case) that are factorable is 
not of measure zero in the set of general lossless FIR matrices. 
Toward the completion of this manuscript, our attention was 
drawn to a recent work by KovaEeviC and Vetterli [14]. They 
use a construction method similar to the one proposed here, 
and give a few design examples. 
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The rest of the paper is organized as follows. The first sec- 
tion is devoted to the description of 2-D orthogonal wavelets 
and filter banks in terms of their polyphase matrix, and 
the notion of factorable wavelets is introduced. In the next 
section, we give the conditions for obtaining wavelets with 
L vanishing moments and discuss their relation to regular, 
smooth wavelets. Specific design results and examples are 
given in the last section: first for quincunx wavelets and then 
for four-band, separable sampling wavelets. 

A few comments on notation. The term order refers to 
the polynomial order, while degree is used to denote the 
McMillan degree. We use boldface for 2-D entities like 2,n. 
We adopt the notation used in the multidimensional multirate 
literature; for two vectors n = (nl,n2)T and z = (xl, x ~ ) ~ ,  
we have zn = z;’x2n2, and for a 2 x 2 matrix D, we define 
z D  ( , ~ f ~ . ’ $ , ~ ,  zp1.2xf2 ,2) .  Capital letters are used for 
functions given in the z and frequency domains, such as H ( z )  
and H ( w ) .  Finally, boldface is used also for matrix-valued 
functions. 

n 

11. 2-D WAVELETS AND MULTIRATE FILTER BANKS 

When dealing with multidimensional wavelets and multirate 
systems, the change in resolution and sampling rate is given 
by a matrix D .  In the 2-D case, D is a 2 x 2 matrix with 
both eigenvalues larger than 1 in absolute value, as compared 
with a single factor larger than 1 in the 1-D case. For a 
detailed analysis of 2-D subsampling and multirate systems, 
see Viscito and Allebach [15], and for a more mathematical 
background in multidimensional wavelets, see Lawton and 
Resnikoff [16]. Here, we quote a few facts and definitions 
relevant to the rest of this paper. For a discrete signal given 
on a lattice A, the subsampled signal is defined on the lattice 
AD = (Dn: n E A}. The density of grid points on AD is 
smaller by a factor of M = I det ( D )  1 than the density on A. 
A coset of a sublattice is the set of grid points on the lattice 
that are also on a shifted version of the sublattice. A coset 
is referred to by a vector k; that defines the 2-D shift. There 
are M distinct cosets that cover the entire lattice. The points 
wi = 2rrDPTk+, where k; are coset vectors of D T ,  are called 
points of repeated spectra or “aliasing points.” We now define 
2-D wavelets. 

The discrete 2-D wavelet transform (DWT) of a function 
f E L2(R2)  is defined as 

where 

+:,,(z) 2 V ‘ X Z ~ ( D J Z  - n),  
p = l , . . . ~ - l ;  j E Z ;  n E Z 2  

The (M - 1) wavelet functions @‘(x) are related to the scaling 
function lbO (x) through the two-scale refinement equations 

n 

where hp(n) is a 2-D sequence. In this work, we focus 
our effort on real, compactly supported wavelets; hence, the 

sequences h p ( n )  are real and of finite length. The M sequences 
hp(n) and their Fourier transform H p ( w )  can be viewed as the 
impulse and frequency responses of 2-D FIR filters and are 
called wavelet filters. The scaling filter H O ( w )  is a lowpass 
filter, and the rest are highpass or bandpass filters. 

To assist the analysis of multirate filter banks, we define two 
matrices: the polyphase and modulation matrices. In multirate 
systems, each filter Hp(w)  is decomposed into M polyphase 
components: one for each coset shift vector k ,  

M-I  

(3) 

where 

H;(w)  A hP(Dn + k,)e-“? 
71 

The polyphase matrix of a maximally decimated filter bank is a 
M x M matrix H ( w )  with one column for each filter and one 
row for each polyphase component, that is, the pth column 
is (H:(w),  H f ( w ) ,  . . . H i f _ l ( w ) ) T .  Note that the polyphase 
matrix is sometimes defined as the transpose of the one defined 
above. In the modulation matrix Hn/r(w), the pth column is 
built from M shifted versions of the filter HP (w)  : one for each 
aliasing frequency, i.e., the pth column is 

1 
-(H’(w), Jn(l H p ( w  + 27rDPTkl), 

. , H”(w + 2 ~ D - ~ k 1 ~ 1 ~ 1 ) ) ~ .  

The following two propositions, which are well known in 
1-D, were proven for the multidimensional case in [16]. 

Proposition 1: A maximally decimated filter bank is loss- 
less if and only if it obeys one of the following equivalent 
conditions: 

1) 

3) 

HL(w)HA&)  = I .  

Proposition 2: A lossless bank of M ,  2-D, FIR filters 
defines a compactly supported, orthogonal 2-D wavelet system 
if and only if it satisfies C n  P ( n )  = Hp(w = 0) = S p , O a .  

The term orthogonal applies only to the wavelet filters and 
not to the wavelet functions. In the x-domain, the polyphase 
matrix of FIR (causal) filters is a 2-D polynomial matrix in the 
variables z l l  and zil. The unitary condition of the polyphase 
matrix is 

H T ( z - I ) H ( z )  = H ( z ) H T ( z - l )  = I .  (4) 

Polyphase matrices that obey the above condition are called 
paraunitary, i.e., unitary at all points Iz,/ = 1. We use the 
term wavelet matrix of rank M for the polyphase matrix of an 
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orthogonal M-band wavelet system. Since the characteristic 
matrix Ho of a paraunitary polynomial (PUP) matrix, which is 
defined as Ho = H(z l  = 1,z2 = 1). is a constant orthogonal 
matrix, any PUP matrix can always be decomposed as 

H(zi,zz) = Hi(z i ,  z2)Hn 

H l ( 2 l  = I t &  = 1) = I 

where 

For wavelet matrices, the characteristic matrix must have a 
special form to satisfy the constraints in Proposition 2. These 
matrices are called Haar wavelet matrices (HWM's) [17], and 
the notation ;Ft(&') is used for a HWM of rank M .  Most 
results will be stated for general PUP matrices, but the design 
examples will be limited to wavelet matrices. The reader 
unfamiliar with 2-D polynomial matrix notions such as the 
McMillan degrees should refer to [12]. We will just note 
that for PUP matrices of McMillan degrees (m,n) ,  one has 
Det(H(zl, x2)) = z;"zTn. 

Definition I :  A PUP matrix of McMillan degrees (m,n)  
in z1 and x2 is called factorable if it can be factored into a 
product of McMillan degree-1, 1-D matrices m of them in 21 

and n in 2 2 ,  that is, 
m -Cm 

k = l  

where z k  = x1 or 22 and Hk are I-D PUP matrices of 
McMillan degree 1. 

Using 1-D results [18], we can decompose any factorable 
PUP M x M matrix of McMillan degrees (m,  n)  as 

m f n  

H ( ~ 1 . 2 2 )  = [I + (z;' - l)T/kV:]H, (6) 

where Ho is the characteristic matrix of H .  V k  are unit vectors 
of size M ,  and as above, Zk = z1, or 2 2 .  As mentioned earlier, 
for wavelet matrices, WO must satisfy an extra constraint 
of regularity and is denoted by E("). The number of free 
parameters in the above factorization (6) is 

k = l  

or, for wavelets, 

111. VANISHING MOMENTS AND REGULARITY 

One-dimenisonal wavelets with vanishing moments have 
been used extensively in the context of I-D and 2-D appli- 
cations of the DWT. In I-D as well as in 2-D, the number 
of vanishing moments gives the local order of approximation. 
The requirement of maximal number of vanishing moments 
was found to be appropriate for a variety of applications and 
gave close to optimal results in most cases. This success in 1- 
D motivates us to study 2-D wavelets with vanishing moments 
and to apply them in image coding and representation as well 
as in other 2-D applications. 

As in the I-D case [21], we can characterize the quality 
of vanishing moments (or L regularity) in several analogous 
manners. 

Theorem 1: The following three conditions are equivalent 
and can serve as a definition of an orthogonal M-band wavelet 
system with L vanishing moments. 

All moments up to order ( L  - 1) of the wavelet filters 
vanish, that is 

n 

for all p = 1, . . . ( M  - 1) and k + q = 0, 1, . . . L - 1, 
where nq denotes (m,n)("q) = m'nq. 

All moments up to order ( L  - 1) of the wavelet functions 
vanish, that is, 

for p ,  k ;  q as above, and again, xq denotes z'yq. 
The frequency response of the scaling filter has a zero 
of order L at the ( M  - 1) aliasing frequencies, i.e., 

(9) 

for all ( M  - 1) aliasing frequencies wL,  and ( k  + q )  = 
O . l , . . . L  - 1. 

Pro08 1 + 2: using (2), we can derive the recursion 
equation 

m:,, = JGc hp(n) /xq$'(Dx - n) dx 
n 

where the binomial part comes from the characteristic (Haar 
wavelet) matrix and the rest from the (m  + n) unit vectors 
of length M .  In [12], it is shown that this is equal to the 
number of degrees of freedom of all PUP matrices of rank 
M and McMillan degrees (m, n);  hence, the set of factorable 
PUP matrices is not a subset of measure zero in the set of 
all PUP matrices. Furthermore, in the case that one of the 
polynomial degrees is equal to one, all the PUP matrices are 
factorable [ 191. In [20], we show that separable filter-banks 
and wavelets are always factorable, and we show how to 
construct the degree-1 factors given the factorization of the 

Writing (LT1(5 + n))4 explicitly and using the binomial 
expansion, we arrive at 

(1 1) ' ~ L , , t m ( z + J - S ) , ( k + q - 1 - J - t )  p 0 
two 1-D polyphase matrices. 
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where D-l = ( U ,  b ) ;  and i = ( i , j ) T .  Hence, if p i , q  = 
0, Y(k-64) < L on the right-hand side of (1 l), we get mz,q = 0 
on the left-hand side. 

2 j 1: We use the recursion relation (11) and prove by 

1) k = q = 0: pg,o = ' 0  must be true for all wavelets 

2) k + = 1: ~i~~~ m;. = 0 ( k  + 4 )  5 1, we 

and because of the assumption, only the term of s = t = 0 
will contribute to the result; hence, for all p = 1, . . . , M - 1, 
we are left with 

d k + q f w W z , W , )  1 , (12) 
way of induction. 0 = = d'z? aw;3w; 

W=O 

(Proposition 2). 1 j 3: This can be shown in a very similar manner by 
starting from the orthogonality of the rows of the modulation 

~. 

assume that pi,q = 0 rk + q )  < 1 and will prove that 
pi,, = 0 V ( k  + q )  = 1. Using the above assumption, in 
(1 l), we are left only with the terms in which s + 1 = 6 ,  
that is, for k + q = I 

0 = m& 

' P : + j , l - ( z + j ) ) 4 "  

since m:,O # 0, for each p :  we are left with I + 1 linear 
homogeneous equations for I +  1 unknowns pp+j,l-(i+j). 
Since D is not singular, the linear system is nonsingular, 
and we arrive at ,up,-i = 0 V i  5 1. 

1 -  

3 + 1: Once again, we use induction for the proof. 
1)  i%. = q = 0: 
2) IC + q = 1: Given that 

= 0 must hold for all wavelets. 

ffor all aliasing frequencies w, and ( k  + q )  I 1. we 
assume that pz = 0: Vp = 1.. . . (M - I ) ,  k + q  < / and 
prove that pi ,q  = 0 for all k + q = I .  The orthogonality 
condition in the modulation representation (Proposition 
1) gives 

HO(W)H"(W)* + H"(w + W,)H"(W + W,)*  = MS,," 
z 

where the sum is over all aliasing frequencies. Differ- 
entiating this equation I times, i.e., with ( k  + q )  = 1 ,  
we obtain 

. H P ( W + W , ) *  

Using condition 3, 

= e? s=o t=O (%) (:) 

matrix, that is, 

1 H J  ( w ) H J  (w + W k ) *  = MSk," (13) 

and differentiating it. 

j 

As in 1-D, the fact that a wavelet system has L vanishing 
moments implies, and is implied by, the fact that all polynomi- 
als of degree less than L are included in the space spanned by 
the scaling function {$J'(x - n) ;n  E Z2} [22]. This in return 
can be considered as a measure of the local approximation 
order. One main difference between the two-band case and 
M-band wavelets with M # 2 is that in the two-band case, the 
wavelet and scaling functions are fully defined by each other. 
The requirement of maximum number of vanishing moments, 
as can be seen from the third alternative in Theorem 1, implies 
that the scaling filter resembles an ideal low-pass filter, and 
in the two-band case, this implies that the wavelet filter is 
close to an ideal highpass filter. When we have more than 
one wavelet, the requirement of vanishing moments does not 
give any information about the division of bands between the 
wavelet filters, and these may overlap extensively. 

We now deal with the issue of regularity. In the 1-D case, 
the relation between the number of vanishing moments of 
a wavelet function and its regularity has been investigated 
from several different viewpoints [7]-[9]. In all three papers 
cited above, it is concluded that a high number of vanishing 
moments is a necessary condition for obtaining high regularity, 
where regularity is measured by the Holder exponent. No such 
results exist for general N-dimensional wavelets. Furthermore, 
as suggested in [23] and [24], for a given sampling scheme, 
the regularity varies considerably by altering the choice of 
the sampling matrix and the choice of the coset vectors. 
The generalization of the 1-D derivations is not trivial since 
they depend, in a crucial way, on the factorability of 1-D 
polynomials We face this problem, once again, in our attempts 
to measure the regularity, in terms of the Holder exponent, 
of a given wavelet function/filter. A different method was 
suggested by Villemoes and was adapted to the 2-D quincunx 
case [lo]. This method works for Holder exponents o < 1, 
and we use it to get a lower bound for the regularity. In the 
examples considered in the following section, the regularity 
is assessed by using a simple generalization of the technique 
suggested in. [9]. We define the approximation of order-j of 
the scaling function $O(z) at the points z = D-jn  to be 

h;(n) = Jl"rc ho(n - Dm)h:-,(m) (14) 
m 

where hy(n) = ho(n).  The regularity of a scaling fil- 
tedfunction is measured by the rate of convergence of the 
approximation to the scaling function. 
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Definition 2: The regularity measure of a 2-D scaling func- 
tiodfilter has the value a ,  where N - 1 5 a! < N if it has at 
least N vanishing moments and 

inax niax lA('J"')hY(n)/ 5 C M - ~ ( O - ~ ) / ~ .  i v j  (15) 
 IN n 

where A("q)h,?(n) stands for the finite difference of order 
( k  -t 4 )  

A W g ( n l ,  n2) 

a - [Ac"-ldf+?(nl; n 2)-A("-l'")h,0(nl -1, n2)]/M-j/2 

A(l+%g(nl; n2) = [hjO(nl; n2) - h,o(n-l - 1; 712)]/M--j/2 

= [A(k)V-l)h:(nl, n2)-A("'"-')hjO(n13 ~,2-1)]/M-'/~ 

with 

and 

A(O'l)hq(nl; n2) = [hy(nl,nz) - h9(~~1,.2 - l)]/M-'/" 

As mentioned above, it is very difficult to give general results 
regarding the regularity of wavelets in more than 1-D. The next 
theorem, which is a generalization of the 1-D version given 
in [7] and is given for a certain class of sampling matrices, 
shows, however, that the number of vanishing moments is 
related to the regularity in more than 1-D as well. (Although 
it is stated for orthogonal wavelets with compact support, it 
has been brought to our attention that it is true also for more 
general wavelets with sufficient decay that constitute a Riesz 
basis and for all sampling matrices.) 

Theorem 2: In the case of sampling matrices D for which 
there exists an integer n, such that D" = M"I = DI, a 
compactly supported wavelet function $(x) that is orthogonal, 
i.e., 

/i,y,n(.i.i;m(x) dx = 6,y,i 6n.m (16) 

is in Cm+l only if all its first ( m  + I) moments vanish, that 
is, using the notation of Theorem 1 

~m,k,~ = / x q i ( z )  dx = 0, Y ( k  + q )  = 0, . . .  m. (17) 

Proof: (This is based on the 1-D proof in [25]). First, 
we show that the theorem is correct for m = 0. From the 
orthogonality, we have for every 3 2 j n  

o = g i ( x ) $ ( ~ j r c  - D(j-jll)no) drc 

n0)7b([) d t .  (18) 

If we write j = p n  and take the limit of the above expression 
as p grows to infinity, we have 

s 
= M-J $(D- j[  + D-jO s 

Note that we can change the order of the integral and the limit 
since $([) is in C1 and is compactly supported. This ends 
the proof for m = 0 since we can choose the point D-Jonn 
so that $(D-Jono) # 0. We proceed to prove the theorem 
by induction on 1. Given that $(x) E C'+l, with 1 5 vi, 
we assume that all moments vanish for ( I C  + q )  = z < 1 and 
prove that all the moments with ( k  + q )  = I ,  equal zero. 
We use Taylor's Theorem. Since li/(() is in Cl+', denoting 
I; (x,y), we have 

~ I ( L ) - ~ ~ J  + D-Jonn) 

+ R I ( D - ~ " [  + D-jOno) (20) 

where the remanent term R1 is uniformly bounded, and 

Hence, (18) can be written as 

Using D" = [jI, we have 

and 

According to our assumption, only the term with i = 1 is 
nonzero. Hence, by dividing both terms of (21) by P - P ' ,  we 
have 

Once more, we take the limit of the above equation as p 4 00 
and change the order of the integration and limit to obtain 

In order to complete the proof, we still have to show that each 
term in the above sum is zero. Since (23) is true for every point 
D-70720, i.e., for every point in a set dense in R2, this can be 
done by showing that the 1 + 1 functions 3'$(0., y ) / d r ' 3 ~ ' - ~  
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are indlependent. If 

we can Fourier transform this equation and integrate by parts. 
Using the fact that all functions vanish at infinity, we have 

4 cannot be the zero function; hence, we are guaranteed that 
there exist no neighborhood at which the Fourier transform 
of 4) is zero since ?/, is of compact support. Thus, the 2-D 
polynomial must be the zero function, i.e., ak = 0 V k .  thus 

w 
It goes without saying that Theorem 2 can be applied to each 

of the M - 1 wavelet functions $"(x). Note also that the proof 
dependls on the orthogonality of the functions ci,,.n(x) and does 
not hold for wavelets that are only orthogonal in the filter bank 
sense, i.e., that are only lossless. The specific examples given 
in 1241 and [23] indicate that choosing the sampling matrix so 
that Dn = /%I results indeed in more regular wavelets. 

proving that the 1 + 1 functions are independent. 

Iv .  DESIGNING WAVELETS WITH VANISHING MOMENTS 

We now turn to the actual design of orthogonal factorable 
wavelets. A rank-M wavelet matrix is constructed from pa- 
raunitary building blocks of degree one. With the wavelet 
matrix at hand, the wavelet filters are reconstructed from their 
polyphase components 

( H O ( Z l , Z 2 ) , H 1 ( Z l r Z 2 ) ,  " ' ? H M - 1 ( Z l ? Z 2 ) )  

= ( ~ ~ ~ 0 .  zpk1, .  . . , , i - k M - l ) H I ( z D ) x ( f i ' )  (24) 

where k, is the shift vector corresponding to the ith coset. 
The general form of the HWM is 

where O,v[-l is an orthogonal ( M  - 1) x ( M  - 1) matrix, and 
3.tiM) is the canonical M-band HWM [17]. The first column 
of the canonical HWM is 1,"(1. 1, . . .  , l)T; hence, the 
scaling filter is given by 

(26) 

Thus, a factorable scaling filter is defined by (m  + 71.) unit 
vectors, that is, by ( M  - l ) (m+n)  free parameters. The other 
( parameters that define the HWM do not effect the 
scaling filter but only the other wavelet filters. 

Using any of the three alternatives of Theorem 1, one can 
see that for L vanishing moments, we have N, = ( M  - 

1) ( ( 'T1) - 1) constraints; hence, in general, we need wavelets 
with at least N f p  = N, free parameters. If one uses the 
third alternative of Theorem 1, that is, (9), it is obvious that 
only the parameters defining the scaling filter can be taken 
into account. The other parameters do not appear in (26) 
and therefore do not appear in (9) either. This decoupling 
of the Haar wavelet parameters from the vanishing moment 
constraints is the reason for defining the polyphase (wavelet) 
matrix the way we did, instead of the more common way, 
which uses the transpose of the one we use. (Another way of 
reaching this goal is to use a different factorization in which 
the characteristic matrix is the first factor on the left and not on 
the right.) These considerations suggest that in order to obtain 
wavelets with L vanishing moments, we should use wavelets 
with McMillan degrees (m  + n.) 2 ( Lil ) - I. Furthermore, in 
both cases dealt with-the two-band quincunx and four-band 
separable sampling-it is obvious from 1-D results that each 
polynomial order should be larger or equal to L - 1. Otherwise, 
we could find 1-D projections with L vanishing moments and 
length less than 2L, contrary to the well-known 1-D results [5]. 
The rest of the section is devoted to two sampling schemes: 
the quincunx and four-band separable sampling schemes. 

A. Quincunx Wavelets 

The quincunx sampling is a 2-D, two-band, nonseparable 
sampling scheme. Detailed analysis of 2-D multirate systems 
with quincunx sampling can be found in KovaEeviC's doctoral 
thesis [3]. The sampling matrix and HWM we use are (there 
are several other possibilties) 

and choose k; = ((0, O ) T ,  (1, O ) T }  as the coset shift vectors. 
With this choice of the sampling matrix, we have D2 = 21,  
and it has been shown to result in wavelets with higher 
regularity than with other sampling matrices [3], [24], [23]. 
In the quincunx case, the McMillan degrees (m ,n )  of the 
wavelet matrix are equal to the polynomial orders of the 
elements of the matrix. Similar to the two-band 1-D case, 
the wavelet filter is fully determined by the scaling filter. In 
the two-band factorable case, the vectors V k  in (6) can be 
parameterized by one parameter V ( Q k )  = ( cos (Qk) ,  sin(Qk)jT, 
where 8 k  E [0,27r;. The general form for the vanishing 
moment constraints on the angles 8fi is developed in Appendix 
A. We use the third alternative in Theorem 1, i.e., we require 
the frequency response of the scaling filter to have a zero of 
order L at the aliasing point (XI = -1,z2 = -1). We get the 
following N,  = (':I) - I constraints: 
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with ( p  + I) = 1,2 ,  e e , ( L  - 1). The coefficients l ? T r ( p ,  I )  
were computed and tabulated, and Sk ,<]  and Ck,q are tngono- 
metric functions of the angles (8k}F=+;". As mentioned earlier, 
in order to achieve L vanishing moments, one should use, 
in general, wavelets of degrees ( m  + n)  2 N,. Since the 
wavelets with vanishing moments are obtained by solving a 
set of nonlinear equations, in general, we will have more than 
one solution with minimal degrees for a given number of van- 
ishing moments. Contrary to the 1-D wavelets with vanishing 
moments dealt with by Daubechies, different solutions may 
have completely different spectral characteristics. 

We would like to mention the special case of solutions that 
are actually 1-D filters. A degree L - 1 1-D wavelet filter 
witlh L vanishing moments is likewise a factorable quincunx 
wavelet filter with degrees ( L  - 1, L - 1) and L vanishing 
moiments. This can easily be demonstrated by factorizing each 
degree-1 factor of the 1-D polyphase matrix as 

These 1-D quincunx wavelets were suggested by Cohen and 
Daubechies [24]. Although the wavelet filters are 1-D, due to 
the nonseparable subsampling, the resulting wavelet functions 
are 2-D nonseparable functions. Thus, the above arguments 
concerning the minimal degrees needed in order to obtain L 
vanishing moments are true in general, but for the special case 
of 1-D filters, we can satisfy the constraints by using wavelets 
of degrees ( L  - 1, L - l), even though 2(L - 1) < N, for all 
L > 2. We now give a few examples, but first, we note the 
folowing: 

The vectors V,  appear in H(z1 ,zz )  (see (6)) only in 
the combination V,yT; hence, since V(e,)V(Q,)' = 
V(T + O t ) V ( 7 r  + B,)T, we can limit the search to 8, E 

For every solution (e , } ,  there exists another solution 
{ (T - Q,)} that will give rise to a scaling filter (function), 
which is the reflection of the original filter (function) 
through its center, i.e., h'(n1, n2)  = h0(Nl - n1, Nz - 
n2). 
Given a solution h'(n1, nz) with degrees (rn, n) ,  there 
exists another solution with degrees (n ,m)  in which 
the variable ZI is interchanged with z2 in the polyphase 
matrix. This will cause the transformation hz(nl,n2) + 

h'((n1, - r b Z ) .  

[-(.PI, ( T P ) ) .  

Example 1.1: The smallest quincunx wavelet filter is the 
Haar wavelet; its degrees are (m,n)  = (0,O). Thus, the 
corresponding wavelet matrix is the HWM X ( 2 ) .  The filters 
are exactly the 1-D Haar filters, i.e., 

1 1 
h0(n1,n2) := -(l,l),h1(n1,n2) := -(lj-l) 

fi Jz 
and only the first moment vanishes. The absolute value of 
the frequency response of the scaling filter, and the scal- 
ing function in this case, are plotted in Fig. l(a) and (b), 
respectively. 

2 1 

0 5  

0 

-0 5 

1 

0 
n H 

1 

0 5  

0 

-0 5 
5 H 

(e) (0 
Fig. 1. Quincunx scaling filters and functions. The frequency response of 
the scaling filter and the scaling function of (a) and (b) the Haar quincunx 
wavelet (Example l.l), (c) and (d) wavelet with two vanishing moments, 
1-D solution (Example 1.2), (e) and (f) wavelet with two vanishing moments, 
second solution (Example 1.2). 

Example 1.2: We next deal with wavelets with L = 2 
vanishing moments; in this case, the minimal degrees are 
(1,l). The two constraint equations are 

0 = 1 - cos(281) - " 8 2 )  

0 = cos(281) - cos(282). 

We have two different solutions (and their reflections): 
1) 201 = 202 = n/3: which is the four-tap filter of 

Daubechies with two vanishing moments 

hO(nl ,  n 2 )  

0 0 

2) 281 = -202 = 7rf3:, which produces the scaling filter 
(which is given in [14]) 

hO(nl ,  na) 
1 .- ~ 

.- S J Z  

3 - &  3 - 3 &  0 O )  

3 + 3 &  3 + &  
. - 1 - 4  3 + &  3 - &  - I + &  ' ( 1  
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The frequency response of the scaling filter and the scaling 
function for the first solution are shown in Fig l(c) and (d), 
and the: corresponding functions for the second solution are 
depicted in Fig. l(e) and (f). 

For L > 2 the constraint equations cannot be solved analyt- 
ically, and a numerical program given in Numerical Recipes 
1261 was used for the solution of the nonlinear equations. In 
addition to the ( m  + n) free parameters defining the wavelet 
matrix, there are (":") alternatives in which the factors of 
degree 1 can be arranged in (6). Each alternative results in a 
different set of constraints, thus introducing another discrete 
parameter into the problem. It turns out that a solution does not 
exist for all possible alternatives. For example, analyzing the 
equations for wavelet filters with degrees (3, 2), we found that 
one cannot obtain three vanishing moments in the two cases 
in which all the factors of degree 1 in one variable precede 
the factors in the other variable. 

Example 1.3: The minimal degrees for obtaining three van- 
ishing moments (not including 1-D filters) are (3, 2). The 
functions plotted in Fig. 2(a) and (b) correspond to a solution 
obtained by choosing the combination (XI, XI, 22, XI , 22) and 
the five parameters as 

{2Q}:z1 = { -0.89679, -2.93452: 0.78210,0.54617, 
1.781 78) .  

In Fig. 2(c) and (d), we show another solution; this solu- 
tion was obtained using the order (XI ; 2 1  : z2,z2 XI) and the 
parameters 

{2Q}~y1 = {0.80821,1.25886.0.78210,1.78178, -2.09172}. 

Although both solutions have three vanishing moments, there 
is a considerable difference between them. The first solution is 
much closer to an ideal quincunx lowpass filter, with 75% of 
its energy concentrated in the lowpass band, as opposed to the 
second solution, which has 60%. The difference becomes very 
apparent by looking at the scaling functions. The regularity 
measure, which was introduced in the previous section, gave 
the value Q = 0.6&0.1 for the first solution and Q = 0.0550.1 
for the second. Applying the method suggested by Villemoes 
[IO] to the second example, we attempted to lower bound 
the Hdder exponent Q. We were not able to show that the 
function is even continuous (Q > 0) when applying the method 
for resolution levels j 5 14. The 1-D solution corresponding 
to the Daubechies wavelet with three vanishing moments 
obtained the highest value of regularity with Q = 1.0 * 0.1, 
which agrees with the 1-D bound for the Hiilder exponent of 
ox = 1.0878. 

For the sake of completeness, we searched the entire space 
of wavelet matrices with degrees (3, 2) and three vanishing 
moments; we did so using the complete characterization of 2- 
D PUP matrices given in [12]. To obtain compactly supported 
wavelets with three vanishing moments, one must solve 15 
equations for 15 variables. All the solutions found coincide 
with solutions that were obtained using factorable wavelets, 
but it is feasible that other solutions, that were not found 
numerically, do exist. 

Finally, we give two examples of quincunx scaling filters 
and functions with four vanishing moments. The frequency 

1 

0 8  

0 6  

1 0 4  

0 2  

0 

L -0 2 

2 

1 5  

0 5  

0 

- n  

0 5  

0 

L - 0 5  

n 

(c) (d) 

Fig. 2. Quincunx scaling filters and functions with three vanishing moments. 
The frequency response of the scaling filter and the scaling function of the first 
((a) and (b)) and second ((c) and (d)) solutions of Example 1.3. Both scaling 
functions show the eighth-order approximation, using the subdivision scheme. 

response of the scaling filter and the scaling function are 
plotted in Fig. 3(a) and (b) for one example and in Fig. 3(c) 
and (d) for the other. The first example has a good frequency 
response with 80% of the energy in the lowpass band but is 
very spiky: Q: = 0.5h0.1. The second example is more regular, 
with Q = 0.9 f 0.1; but with a slightly inferior frequency 
response. 

B. Four-Band, Separable Sampling Wavelets 

This sampling scheme is the most commonly used in 
all applications of the 2-D DWT since it is the simplest 
generalization of the two-band 1-D sampling. The sampling 
matrix is D = (i i ) ,  and the four-band HWM has the 
general form 

Thus, we have a three-parameter space of HWM. 
We chose the four coset shift vectors to be ki = 
{(O,O)T,(l,O)T,(O,l)T,(lil)T); hence, the three points of 
repeated spectra are wi = { ( T , O ) ~ ,  ( O , T ) ~ ,  ( T , T ) ~ } .  With 
this choice, the expression for a factorable scaling filter of 
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1 
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0 

1 

0.8 

0 6  

0.4 

0.2 

0 

-0.2 

Fig. 3. Quincunx scaling filters and functions with four vanishing moments. 
Thc frequency response of the scaling filter and the scaling function of the 
two examples mentioned in the text. 

McMillan degree (m,n)  is, according to (26), 

rri + ~ i  

H0(x1,z2) =;(1,zI,z2,z1z2) n 
k = l  

Once again, in order to obtain L vanishing moments, we 
impose N, = 3(  (':I) - 1) constraints on the 3(m + n)  free 
parameters defining the scaling filter. Just as we did in the 
quincunx case, we seek solutions with the minimal possible 
degrees, which, in general, are given by Nfp = Nc,  that is, 
( m  + n)  = ( 'tl) - 1. Once we have designed the scaling 
function by fixing the 3(m + n) free parameters, we still have 
three free parameters defining the HWM. 

Note that using 1-D wavelets with L vanishing moments 
to dlesign separable 2-D wavelets will result in wavelets with 
McMillan degrees (2L - 2 , 2 L  - 2) (see [20]). Since in this 
case (m + n) = 4(L - 1) # ( Ltl) - 1 for all L # 6, in 
the following examples, we will not obtain separable filters as 
private solutions. 

ExumpZe 2.1: The Haar wavelet matrix gives rise to the 
smallest wavelet filters. Each filter has four nonzero coeffi- 
cients, and the corresponding function is compactly supported 

on [0, 112. In this case, only the first moment vanishes, and the 
resulting functions are discontinuous and piecewise constant. 

Example 2.2: In order to obtain wavelets with L = 2 
vanishing moments, we must use wavelets with McMillan 
degrees (1 ,l); thus, the wavelet matrix is given by 

H(x1,.2) = [ I  + (ZT1 - I ) V p T ] [ I  + (z;1 - l)V2V;]w). 

We have six bilinear constraints (two derivatives at three 
aliasing frequencies) on eight unknowns (two vectors of length 
4) defined by six free parameters. The two unit vectors solving 
this set of equations are 

As mentioned previously, the three parameters defining the 
HWM do not influence the number of vanishing moments 
but rather control, in some sense, the orientation of the three 
wavelet filters/functions. In the following example, we used 
the separable HWM 

( 4 ) 9  -1 1 1  1 -;I 
1 -1 -1 7-1 - 2  

I -1 -1 

This is one way to guarantee that each wavelet filter has a 
maxima at one aliasing point and a zero at all others. 

Once again, for L > 2, only numerical solutions can be 
obtained. In Fig. 4, an example of wavelet filters and functions 
with four vanishing moments are depicted. Their McMillan 
degrees are (5 ,  4), the filters are of length (12, lo), and 
the regularity of the scaling function was measured to be 
a = 1.25 h 0.1. 

V. DISCUSSION AND CONCLUSIONS 

Several methods have been suggested for constructing 2- 
D orthogonal wavelet filters and functions [l], [24]. These 
methods are based on some sort of transformation from 1-D 
wavelets. Hence, the resulting wavelets in each case consti- 
tute only a small restricted subset of all possible orthogonal 
wavelets. Here, we use a parameterization of all factorable 
orthogonal wavelets, which is a much more general subset. 
The subset of factorable wavelets was shown in [12] to 
have the same number of free parameters as the set of all 
orthogonal wavelets and, contrary to the complete set of 
orthogonal wavelet, has a simple parameterization. This subset 
includes the previously suggested 2-D orthogonal wavelets, 
such as separable wavelets [20] and the special (actually I-D) 
quincunx wavelets [24]. 

one has, in general, to solve numerically a set of nonlinear 
equations. Even when focusing our attention only on wavelets 
with maximal number of vanishing moments for given McMil- 
lan degrees, considerable freedom is still left since the set 
of nonlinear equations have many solutions. Furthermore, 
usually, satisfying the conditions of having a large number of 

In order to obtain wavelets with several vanishing moments, 
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2-D. Once these difficulties have been overcome, the design 
of N-dimensional wavelets will be a simple generalization of 
the 2-D method. 

APPENDIX A 

In this appendix, we will develop the constraint equations 
for vanishing moments in the case of factorable quincunx 
wavelets. Each factor of degree 1 is defined by one parameter 
8, 

w, = ( I +  ( q - 1  - l)V,T/,T) 

where z, = zI or z2 and V,  is a unit vector of length 2. If we 
use V,  = (cos(8,),sin(0,))T, we get 

W,(H,) = $(z,-l + 1)1 

Next, we define two matrices: tlhe 2-D rotation matrix R(8) 
and the rotation-plus-reflection matrix T (  0) 

(cos(2H) sin(28) ) 
sin(28) - cos(20) T(0)  = 

and recall the relations 

T(a)T(P) = R(a - P ) ;  R(a)R(P) = R(. + a; 
(g) (h) R(a)T(b)  = T ( Q  + p) ;  T ( I ~ ) R ( P )  = T ( a  - P ) .  (A.2) 

From this, we see that the 2-D plolyphase matrix of McMillan 
degrees (m,n)  can be written a.s 

Fig. 4. Four-band, separable sampling wavelet with four vanishing moments. 
(a)-(d) show the magnitude response of the four wavelet filters, and (e)-(h) 
show the wavelet functions. 

vanishing moments is not enough, as is illustrated in Figs. 2 
and 3. ]Extra care should be taken in choosing the best solution 
for a given 2-D application. Theorem 2 and our examples show 
that a sufficient number of vanishing moments is a necessary, 
but by no means sufficient, condition for the regularity of the 
wavelet function. The regularity of the original Daubechies 
orthogonal wavelets (minimal phase wavelets) was found to 
grow at least linearly with the number of vanishing moments, 
yet in 2-D, we were not able to select any special subset of 
solutioins and to give a lower bound for their regularity. For a 
high degree of regularity, one should probably sacrijice some 
of the vanishing moments and use the extra degrees of freedom 
to optimize the regularity. For a given order of moments, 
one can relax only part of the partial derivative constraints 
(9) and only at some of the aliasing points. Our treatment 
of the regularity issue is quite preliminary and mainly serves 
as a motivation for investigating 2-D wavelets with vanishing 
moments. Further work is required in order to establish the 
exact relation between the number of vanishing moments and 
regularity and its dependency on the choice of sampling matrix 
and coset vectors. 

As in many other areas of mathematics, most of the diffi- 
culties encountered when trying to generalize l-D theory to 
higher dimensions arise already at the transition from l-D to 

k=O q=o 

where we define 
y;;;n(ZI,z2) = a ($)m+"(z;l+ l)m-k(z,l - 1 ) k  

($ + l)"-q(z,l - 1 ) 4  

and I k , , ( { B } )  is the sum of all possible combinations of an 
ordered product of k T-matrices of z1 factors and q T-matrices 
of z2 factors. With use of the relations (A.2), one can see 
that for a given k and q ,  7 k , q ( { 6 ' } )  will include terms of the 
following type: 

%,*({Q}) 

8 3 ,  ' ' ' - 1, ( k  + 4 )  even 

- 012 + Q,, . . . + e l k i q ) ,  ( k  + 4 )  odd. 
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For example, with degrees (m, n)  = (2, a), where the first two 
factors are in 21 and the last in 2 2 ,  we have 

With an explicit expression for H(x1, Z Z ) ,  we can obtain the 
vanishing moments constraints as constraints on the param- 
eters B i .  We construct the scaling filter from the polyphase 
matrix 

and then we write the partial derivatives of the scaling function 

m n  

k=O q=o 

where the upper sign should be used when ( k  + q )  is even and 
the lower sign otherwise, and we used the notation 

Finally, we arrive at the constraints for L vanishing moment. 
By equating all partial derivatives ( p  + I )  = 1 , 2 ,  . . . , ( L  - 1) 
to zero, we get (”t’) - 1 constraints 
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