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Abstract A generic model of automatic gain control
(AGC) is proposed as a general framework for multidimen-
sional automatic contrast sensitivity adjustment in vision, as
well as in other sensory modalities. We show that a generic
feedback AGC mechanism, incorporating a nonlinear synap-
tic interaction into the feedback loop of a neural network, can
enhance and emphasize important image attributes, such as
curvature, size, depth, convexity/concavity and more, similar
to its role in the adjustment of photoreceptors and retinal net-
work sensitivity over the extremely high dynamic range of
environmental light intensities, while enhancing the contrast.
We further propose that visual illusions, well established by
psychophysical experiments, are a by-product of the multi-
dimensional AGC. This hypothesis is supported by simula-
tions implementing AGC, which reproduce psychophysical
data regarding size contrast effects known as the Ebbing-
haus illusion, and depth contrast effects. Processing of cur-
vature by an AGC network illustrates that it is an important
mechanism of image structure pre-emphasis, which thereby
enhances saliency. It is argued that the generic neural net-
work of AGC constitutes a universal, parsimonious, unified
mechanism of neurobiological automatic contrast sensitiv-
ity control. This mechanism/model can account for a wide
range of physiological and psychophysical phenomena, such
as visual illusions and contour completion, in cases of occlu-
sion, by a basic neural network. Likewise, and as important,
biologically motivated AGC provides attractive new means
for the development of intelligent computer vision systems.
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1 Introduction

The perceived image is quite different from the original
image projected onto the retina. Some of the image fea-
tures that are of great importance (biologically speaking)
are enhanced, whereas other that are less significant are
barely noticed or even ignored (i.e., suppressed). Many exam-
ples of this selective enhancement/suppression phenomenon
exist. Usually they are referred to as “visual illusions” (see
Fig. 1 for such examples). This type of visual illusion can
be explained by the way the human visual system (HVS)
generally processes visual information, implementing non-
linear adaptive gain control (AGC) mechanisms. For other
visual illusions, there exist alternative, qualitative, theories
(Gregory 2009). Understanding the organization and func-
tioning of visual systems is obviously of great importance in
the field of neurobiology. This is primarily due to our curios-
ity to better understand the structure and function of the brain.
But, it is likewise important in the field of image processing
and computer vision because of its potential use in the design
of intelligent systems that mimic biological vision (for such
examples, see Yang et al. 2009; Tran et al. 2009). By match-
ing image presentations to the known performance of the
visual system, more meaningful and efficient communica-
tion can be achieved (Zeevi and Kronauer 1985). After all,
most of the information generated for human consumption is
communicated with the human observer via the visual sys-
tem as the final receiver. In yet another way, image processing
modeled after the visual system may prove to be important in
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Fig. 1 Effects of size (a) and curvature (b) contrast. a Both circles in
the middle are of the same size. b The square’s boundaries are straight
lines, but they are perceived as being curved

machine vision. And of course, now that visual prosthetics are
becoming a workable reality (Koch et al. 2008; Palanker) this
understanding is essential. Moreover, such an understanding
may lead to the development of an image metric account-
ing for human perception. This should contribute to further
advancement of recognition and classification algorithms.

Gibson (1937) had claimed that adaptation and negative
after-effect are to be conceived as a process of adjustment and
readjustment of the physical-phenomenal correspondence of
a certain type of sensory dimension, under the influence of
a tendency for sensory activity to become normal, standard
or neutral. He noticed that this similarity cuts across the sen-
sory modalities of our world, including pressure, size, dis-
tance, temperature, brightness, curvature (convex—concave),
and other modalities and dimensions.

Zeevi and Mangoubi (1978) showed that adaptation plays
an important role in the suppression of quantal and recep-
tor internal noise. Wainwright (1999) proposed that visual
adaptation in orientation, spatial frequency and motion can
be understood from the perspective of optimal information
transmission. Ullman and Schechtman (1982) had claimed
that adaptation and gain control can fulfill two useful func-
tions: correction of errors and recalibration. In the multichan-
nel mode of the spatial case, the gain control maintains the
overall sensitivity of the system: If the gain of one of the chan-
nels increases, the gain of neighboring channels decreases
and vice versa.

Automatic gain control (AGC) has been widely used to
account for many sensory adaptation phenomena. Shefer
and Zeevi considered it in the context of intensity adap-
tation (Shefer 1979; Zeevi and Shefer 1981), Weltsch for
contrast adaptation in the primary visual cortex (Weltsch-
Cohen 2002), Ding and Sperling for contrast adaptation of
the “cyclopean” image (Ding and Sperling 2006) and Lu
and Sperling for contrast adaptation in motion detection
(Lu and Sperling 1996; Croz and Rushton 1966; Krauskopf
and Mollon 1971) for chromatic adaptation, Shapley and
Enroth-Cugell for retina adaptation (Shapley and Enroth-
Cugell 1984; Schwartz and Simoncelli 2001) for either visual
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or auditory adaptation. It is therefore natural and tempting
to implement the AGC model in processing images which
incorporate some other less-investigated dimensions of adap-
tation, such as size, depth and curvature, in processing of
images. Likewise, such an investigation may facilitate our
understanding of how adaptation along these dimensions
takes place in the visual system (or other sensory modali-
ties for this matter).

The purpose of this study is to analyze adaptation along
less-investigated image dimensions and process these image
attributes by means of the AGC model in order to mimic
the human visual system (HVS), and thereby infer that there
exists a unified neurobiological framework of sensory infor-
mation processing. Such a framework considered in the con-
text of vision (biological and computer-based alike) can be
also implemented in advanced image-processing algorithms
that highlight various features and image structures. Such a
multidimensional adaptive framework of image processing
can then be implemented in intelligent image processing and
computer vision systems, similar to the high dynamic range
camera that mimics the eye (Ginosar et al. 1992; Zeevi et al.
1995); an implementation that has become the gold standard
of cameras and other image acquisition systems. The perfor-
mance of the proposed multidimensional AGC framework
of image processing is tested by computer simulations, for
each dimension separately, and is compared to the results of
psychophysical experiments.

Inferring from what is known about retinotopic projec-
tions onto the visual cortex, we consider the gain control-
based processing of image attributes to be executed indepen-
dently of each other. Clearly, the independency assumption
is not always valid. It is therefore instructive to highlight
an alternative approach, introduced in the context of image
processing and computer vision (Kimmel et al. 2000; Sochen
and Zeevi 1998), which is attractive for modeling of visual
projection onto and processing in a multidimensional visual
space. This alternative approach considers the embedding of
an image manifold in a higher-dimensional-combined posi-
tion (spatial)-feature space. Features such as color, curva-
ture and size, mentioned above, constitute in this represen-
tation the image attributes (to which we refer also as visual
dimensions). Sensitivity adjustment by means of nonlinear
gain control is executed in this case in the multidimensional
space in a unified coherent manner. Although this approach
is not in the scope of the present work and will be dealt with
elsewhere, we indicate along the manuscript how it can be
incorporated.

2 The basics of visual AGC framework

The proposed AGC model of visual adaptation is based on the
original work of Shefer (1979), Zeevi and Shefer (1981) and
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Fig. 2 aCore of sensory AGC model. b Schematic diagram of a specific embodiment of the generic AGC processor, where the nonlinear interaction

in the feedback loop is implemented by a multiplier

on the subsequent development of the adaptive sensitivity
camera that mimics the eye (Ginosar et al. 1992; Zeevi et al.
1995). The model has been motivated by the structure and
function of the retina and, in particular, by its high spatiotem-
poral sensitivity to small changes in intensity accomplished
over extremely high dynamic range. According to this non-
linear AGC adaptation model, the output of a receptor or of
a subsequent processing cell is adjusted by subtracting from
its input a nonlinear function of its input and a feedback sig-
nal, which constitutes a local weighted sum of the outputs
(Fig. 2a):

ri=ao-si —T(i, fi), (1)

where r; is the output (or response) of cell i, s; is the input (W
in Fig. 2a is the weighting of a feedback operator (matrix)),
fi is the feedback (see (3)), « is a fixed forward gain, and
T is a nonlinear input—output-feedback interaction function.
The crucial ingredient of this AGC model is the nonlinear-
ity within the local feedback loop (i.e., the function 7). This
is a fundamental extension of the lateral inhibition (i.e., lin-
ear output convolution) feedback model into the nonlinear
regime, presumed to be biologically mediated by the reti-
nal interplexiform cells and/or similar structures in other loci
along the processing pathway, and/or other sensory networks.
It is important to note that qualitatively 7 may assume a
wide range of nonlinear functions and, yet, the feedback loop
in which such nonlinear function is embedded will exhibit
functional AGC (see Ohlson 1974; Snippe and Hateren 2007
for such examples). It is in particular interesting to note in
this context the feedforward-and-feedback model of visual
adaptation, wherein Sperling (1970) implements a so-called
shunting synaptic inhibition (see Furman 1965).

If we assume that the cells (pixels processing units) are
small and close enough, we can model the feedback operator
by a continuous function and use convolution to represent
the action of W on the output. Extending the proposed AGC
framework to other image dimensions (attributes), each of
the functions of x is a dependent variable that stands for an

image attribute such as curvature, size and depth. In this case,
(1) is written as:

r(x) =oa-s(x) —T(s(x), f(x)), (2)

where s(x) and r(x) are the input and output of an image
attribute at the two-dimensional spatial position, x, respec-
tively. This is attributed, as noted, to nonlinear synaptic mech-
anisms such as those that exist in the retinal outer plexiform
layer and in the visual cortex. In a specific embodiment of
this general conceptual model, the nonlinear component is a
multiplier (Fig. 2b). The model is then comprised of a series
of static instantaneous multipliers, one for each foveal recep-
tor channel, that multiply the inputs of the channels with the
outputs of the feedback. The feedback is calculated by sub-
tracting the output of the local operator W from a constant
value. The operator W is alocal averaging operator (in space).

In the continuous model, the feedback f(x) is obtained
by a convolution of W with the output r(x):

fx) = /r(x')W(x — x)dx’. 3)

The AGC model output (derived from (2)) for multiplicative
synaptic inhibition is given by:
e

The function of the feedback is to position the enhance-
ment mechanism, high gain operating curve, symmetrically
around the local operating point. W can be chosen as expo-
nent, Gaussian, triangle, rectangular or any other symmetric
kernel for which one can obtain the qualitative characteris-
tics of the AGC. The quantitative behavior will, of course,
depend on the specific choice of W.
The operator (4) has a unique solution for

r(x) =s(x) [oe - ‘/r(x’)W(x —x)dx’

1
max{|s(x)|} < o (5)
x w
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where Sy is:
Sw = / W (0)dx. ©)

See Appendix 1.
These conditions can be extended using the discrete form
of W:

> wy| < 1. @)

J#F

w; > 1;

2.1 Small signal analysis

Although we are concerned in general with “large signal”
performance of the visual AGC, it is nevertheless useful to
perform also small signal analysis of the model. We note that
the case of small signal is also of interest from the view-
point of visual function. Although the visual system (or any
image acquisition system) is exposed to an extremely wide
dynamic range of intensity, at any specific time and/or posi-
tion the intensity varies only over a relatively narrow range
of intensities.

For the small signal analysis, we assume that both the
output and the input of the model are comprised of a “local
DC” modulated by a small AC signal component:

R(x) = C, + r(x), (8)

/r(x)dx = 0. O]

S(x) = Cy + s (x);

/s(x)dx =0;

Alternatively, due to the narrow range of intensities, one may
use Weber’s contrast:

Cs 4+ s(x) _ 1 w

S =
B(x) c. C.

(10)

For simplicity, we assume also that W is a rectangular func-
tion. Under these assumptions, (3) yields:

f(x)=/1§(x/)W(x—x’)dx/=/R(x/)dx’=cr, (11)
2

2

where £2 is the integration region, limited by the width of W.
Substituting (8), (9) and (11) for the corresponding vari-
ables in (4) yields:

o
;Crz

r(x) =s(x) T C

. 12
I+ Cg (12

Equation (12) expresses a sigmoidal function for the AC
response, which is closely related to Weber law of sen-
sory perception. The latter implies that the system gain is
inversely proportional to the sensory input’s local DC. Exam-
ining the local DC response (C,) reveals a highly compres-
sive response curve that never exceeds the value of “1” (see
Fig. 3a)—black line). This means that the response does not
saturate in a noticable manner, and yet, for each local DC
value, the system exhibits high sensitivity (see Fig. 3a—red
lines depicting a sequence of AC response curves for various
values of local DC).

> S

s,(1-1)—>r,
v
—"Local DC" response No? v
— A - es? V.
0 1 L 1 I relsponse Z|'; —I‘/|<£ Loy
0 2 4 fi 8 10 12 '
&
(a) (b)

Fig. 3 aSmallsignal response. The AC, r(x), (in red), is shown superimposed on the “local DC,” C, response (in black). b Flowchart for calculating

the visual AGC response to some arbitrary input (color figure online)
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Fig. 4 a Step response of the AGC model, superimposed on a step stimulus. b AGC model responses to various ramp slopes. Note the increase in

overshoot and undershoot with the increase in slope steepness

Weber law is characteristic of all sensory modalities,
including weight, vision, touch and sound.

2.2 Simulations

In its discrete form, (4) exhibits the complexity of a many
body problem. To obtain a closed form solution for some
arbitrary input is a major challenge, not yet dealt with. There-
fore, we employ a numeric solution of an iterative process.
Figure 3b presents the flowchart of the algorithm for numeric
solution of the AGC model. The solution is unique, provided
the process converges (Shefer 1979; Zeevi and Shefer 1981).

2.3 Step response

We now explore two of the main functional features of the
models—adaptation (i.e., reduction in gain for spatially con-
stant stimulus) and edge enhancement—by examining the
step/ramp response of the models. The step/ramp response is
of special interest, since steps occur in natural stimuli (Grif-
fin et al. 2004) and are often used to study the dynamics of
adaptation. Figure 4a depicts step response of the nonlinear
AGC model, superimposed on the step input. This example
highlights the main characteristics of the model:

Adaptation: The response adapted to a constant input is
decreased, while high values are affected more than lower
values. This reflects the compression of a wide dynamic range
of the input.

Edge enhancement : The relative contrast is increased. This
is caused by the overshoot and undershoot of the response.
Note that due to the nonlinearity of the model, the over-
shoot is more pronounced than the undershoot as is indeed
observed experimentally (i.e., perceptually). Both of the

overshoot and undershoot depend on the slope of the input
ramp (Fig. 4b). When the input represents intensity, this phe-
nomenon of overshoot/undershoot is well known as “Mach
bands” (Ratliff 1965).

2.4 Noise and SNR analysis

Various types of noise are encountered in vision and imaging
systems, e.g., the quantal noise and the neural noise (for more
details see Mangoubi 1979), or imaging detector noise. To
assess the effect of the AGC on SNR, we adopt the common
assumption that the noise is additive and has zero mean and
small variance o> compared with the signal:

N

Sp(x) = s(x) + ns(x), (13)

where s(x) is the noise-free input, ns(x) the noise of the
source (input), and S, (x) is the noisy input.

We are mainly concerned in the context of the noise and
SNR analysis with input that is locally constant.

Observing the similarity of (13) and (8) suggests that we
may analyze the effect of the noise using the same analysis
employed in the case of the small signal, where the input
signal is analogous to Cy, and the noise is analogous to s (x).
In the latter case, the output noise is:

o

1 +s(x) (9

nr(x) = ng(x)

Equation (14) implies that the average and variance of the
output noise are:

hr (15)

2
o o
T+s@’ o (Hs(x)) 7

indicating that the variance of the noise at the output of a
neural channel implementing the feedback AGC output noise
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depends on the input signal. It depicts noise suppression
as a function of the input intensity, consistent with neuro-
physiological measurements and psychophysical results (see,
e.g., Zeevi and Mangoubi 1978; Faisal et al. 2008 for more
details).

Note that the above analysis does not postulate any
assumptions regarding characteristics of the noise (such as
higher moments and/or distribution) besides small signal
assumption.

Alternatively, the variance of the output noise can be eval-
uated as follows (Papoulis 1965):

o2 = [¢ (i) o2, (16)

where r = g(s) is a smooth monotonic function of s, o2 is

the variance of the response, crsz is the variance of the input,
and 7, is the average of the input. In the case of additive
noise, the input can be written as in (13), implying that the
input consists of a noise-free component s(x) and noise with
a zero mean. We obtain an explicit form by using the discrete
form, yielding the response of cell (or neural channel) i as
a function of the input to this cell, and the responses of the
other cells (see (18)). Therefore,

o2 = [¢' (1s) 2. an
sila =2 i wirj)
R <18>
1 1
]
g (sj) = asi
e = wiry) (U sjwp) — sjwi(e = 35 wrj)
- (1 + s;w;)?

(o — Zj;éi w;r;)
A +siw)?

(19)
Assuming that g (s) is a smooth function of s, the variance
is:

2

(0‘ - Zj;ti wjrj)
(1 + ﬁsi wi)2

[\
12

o2, (20)

Si

=

Equation (20) shows, again, that the response variance is
inversely proportional to the input average 7, .

Note that again, this analysis does not necessitate any
restrictive assumptions regarding noise characteristics. Only
the first two moments are required.

We can define the SNR characteristics of the system as:

ignal2  C2
SNR=Slg:§ = @1
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where C,, is the Michelson contrast:

= Imax - Imin (22)

" I'nax + Imin’

Imax and Iy, being the highest and the lowest intensity values
(i.e., peak and trough), respectively. Note that in the case of
the response, the calculated maximum and minimum values
include the overshoot and undershoot.

For a general step input (i.e., sharp, one-dimensional edge
in the case of an image),

s(x) = a1 +aU(x), (23)

where a; is the lower constant value (intensity) of the step
and a; + ay is the upper constant (intensity) value, the SNR
is improved by:

SNR 1 2 1 2
P (ARatae) tary (24)
SNR; o o

where the two alternative measures of SNR noise improve-
ment are related to the noise at the upper part or lower
part (left) of the step (edge), respectively. It is interesting
to observe that the SNR improvement is equal exactly to the
noise suppression factor of the AGC model. This is due to
the fact that the contrast of the input signal is equal to the
contrast of the response.

3 The effect of biological sensory AGC on processing
and perception along curvature/size/depth and
convex—concave dimensions

3.1 Background
3.1.1 Overview of differential geometry

To establish the context in which curvature processing is
formulated, it is useful to review a few elementary notions
adopted from differential geometry. The review is focused
on curves in the plane, but the results can be generalized
to higher dimensional (see, e.g., Do Carmo 1976 for more
details).

Let I be an interval in one-dimensional Euclidean space
E'. A curve C is defined as a continuous mapping x : I —
E? from the interval to the plane, where

x () = (x1(0), x2(A)). (25)

A curve may be reparameterized in terms of its arc length s:

x (8) = (x1(5), x2(5)). (26)
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(a)

Fig. 5 a An example of a display, used in testing search for targets
defined by depth cues. The target “pop-up”’s from the distractors with
little effect of the number of distractors. b The generalized retinotopic
mapping concept: The HVS consists of multiple networks of cells that

The curvature « is then defined as rate of change in orientation
per unit arc length:

x"(s) = (x{(s), x5 (s)) = «n

or

B xp(M)xy (A) — x{ (M5 (A)
()24 xh (0232

, 27)

while the geometric interpretation for the curvature is the
curve radius:

1
R=-—. (28)
K

3.1.2 Locality and parallelism of curvature, size and depth

A key fact regarding the structural and functional organiza-
tion of the HVS (which supports our AGC model) is that
processing along image dimensions of size, curvature, depth
and/or other dimensions is performed locally and in parallel
over the entire image (Hochstein and Ahissar 2002). These
image dimensions are believed to correspond to “elemen-
tary features” (Cavanagh et al. 1990; Wolfe et al. 2003) of
image representation in the HVS. Consequently, the image is
decomposed along a number of dimensions and into a num-
ber of separable components.

This concept had been tested in many psychophysical
experiments such as “pop-up” experiments. In these experi-
ments, there is a target with a unique feature which is not
shared by the distractors. If the feature is detected early
along the visual pathway, and if visual processing is per-
formed locally and in parallel, the target should “pop-up”
from the distractors with little effect of the number of dis-
tractors. Treisman and Gormican (1988) showed that such

{ curvature

[ depth

size

Image
»

— Feature detectors

depth/curvature ...)

(b)

create multiple projections along image dimensions, wherein neighbor-
ing regions of the image are preserved by neighboring regions of the
visual map

“pop-up’’s are asymmetric in that some features are detected
more easily when they are present rather than when they
are absent, which implies that the processing is nonlinear.
Figure 5a presents an example of such experiment for tar-
get defined by convexity/concavity depth cues (see Enns and
Rensink 1990a, b). We may conclude that size, curvature and
depth are processed locally and in parallel.

3.1.3 Adaptation and feature detectors

It is well known that prolonged inspection of a curved line
causes adaptation to curvature (e.g., the curvature after-effect
Gibson 1937; Coltheart 1971). Such after-effects are believed
toreflect a change in the sensitivity of neurons that encode the
adapted feature and, thus, imply the existence of neurons that
act as detectors of that feature (Hancock and Peirce 2008).
Whereas curvature detection and representation were pop-
ular in vision research some time ago (Riggs 1973; Stromeyer
and Riggs 1974; Watt 1984), there only a few recent findings
in support of curvature importance in biological vision. Of
these we wish to single out the work of Zucker and his asso-
ciates (Dobbins et al. 1987; Parent and Zucker 1989; Zucker
etal. 1988). Curvature representation and processing is, how-
ever, important in pattern recognition algorithms of computer
vision (Parent and Zucker 1989; Monroy et al. 2011; Farzin
and Suomela 1998; Lawlor and Zucker 2013). Indeed, based
on earlier studies, some investigators agree that curvature
detectors are present along the early stages of the visual path-
way (Riggs 1973; Stromeyer and Riggs 1974). In several of
these studies, it has been shown how such curvature calcula-
tions can be estimated by convolution with certain reasonable
receptive fields of neural cells (Koenderink and Doorn 1987;
Dobbins et al. 1987). For example, Wilson et al. have shown
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how global curvature information can be extracted from local
detectors using concentric glass patterns (Wilson et al. 1997).

Sutherland (1968) concluded that many species have the
capacity to classify a shape as the same shape regardless of
changes in size, at least over a considerable range, and that
this capacity is innate. This ability can be considered as irrel-
evance of the absolute (“DC”) component of size information
and relevance of changes in size only.

Blakemore and Campbell (1969) suggested that the human
visual system may possess neurons selectively sensitive to
size. They also hypothesized that this neural system may play
an essential preliminary role in the recognition of complex
images. Carey et al. (1996) suggested that size, motion and
orientation measures are processed in parallel by the dorsal
stream mechanisms.

The visual system perceives depth based on several cues
such as stereoscopic views, motion parallax, object size,
object translation and rotation. Hubel and Wiesel (1970) have
identified cells that are involved in depth information rep-
resentation from stereoscopic vision. A number of authors
have reported simultaneous depth-contrast effects for stim-
uli defined by stereoscopic, motion parallax and other cues
(see Curran and Johnston 1996; Graham and Rogers 1982).

Existence of adaptation and contrast effect of a specific
feature is closely related to the existence of detectors of
this feature (or a specific channel). Adaptation and contrast
effects are well documented with reference to curvature, size
and depth. It, therefore, seems reasonable to assume that cur-
vature, size and depth information are processed over the
entire image (in parallel), by neural structures wherein each
cell (or group of cells) corresponding to a specific location
represents local feature information.

3.1.4 Retinotopic mapping along all image dimensions

The concept of retinotopic mapping was elaborated by Hubel
and Wiesel (1968) within the context of visual orientation
representation. We expend this concept with reference to
additional image dimensions (curvature, size, depth, color,
etc.) and generalize it by assuming that the HVS consists
of multiple networks of cells that create multiple projec-
tions along image dimensions, wherein neighboring regions
of cells preserve the neighborhood regions of the feature
in the image. Figure 5b depicts this generalized concept.
The HVS consists of multiple networks, one for each image
dimension—size, color, curvature, etc. Each network con-
sists of many feature detectors. Each detector is location
specific. Together these detectors cover the entire image
and form a network that projects the image along a specific
dimension.

It is assumed that these networks incorporate the generic
sensory AGC FB loop. Thus, processing along each image
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dimension in vision (or any dimension of other sensory
modalities for this matter) can be modeled by AGC.

Two of these visual dimensions deserve a special atten-
tion. These are the curvature and size features. Curvature is
represented as a discrete set of curvature values, as defined
in Sect. 3.3.1. Representation of size of discrete objects is
assigned to the centers of the objects.

Alternatively, one can incorporate processing in a higher-
dimensional space, in which a curve is considered to be a
vector associated with the spatial coordinates (x, y), incor-
porating both the geometric curvature of (28) and its angular
orientation defined by the angle perpendicular to the tangent
of the curve at the point of the curvature. Thus, a curve in a
planar image is considered to be a two-dimensional surface
embedded in a four-dimensional space whose coordinates are
(x, v, k, U), where k denotes the curvature and ¢ the angle of
orientation of the curvature. The curvature AGC in vision, or
in computer vision, is then applied in this 4D space to obtain
a cortical output in a curvature map for the purposes of high-
level vision, or in computer vision. This curvature map does
not have to be necessarily back-projected onto the image
space to obtain the resultant curve, as would be required in
image-processing applications. If one considers the continu-
ous gray-level image rather than the contours, it is envisioned
in the context of this paper to be a three-dimensional surface,
(I(x,y)), where [ is the intensity or contrast, embedded in
a four-dimensional space of (x, y, I, ), where ¥ denotes
the convexity/concavity dimension. Unlike the curvature, the
convexity/concavity dimension assumes values other than
zero at each (x, y) where the gray-level gradient is not equal
to zero.

The size map (dimension) is considered as a two-
dimensional surface, o(x,y), embedded in a three-
dimensional space whose coordinates are (x, y, o), similar
to the embedding of the curve in the four-dimensional space
of the curvature map.

3.2 Visual illusions indicative of AGC processing

Two psychophysical experiments are considered in the sequel
as examples illustrating the effects of AGC. The first is the
size-contrast effect (the Ebbinghaus illusion), while the sec-
ond is concerned with the depth-contrast effect. It is shown
that the AGC model/algorithm reproduces the illusions.

3.2.1 Size contrast

The Ebbinghaus illusion is commonly used as an example of
a simple size-contrast effect. In this illusion, the apparent size
of a central target is affected by a ring of surrounding induc-
ers. Figure la illustrates a well-known setup that induces
this illusion, as it most often appears in general textbooks.
This form is typically used to illustrate a simple size-contrast
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Fig. 6 Results of the Ebbinghaus illusion experiment [adopted from
Roberts et al. (2005)] showing that apparent size of the target is reduced
as the inducers get bigger, consistent with a size-contrast effect. The
effect is further emphasized when the inducers are at larger distances

effect, in which large inducers make the target appear smaller
while small inducers make it appear larger.

Roberts et al. (2005) have further investigated the above
effect and concluded that it arises from a number of factors
that include the relative size of the inducers (compared with
that of the target), the number of inducers and their distance
from the target. These authors found that the apparent size of
the target is reduced more efficiently when the inducers get
bigger and at larger distances (see Fig. 6).

3.2.2 Depth contrast

Graham and Rogers (1982) have shown depth-contrast effect
perceived from motion parallax and stereoscopic informa-
tion. The perceived effect is illustrated in Fig. 7. The per-
ceived depth is affected by the surrounding, and so, although
bar A and bar B are at the same physical depth, they are
perceived as though bar A is above bar B.

3.3 Simulation results

We assume that visual information is represented in a multi-
dimensional image space, but do not address the issue of how
this information was extracted, or projected onto this space.
This assumption is reasonable, since many techniques/visual
models of depth/size/curvature (or other image dimensions)
estimation are available. [For an example of curve estimation,
see Parent and Zucker (1989) and Zucker et al. (1988).]

Physical

Perceived

Fig. 7 Depth-contrast effect [adopted from Graham and Rogers
(1982)]: bar A is perceived as lying above bar B, although they are
physically at the same depth

3.3.1 Curvature processing

In order to provide an intuitive understanding of what is the
effect of AGC on curvature, i.e., what is the input—output
relationship insofar as the shape of the curve is concerned,
we implement for the sake of simplicity a one-dimensional
algorithm. The original curve is assumed to consist of dis-
crete points (x1, ¥1) - -+ (x5, ¥n). Curvature is calculated at
each point along the curve yielding the corresponding set of
discrete set of curvature values (k1 , --- , k), as described
in Appendix 2. The generic input to the AGC operator, s(x),
assumes in this case the form of curvature vector, « (/), where
[ denotes the position of the curvature value along the vec-
tor. The generic output r(x) becomes now a 1D curvature
vector of the resultant curve, which is used in turn in the
reconstruction of the output/perceived/response curve, con-
structed according to the algorithm presented in Appendix 2,
i.e., each point is calculated according to the previous point
and a circular segment defined by the corresponding curva-
ture. In this case, spatial correspondence between the input
and output is lost.

Two curves are considered as examples of curvature
processing by neural AGC. The first one is a curve with
constant curvature, i.e., a section of a circle (Fig. 8). Note
that since the curvature is constant, its extent is reduced as

@ Springer
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(@) (b)

Fig. 8 Results of AGC processing of constant curvature, illustrating
reduction in curvature (“‘adaptation”). a is the original curve (i.e., the
input to the system), and b is the result of (a) being processed by the AGC
neural network. The extent of curvature left in the adapted curve (b)
depends on the AGC parameters, similar to the DC left in the processing
of an edge in the case of a spatial step input. Note that due to the 1D
implementation of the AGC along the curve, spatial correspondence
between the input, (a), and output, (b), is lost

(a) (b)

Fig. 9 Results of AGC processing of fragmented curve, illustrating
enhancement. a is the original curve (i.e., the input to the system). b
depicts the result of AGC processing of the curve shown in (a)

it “adapts” by the gain control, and there is no enhance-
ment. The second example is comprised of a combination
of straight lines and sectors of circles with opposing curva-
tures (Fig. 9). The AGC parameters used in this example of
processing and “adaptation”/enhancement of curvature are
Wx) = k%e_)"x'; k = 20; y = 0.2, with W extending
across 5 pixels.

The first example illustrates curvature adaptation—the
curvature is decreased, whereas the second highlights curva-
ture enhancement (or emphasis). For presentation and com-
parison purposes, only, the curvature result of the second
curve Fig. 9b is multiplied by a factor 1.87, to “compensate”
for the adaptation effect and highlight the effect only on cur-
vature enhancement. Blue circles have been added to Fig. 9
to highlight the changes in curvature at points of inflection.
Points that are inside the circles have larger curvature than
points that are on the circle. Therefore, the edge points (where
a change in the curvature occurs) are emphasized similar to
the edge enhancement depicted in Fig. 4a.
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(a) (b)

(©) (d)

Fig. 10 Effect of noise and noise suppression demonstrated on a curve
with constant curvature. a and ¢ are curves with a constant curvature
of 0.2 and 0.7, respectively, and additive positional Gaussian noise. b
and d are the results of (a) and (c) processed by the AGC neural circuit,
respectively. The noise suppression, characteristic of this processing,
increases with the magnitude (i.e., the curvature) of the input

3.3.2 Curvature noise

As was highlighted in Sect. 2.4, one of the important features
inherent in the processing of sensory data by AGC neural
networks is the improvement of the SNR. This advantage
of processing by AGC circuitry manifests itself along any
dimension of the sensory signal, including structural dimen-
sions such as curvature. Figures 10 and 11 demonstrate the
effect of structural noise and noise suppression along the cur-
vature dimension.

Comparing the noisy curves’ traces with their traces after
curvature AGC processing reveals noise suppression that
monotonically increases with the magnitude. This is consis-
tent with the SNR analysis of Sect. 2.4. Note that the noise
is suppressed over the curved segments, whereas it is not
affected at segments of zero curvature (i.e., the input value
has magnitude of zero) (Fig. 11).

3.3.3 Size processing

To highlight the effect of AGC on size processing, we recon-
struct the Ebbinghaus illusion experiment (Roberts et al.
2005), simulating the perceived target size by the AGC algo-
rithm. In this case, we use a two-dimensional AGC model, as
described at Sect. 3.1.4. For the sake of simplicity, each point
consists of two spatial coordinates and a size value o (x, y).
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(a) (b)

Fig. 11 Noise suppression demonstrated on noisy fragmented curve.
A noisy fragmented curve, with curvature alternating between negative,
—0.8, and positive, 0.8, is depicted in (a). Structural Gaussian noise is
added to the curve. The result of processing the noisy curve by AGC
neural network is shown in (b). Note that the noise is suppressed along
the curved segments and not along segments of zero curvature

The generic input to the AGC operator, s(x), assumes in this
case the form of a size map, which is used as the input of the
AGC operator. The generic output, 7(x, y), which becomes
now og(x, y), is amodified size map. Spatial correspondence
between the input and output is maintained in this case. It is
important to note that, again, for the sake of simplicity, each
object is represented as a point at its center, with value of

lllusion magnitude as function of induc er radius

near
-25 }\ medium ||
A far
w
@ -3fF
=
=
@© -35f
=
=
:E
o A
[
£
c 45}
o
L]
=
= 5
551
£ 1 1 -
5 10 15 20
Inducer radus [pixels]
(a)

Fig. 12 a Results of reproduction of Ebbinghaus experiment by
processing with feedback AGC. Varying the relative size and distance
of the inducers produces changes in the apparent size of the target, con-

the object’s size. We used to following AGC parameters:
W(r) = k(3% — yIrl), where k = 5, y = 0.00007 and
/x2 + y2. These parameters correspond to a lateral
effect of a triangular W function with width of 121 image
elements (pixels).

To illustrate the AGC effects on size processing, a setup of
the psychophysical experiment was reproduced. Target was
surrounded by 8 inducers at different radii (varying from 5 to
20 pixels). This was checked for near, medium and far (30, 40
and 50 pixels away from target, respectively) inducers. Tar-
getradius was 10 pixels. “Perceived” target size (in pixels) is
shown in Fig. 12a as a function of inducer radius and distance.
The AGC-processed results are consistent with the original
experimental results. It is clear why increasing the inducer
size decreases the target perceived size—this represents the
size contrast effect of the AGC. It is less obvious why farther
positioned inducers have stronger effect on target perceived
size, than that of the closer inducers (i.e., decreasing the tar-
get size more effectively). The latter can be understood in the
context of the AGC model by considering the effect of the
mutual relation between the inducers on the effective (func-
tional) width of W. According to the model of AGC visual
processing, the impact of cells on their neighbors is limited
by W. If the distance between cells is larger compared with
W’s effective width, then those cells will have a minimum
effect on each other (if any). When an inducer is at a given
distance x from the target, its distance from the other inducers
varies from O to 2x. Thus, when distance increases, more and
more inducers are beyond the “influence zone” of the other
inducers. This causes the perceived size of each inducer to

r =

Inducers perceived size as a function
ofthe distance from the target
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sistent with the original experimental results. b Results indicating that
inducers’ perceived size is increased at larger distances. See text for
more details
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Fig. 13 Delboeufillusion. The dark disk on the rightis perceived larger
than the one on the /eft, although they are of the same size

increase when the distance is increased. Figure 12b shows
this phenomenon. Since the target is still inside the “influ-
ence zone” of the inducers, and the size of the inducers is
now larger, the target seems smaller (the size-contrast effect
is enhanced).

Note that here we considered only the target and inducers
as objects with size. But, it is also possible that the visual sys-
tem treats the space between the target and the inducers as an
object with size. In this case, if the space between the target
and the inducer is large, the inducer size has only a secondary
effect, and the target size is determined mainly by the nearest
object (e.g., see Fig. 13—Delboeuf illusion. In this illusion,
the target gets smaller when the inducer diameter increases.).
This model can explain also the moon size illusion, as well
as other illusions. This example of size processing and the
resultant nonlinear effects of the AGC on perceived illu-
sion demonstrates the “programmable” characteristics of the
AGC networks with feedback, wherein the effective network
distance of cell influence is a function of both hardwired W
and input structure.

3.3.4 Depth processing

To demonstrate the effects of feedback AGC on depth
processing, we reproduce the experiment of Graham and
Rogers’s (1982), implementing the visual AGC neural net-
work along the visual dimension of depth with the fol-
lowing spatial interaction parameters W(x) = k%e‘y‘x l;
k = 1; y = 0.2, where the spatial interactions extend across
11 elements.

A depth-processing/perception scenario is as follows.
Consider a three-dimensional scene shown for example on
the upper-left corner of Fig. 14. The observation point is
defined to be at the spatial coordinate of the center of the
scene, with normalized height of 50 pixels.

For each point of the 3D original scene, the depth is cal-
culated relative to the observation point. Figure 14 depicts
the results in both 3D and cross sections. As a result of the
processing by means of AGC, the left bar, A, which is at the
same depth as the right bar, B, is now perceived closer to the
observation point.

@ Springer

3.3.5 Convex—Concave (2D curvature processing)

Curvature can be defined in the three-dimensional case,
i.e., on a surface. In this case, it characterizes the convex-
ity/concavity of the surface structure. Curvature contrast
adjustment is then executed by the AGC in a similar manner
to its adjustment of the planner curvature. But, in this case the
curvature information is embedded in a higher-dimensional
space of (x,y,z, kx, ky). We examine a simpler example
that can be illustrated graphically in a simple manner. In
this example, we assume that the characteristic curvature
is separable into its «, and ky and consider its orthogonal
components as one-dimensional curvatures. We can then use
the one-dimensional algorithm described above. Figure 15
depicts the results in both 3D and cross section views of
AGC convex—concave processing of a similar surface as at
the depth-processing simulation above. As a result of the
AGC processing (right column of Fig. 15), convexity and
concavity are enhanced compared with the original input (left
column of Fig. 15). Moreover, points that were originally at
the same depth (as the left and right bars in the depth experi-
ment above) are now perceived at different depths, consistent
with depth-processing results.

4 Applications

Three applications of AGC-based image/visual processing
are presented as examples. Two of them are along the inten-
sity dimension, and the third is along the curvature dimen-
sion. Note that these are not the only possibilities and should
be only regarded as examples.

4.1 High dynamic range images

High dynamic range (HDR) images are characterized by a
very wide intensity range that exceeds by far the range that
can be displayed on conventional displays. Examples for such
images can be a scene combining indoor and outdoor details
or scenes combining very bright spots and shadows. HDR
images are obtained either by advanced digital imaging sys-
tems, or synthetically by algorithms that combine several
images (see Zeevi et al. 1995; Debevec and Malik 2008 for
such examples).

The common approach to dealing with this problem is
to compress the intensity to a narrower range of display
intensities (e.g., from approximately 16 bits down to less
than 8 bits). Many algorithms have been presented in the
literature for this purpose and can be divided into two
main categories: tone-reproduction curves (TRC) and tone-
reproduction-based operators (TRO). See Herscovitz and
Yadid-Pecht (2004) for a summary.
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Fig. 14 AGC processing of depth information. Input and output of
visual signals are displayed in the fop and bottom rows, respectively.
The left column is a 3D view, whereas the right column is a cross sec-
tion view. Examining the right column, the left bar, A, is “perceived”

Itis important to observe that such a task is executed easily
by our visual system. Natural scenes span HDR of intensities,
while the neural coding bandwidth is similar to that of a dis-
play or even narrower (approximately 6 bits Brajovic 2004).
For this reason, some methods such as Ginosar et al. (1992),
Zeevi et al. (1995), Brajovic (2004), Tanaka and Ohnishi
(1997) are inspired by the HVS and attempt to mimic its
function in order to compress the HDR of an image projected
onto the limited, or low, dynamic range (LDR) characteristic
of the retina or image acquisition devices. The AGC model
proved to have high correlation with experimental results
regarding intensity, and, as discussed earlier, one of its major
characteristics is the compression of a wide dynamic rage.
Therefore, it is natural to use AGC processing to compress
HDR input into a narrower range, that can be displayed on a
regular screen, and yet have a high sensitivity.

An LDR image (/1 pRr) is obtained by adding a logarith-
mic version of the original HDR image (/gpr ), multiplied by
attenuation constant (y) to the response of the AGC model
with Iypr as the input (/agc). The logarithmic term adds
some flexibility to the contribution of the ambient illumina-
tion:
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as lying above the right bar, B (lower right figure), although they are
physically at the same depth (upper right figure). This AGC-processed
result is consistent with that of the original depth experiment

Iipr = Iace + ¥ log(l + Inpr), (29)

where y = 0.004 and W = [0.4, 5, 0.4].

Using AGC has many advantages: Processing can be made
in parallel over the entire image (especially when the AGC is
implemented using ANN), just as itis implemented in the bio-
logical visual system, no “halo” artifacts appear, the relative
contrast is increased (the AGC compresses the “common”
attributes of the stimuli while enhancing the novelty) and, in
general, the human observer that looks at this image on the
screen gets an image that appears to look more “natural”—an
image that is processed with a mechanism similar to the HVS
and further enhances the natural processing. The important
issue regarding the compression process is to preserve details
in bright areas as well as details in the dark areas, together
with the general illumination perception. This process is
demonstrated by using a synthetic image (Fig. 16) and the
Stanford Memorial Church HDR image (Fig. 17; taken from
Paul Debevec’s home page).

These results demonstrate that the system that mimics
the biological visual system (i.e., its AGC feedback neural
model) performs effectively in compressing HDR image into
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Fig. 15 AGC processing of convexity/concavity information. Shown
are the visual signal input (a) and the response (b). Convexity and con-
cavity are enhanced, as can be clearly seen in the cross section views (c)
and (d) along the diagonal of the input and response, respectively. More-
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over, examining the right column, the left bar is perceived as lying above
the right bar, whereas they are physically at the same depth (left col-
umn). This is consistent with psychophysical depth-processing results
(see Fig. 14 for comparison)
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Fig. 16 a Simple example of HDR image combining two illumination regions and details in both of them. b The result of the processing by the
feedback AGC. The dynamic range is compressed, while both details and illumination perception are preserved
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Fig. 17 The Stanford
Memorial Church LDR image
obtained by using a MATLAB
function “tonemap,” b feedback
AGC. This technique is
completely free of halo artifacts,
contrary to the MATLAB
function (see the dark region
marked in arrow in (a). Even
though some regions of (b)
seem darker than those of (a),
the result obtained by
application of the method
presented herein is more
realistic, yielding more similar
image to what we expect to see
when observing such a scene

LDR image as required by most conventional displays. An
important feature characteristic of the AGC-based process-
ing approach is that local details are well preserved and in
some cases are even enhanced. Comparing the performance
of processing with AGC, with the default MATLAB func-
tion shows that the AGC-based processing performs at least
equally well, and in some cases even better. A very important
property of processing by the biological-based AGC is that
it is completely free of halo artifacts, contrary to the MAT-
LAB function (see the dark region in Fig. 17a). Moreover,
the result obtained by application of the biologically moti-
vated method is more realistic, yielding results more similar
to what we expect to see when observing such scene.

4.2 Enhanced edge detection

An important problem in image processing is the detection
of edges in a given image. A number of schemes have been
proposed for this purpose (Peli and Malah 1982). These are
applied as a preprocessing operation prior to high-level image
analysis. Edge detection is assumed to be a crucial step in the
visual path, and part of the early visual processing (Marr and
Hildreth 1980).

Canny’s edge detector (Canny 1986) is still considered
to be a good and standard benchmark of edge detection for
many purposes. It is based on first-order operators (discrete
derivative), which produce an output that corresponds to the
difference between the values of neighboring pixels. Such
operators cannot, however, consistently locate object bound-
aries in the presence of changes in scene illumination, and

(b)

second-order operators cannot resolve this problem (Johnson
1990).

An example of such a case is highlighted in Fig. 18. To
overcome this limitation, we can extract the edges of an
image by preprocessing with AGC. As discussed earlier, by
processing an image with AGC, we get a local spatial adap-
tation, which diminishes the slowly varying of illumination
over the global scene. In addition, processing by HVS-based
AGC also enhances sharp variations, thus increasing the rel-
ative contrast or slope of edges, while suppressing the noise,
similar to the HVS, which extracts edges much better than
Canny edge detector. Therefore, applying AGC processing
prior to the application of first-order edge detection (such
as canny’s) is expected to enhance the performance of edge
detection over poorly illuminated environments.

4.3 Curve completion due to occlusion

Contour interpolation, in painting the missing parts between
two contour fragments, is a ubiquitous phenomenon. Numer-
ous objects that appear in natural images are bounded by
edges that are not fully defined by visual information. In
many cases, this visual information deficiency stems from
partial occlusion by surrounding objects; in other cases,
incomplete edge specification arises from a lack of contrast
with the background environment. Contour interpolation in
vision leads to the perception of clearly defined object bound-
aries even though these boundaries are missing [see Fig. 19
for examples of this phenomenon].

A brief review on this subject can be found in Ben-Yosef
and Ben-Shahar (2010), where the authors concluded that
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(a)

Fig. 18 Example of edge extraction in regions with poor illumination.
a An image with regions of poor illumination marked by red ellipses.
b Edges obtained by applying Canny operator. Edges at the marked
regions are not detected due to poor illumination. ¢ Edges enhanced by

A

(a) (b)

Fig. 19 Examples of curve completion due to a lack of contrast with
the background [adopted from Ben-Yosef and Ben-Shahar (2010)]. b
Partial occlusion [adopted from Kimia et al. (2003)]

curve completion is an early visual process that takes place
as low as at the primary visual cortex, and that the participa-
tion of early visual neurons in the representation of curves
is not limited to viewable curves only, but is also extended
to completed or illusory curves as well (see also Guttman
and Kellman 2004). These findings and ideas suggest that
contour interpolation involves basic neural mechanism and
that real and interpolated contours are processed in parallel.
Therefore, it may be concluded that network-type models of
completion processes are most likely to be the mechanism
underlying contour interpolation.

Indeed, many networks for curve completion have been
introduced in the literature (e.g., Yen and Finkel 1998; Field
etal. 1993). But, although Singh and Fulvio (2005) concluded
that the visual system systematically takes into account
the curvature of inducing contours when extrapolating their
shapes and that a successful model must take into account
the curvatures, all of them use array of cells selective for
orientation.

Kimia et al. (2003), motivated by railroad design meth-
ods of the early 1900s which connects two rail segments by

@ Springer

(b)

the application of the Canny edge detector to the image preprocessed
by the AGC operator. Edges at the marked regions are now detected
(color figure online)

“transition curves,” proposed the minimization of an energy
functional that penalizes changes in curvature as a comple-
tion model, i.e., minimizing the following:

2
/(Z—I;) ds. (30)

This kind of minimization immediately entails a linear
expression for the curvature as a function of the arc length, a
class of curves known as Euler spirals. Although this model
satisfies all the axioms mentioned in Ben-Yosef and Ben-
Shahar (2010), it fails to predict some experimental results
(Singh and Fulvio 2005), since the interpolated curvature
should decrease asymptotically to zero if no end segment
exists (i.e., the curve is extrapolated from only one segment),
and a nonlinear decrease in the curvature fits better the results
than a linear decrease.

Based on the above insights, and motivated by our model
of the HVS, we propose a novel model for curve comple-
tion that combines both the AGC and the Euler spirals in a
network-style model. The idea is that the curve completion is
performed along the curvature dimension. The missing cur-
vature data of the curve are linearly interpolated between the
curvature value of the first segment to the curvature value of
the second segment. The interpolated curve is then entered
as an input to the AGC network. The response of the system
is the perceived curve. If only one segment exists, the sec-
ond segment is referred to as a zero curvature segment. In
this way, the extrapolated curve has a nonlinear decrease in
its curvature as suggested above. Moreover, this model can
explain the “cost of curvature” (Singh and Fulvio 2005), and
scale dependency (Fantoni and Gerbino 2003; Gerbino and
Fantoni 2006), of the interpolated curves.

The “cost of curvature” means that the precision with
which an interpolated contour is represented becomes sys-
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Fig. 20 Simulation result for
interpolating a curve with a
constant curvature. a Original . .
curve. b The occluded curve. ¢ . .
The interpolated curve. The .

occluded segment is a linear
combination of the contour
fragments and, thus, (c) is
identical to (a)

(@ (b) (©
Fig. 21 Simulation result of
extrapolating a curve, given a
short segment. a The given
segment. b The extrapolated . R
curve )
(a) (b)

tematically weaker with increasing curvature. This is inter-
preted in the context of the AGC model according to the small
signal analysis as follows: When the input intensity is higher
(e.g., the curvature increases), the sensitivity of the system
decreases.

Scale dependency means that the interpolation depends on
the viewing distance. This is an obvious outcome for inter-
polating the curve along the curvature dimension. The cur-
vature depends on the curve radius, and the radius, in turn, is
a function of the viewing distance.

The model is tested on a few simple curves to demonstrate
the main ideas. For each curve, an occlusion is simulated
by removing part of the curvature information. The missing
curvature values are then linearly interpolated between the
last curvature value of the first segment to the first curva-
ture value of the second segment. The interpolated curvature
values serve as input to the AGC model, and the response
is referred to as the interpolated curve. The parameters of
the AGC are W(x) = 1[length of W], with W extending
across 11 pixels. Figure 20 depicts the result of completion
of a curve with constant curvature (i.e., segment of a circle).
As this example may look very simple and of no value, one
should keep in mind that this result is simple only because the
curve is interpolated along the curvature dimension. If, for
example, the curve would have been interpolated along the
tangent dimension, the problem would become more com-
plicated. Figure 21 depicts the result of curve completion for
the case when only one segment is present. Note how the cur-
vature values decrease to zero (as noted in Singh and Fulvio
2005). Figure 22 depicts curve completion when a sudden
and abrupt change in curvature occurs. Part of the curve con-

sists of some constant curvature value, while the other part
consists of the same constant curvature but of opposite sign.
When the occluded portion increases in length, the interpo-
lated curve becomes smoother, and the changes compared
with the original curve become much more noticeable. Nev-
ertheless, one should keep in mind that the interpolated curve
should not be compared with the original curve, but with the
curve that a human observer will perceive. Figure 22e is con-
sistent with what a human observer would draw based on the
given occluded curve (d).

5 Discussion and conclusions

Biological and man-made visual systems, alike, are con-
cerned with detection and enhancement of novelty associ-
ated with visual scenes. Novelty is associated with the unex-
pected that cannot, for example, be linearly predicted. Qual-
itatively speaking, important and interesting “events” along
image contours, for example, consist primarily of abrupt
changes in orientation and curvature, as is the case with other
image attributes (dimensions). Local maxima of curvature,
and inflection points (i.e., zero crossings of curvature) iden-
tify in this case such events (see Hoffman and Richards 1984;
Koenderink and Doorn 1982; Richards et al. 1986; Fischler
and Bolles 1986). This fact is well known by artists and car-
toonists who exploit it in their artwork, as much as they do,
and in more familiar manner, with regard to other image
attributes such as intensity and color. Moreover, zero cross-
ings along curvatures (i.e., points of inflection) can constitute
the basis of shape representation for planar curves (Mokhtar-
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(a) (b)
(c) (d)
(e)

Fig. 22 Simulation result for interpolating curve with an abrupt change
in curvature. a Original curve. b The occluded curve. ¢ The interpolated
curve. d A curve with alonger occluded region. e The interpolated curve.
The occluded part is where the abrupt change in curvature occurs and
thus (c) and (e) are only a smooth version of (a). The occluded part in
(b) is small, and therefore, the changes in (¢) are almost unnoticeable.
The occluded part in (d) is large, and therefore, the changes between (a)
and (e) are quite significant but, nevertheless, e is a continuous curve

ian and Mackworth 1992). Similar to biological visual sys-
tems that emphasize changes and adapt to locally constant
values of the image attributes, this is indeed an important
feature of curvature processing (or of processing of other
image attributes) by adaptive computer vision and image-
processing systems endowed with the mechanism/algorithm
of AGC. Curvature emphasis and adaptation (see Figs. 8, 9)
occur simultaneously, and their extent can be controlled by
adjusting the parameter « of the “hardwired” connectivity.

Inspection of the results of size processing indicates a good
correspondence between the AGC system response (Fig. 12a)
and the psychophysical experimental results (Fig. 6), for both
the distance and size parameters. Such results are expected in
view of the dependency of AGC on these two parameters as
well, i.e., cells proximity and specificity (in this case, objects’
size).

Inspecting the results of depth processing indicates a good
correspondence between the AGC system response (Fig. 14)
and the psychophysical experimental results (Fig. 7). More-
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over, these results can be understood also from the con-
vex/concave AGC viewpoint (Fig. 15). This leads to the con-
clusion that depth sensitivity adjustment may be understood
also in relation to curvature adjustment by gain control (and,
perhaps gain control along other visual dimensions) or vice
versa.

Understanding the HVS and modeling some of its char-
acteristics by a generic sensory mechanism of AGC is of
considerable interest because of its potential implementa-
tion in the design of intelligent computer vision and image
acquisition and processing algorithms and systems. Because
of the complexity of the processes involved, and in order
to account for the vast amount of available experimental
data, there is a need for relatively simple generic models.
As shown, the generalized AGC system is relatively simple
(only few parameters) and versatile. It does not call for pos-
tulating any components of neural circuitry more complex
than those well known to exist in biological neural networks
and, yet, shows good correlation with psychophysical experi-
ments. Such understanding has become crucial in view of the
fact that visual prosthetics are becoming a workable reality.
These visual prosthetics use a variety of biomedical and tech-
nological approaches such as stimulating the visual cortex or
even the retina (Tran et al. 2009; Dobelle 2000). In all these
studies, the subjects have to be trained for recognizing and
discriminating different patterns of simulations (Humayun
2003). The main concern of these studies is whether the sub-
ject can recover/develop a visual perception and what are
the proper stimulus parameters. Only a few of these stud-
ies has considered, however, the important question of what
are the optimal stimuli, i.e., how should the computing ele-
ments (neurons) be stimulated in order to achieve the best
visual perception of a given image [see, e.g., the optimiza-
tion procedure proposed by Liu et al. (2009)]. Such visual
stimulation may be based on our understanding of fundamen-
tal visual mechanisms such as those presented, for example,
in this study.

Implementing the AGC mechanism in the context of all
image elementary attributes (dimensions), or other modal-
ities for this matter, yields great advantages. It constitutes
a universal and parsimonious model that explains how our
visual system processes visual information along its various
dimensions, before the later stage of sequential “visual rou-
tines” is implemented. Such a mechanism can process an
image along all its dimensions (that are yet to be explored).
The only necessary information is the relevant projections.
Further, it may lead to the development of a metric for dis-
tance between images, and it can be instrumental in per-
forming important tasks, such as recognition and classifica-
tion. Such computer vision tasks can be executed along the
different feature dimensions and be further mapped nonlin-
early without recombination of the separate processed feature
maps back onto an image. Alternatively, the AGC mechanism
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can be applied on a surface or manifold representation of
the visual (image) data, embedded in a higher-dimensional-
combined position-and-features’ space or Riemannian man-
ifolds. An important property of this embedding is that such
Riemannian manifolds are endowed with a bilinear positive-
definite symmetric tensor which constitutes a natural metric
(Kimmel 2003; Kimmel et al. 2000; Sochen and Zeevi 1998).
To get an intuitive glimpse into the essence of image embed-
ding, a gray-level image (visual) representation is consid-
ered to be a two-dimensional Riemannian surface embedded
in a three-dimensional manifold, whereas a colored image
is embedded in a five-dimensional spatial-feature manifold
or, for the sake of simplicity (avoiding the generalization
of the proper norm for gradients), the embedding of a col-
ored image is in a five-dimensional Euclidean spatial (i.e.,
position)-feature space. Likewise, additional features (i.e.,
image attributes or image dimensions), such as curvature,
size, orientation and more, increase the dimension of repre-
sentation space. The AGC processing then manifests itself
in the evolution of the image manifold. Whereas the details
(and/or implementation) of this approach are beyond the
scope of the present study, it is important to note that curva-
ture of such surfaces and manifolds becomes central to this
approach of representation of visual and other modalities
of sensory information, as the curvature replaces the well-
known and widely used Shanon-Nyquist criterion of “band-
width” (which is not yet fully understood in the context of
feature dimensions, rather than spatial dimesnions) (Saucan
et al. 2008). As much as this topic is fundamental to the
understanding of neurobiological and computer vision repre-
sentations and to processing of sensory data, it is also beyond
the scope of this paper. [The reader is referred to Saucan et al.
(2008) and additional papers by the same authors for further
detailed exposition of the topic of curvatures and bandwidth. ]

The AGC model elucidates the ability of our HVS to span
HDR of inputs along various dimensions, while still hav-
ing high sensitivity. This ability has been well known and
investigated with reference to the intensity dimension. Here,
we have shown how powerful it can be along other dimen-
sions. For example, we have highlighted how we can be sen-
sitive to curvature values that vary over a wide range (the
limit is defined only by the retina resolution), and yet notice
differences between curves in the order of 107> (Watt and
Andrews 1982; Watt 1984 for more details). This interpreta-
tion is valid also for depth perception (see Kaye et al. 1999;
Kumar and Glaser 1992 for more details), size, texture, ori-
entation, motion and more.

It appears as though the AGC mechanism repeats
itself along all stages of sensory processing in the CNS
(Abbott et al. 1997; Salinas 2000; Sit et al. 2009), in order to
remove redundancy (Schwartz and Simoncelli 2001). There-
fore, this model allows us to mimic the HVS (or other sensory
modalities), in biologically motivated man-made intelligent

sensory systems, and to propose a unified model for biolog-
ical sensory processing.

Likewise, feedback AGC model allows also to process
an image not only in the intensity/spatiotemporal domain,
but also along all other visually important (or other sensory)
dimensions. For example, in the case of a given noisy curve,
one can further reduce the noise along the curvature dimen-
sion (in addition to the AGC-based noise reduction) with
standard filters, such as a nonlinear diffusion filter. As dis-
cussed above, one can also overcome occlusions by interpo-
lating along the curvature dimension and create HDR images,
or enhance edge detection processing along the intensity
dimension.

The proposed visual AGC mechanism can enhance exist-
ing schemes of intelligent image processing with reference
to enhancement of various image attributes and features, i.e.,
curvature, size and other image attributes.

The projection and decomposition of an image into its
intrinsic dimensions is by no means the only possible model
of representation and processing of images, and definitely
not always the optimal one. Inferring from what is known
about retinal (foveal) projection onto the visual cortex, in this
work we considered the projections and AGC-based process-
ing of various image attributes independently of each other.
The assumption of independency shoud, however, be fur-
ther investigated and the alternative approach of image rep-
resentation as two-dimensional manifolds, embedded in a
higher dimensional Euclidean space or Riemannian mani-
fold, should be studied in detail. This, of course entails theo-
retical and computational challenges, but it is likely to result
in new ideas in theoretical neurobiology and brain sciences.
Likewise, as far as computer vision is concerned, the AGC-
based processing of image manifolds embedded in higher-
dimensional-combined spatial-feature spaces or Riemannian
manifolds is likely to enhance visual saliency and cognitive
attributes.

Appendix 1: Uniqueness of the AGC solution
We prove (based on Shefer 1979) that if a solution of the
AGC model exists, it is unique, assuming s(x) > 0. In fact,

it is sufficient to prove uniqueness for the feedback signal,
f(x), derived from (3) and (4):

fx) = /s(x/) [Ol — f(x/)] W(x — x")dx'. 31

We prove that if two bounded solutions of (31) exist, f1(x)
and f>(x), they must be identical. To this end, we define the
difference between the two assumed-to-exist solutions:

b()A f2(x) = fi(x). (32)
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fi1(x) and f>(x) are bounded, and therefore, b(x) is also
bounded. We define its maximum value:

My A max |b(x))] (33)
Substituting Eq. (31) in Eq. (32) we get:
b(x) = /s(x’) [ — ()] W(x — x')dx’
—/s(x/) [ — fix)]| W(x — x')dx’
= /S(X’) [ + AIED)] W —x)dx'

= —/s(x')b(x’)W(x — x")dx’. (34)

Assuming that s(x) is bounded, we define its maximum
value:

Msé mxax [s(x)]. (35)

From all the above we get:

My = m;lx /s(x’)b(x/)W(x — x"dx’

< m;?tx/|s(x/)} b [W(x — x| dx'. (36)
Substituting Egs. (33) and (35) in Eq. (36) we get:
My < m;lx/ MMy |W (x — x)| dx’

= MM, m)?x/ |W(x —x’)| dx’. 37)

Substituting Eq. (6) in Eq. (37) we get:

M, < MyMp, max Sy = M, Mj,Sy (38)
X

and thus

My < MyMpSw. (39)

For M;Sw < 1, Eq. (39) is valid only if M; = 0, which
implies that there is a unique solution for Eq. (31).

The meaning of M;Sw < 1 is the condition for unique
solution given s(x) > 0 V x given in (35), i.e., m)?x{s(x)} <
1/Sw.

If the assumption of s(x) > 0 is not valid, and s(x)
assumes also negative values (as is the case for curvature
values), the above proof is still valid, by taking the absolute
value of the feedback: f(x) — | f(x)|,inwhichcase Eq. (31)
becomes

Flx) = / () [ — | £GO[] Wx — )d, (40)
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and the rest of the proof is unaffected.

Appendix 2: The curve-construction algorithm

The basic principle underlying drawing of a curve deter-
mined by its curvature information is based on Eq. (28) which
approximates the curve by an arc of radius R (Fig. 23). This
is a good approximation under the following assumptions.

Assumptions

Curvature, per definition, is a quadratic term. As such, the for-
ward problem (calculating the curvature vector of a curve)
is a well-posed problem and can be dealt with easily. On
the other hand, the backward problem, which is drawing a
curved line from its curvature information only, is an ill-
posed problem, rendering it impossible to solve without mak-
ing some assumptions. Further, the filtering process is a non-
linear necessitating additional assumptions. These assump-
tions are:

1. The curved line is discrete.

2. The line is smooth enough.

3. The starting point of the line is known and is not affected
by filtering.

4. The tangent to the curve at the first point of the curve is
known and does not change by the filtering.

5. The length of the original curve between each sequential
point is known and does not change by filtering. There-
fore, curve length is constant.

6. Curvature information is known (or given).

7. Curvature values are positive for counter clockwise
(CCW) curve and negative for clockwise (CW) curve
as defined in Fig. 24.

8. Centered coordinates are implemented, i.e., the point
(0, 0) coincides with the center of the image.

The algorithm

The algorithm is, as mentioned, based on approximating
curve segments by circular segments. This is done by cal-
culating for each point on the curve the center point of a
circle that matches the point’s curvature and position. Then,
an arc (part of a circle) is drawn in the same length of the
original curve segment. Figure 23 shows this idea and the
algorithm variables.

Given the curvature vector, the starting point and its tan-
gentorientation, and the arcs lengths, one can draw the curved
line following these steps (see Fig. 25 for summary):

1. Calculate the correct center point
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Current point (CP)

(x.y) \d

Current tangent

Next point
tangent

Curved-line (cl)

Fig. 23 Curve-construction tool: variables’ definitions

Fig. 24 Definition of signed
curvature definition: The
curvature is defined as positive
if the unit tangent rotates
counter clockwise, and negative
if it rotates clockwise

€

€2
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curvature star_tlng Sta".“”g Arcs’
point point
vector L lengths
position tangent
A 4
Step 1:
"| Calculate the correct center point
4
Step 2:
Calculate the next point position
Step 3:
Calculate the next point tangent
No? Yes?
End of data? »/ Cur'v.e
possition

Fig. 25 A flowchart of the curvature drawing-tool algorithm

“CC” (see Fig. 23) is the center point of a circle that For negative curvatures (as the one in Fig. 23), the correct
match the curvature at CP according to Eq. (28). point is to the right of the tangent vector and to the left
This point must satisfy two equations, as follows: for positive curvatures.

— Radius connecting CC and CP is perpendicular to the 2. Calculating the next-point position (NP) Calculate the

tangent at CP, next point according to an arc that has the following char-
acteristic:

- s >

CC —CP-cl'(CP) =0, (41)

— Starts from the current point. Has radius equal to 1 /«.

— Is an arc belonging to a circle with central point CC,
calculated in the previous step.

— Has the same length as the original segment. (This
is equivalent to saying that to the arc corresponds an
angle 0).

(CC, _CPx)2+(CCy _CPy)2 = (1/k)* = R* (42) 3. Calculating the next-point tangent

where cl’(CP) is the derivative of the curved line cl
at CP.

— Curvature can be represented locally by a circle with
radius length equal to 1/k:

The above equations have two solutions for center — Calculate ¢ according to the following equation:

points. One possible solution fits the positive curva-
ture, and the other one fits the negative curvature. The
correct point is thus chosen according to the curvature
sign.

0=1I1/R=1«,

where [ is the length of the arc connecting CP and
NP.

@ Springer
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— Calculate the angular orientation of the current tan-
gent.

— Calculate the orientation of the tangent at NP with
reference to the one at CP:

<cl'(NP) = <cl'(CP) + 0

— For (curvature < 0): <tcl’(NP) = <cl’(CP) — 6
— Calculate (X1, Y1) according to the point of intercept
of the current tangent and the subsequent point tanget.

— Calculate the next-point tangent by subtracting (X1, Y1)

from NP.

Note:

1. In case the curvature is equal to O:

— Next-point tangent is equal to current tangent.
— Next point is calculated by taking the original seg-
ment length along the direction of current tangent.

2. Calculating (X1, Y1) is necessary (although the next-
point slope is known) because of the fact that the slope
orientation is not known (it is the output of an arctan
function). As noted above, the orientation of the tangent
is important in determining the correct CP.
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