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Single-Image Superresolution of Natural Stochastic
Textures Based on Fractional Brownian Motion

Ido Zachevsky and Yehoshua Y. (Josh) Zeevi

Abstract— Texture enhancement presents an ongoing
challenge, in spite of the considerable progress made in recent
years. Whereas most of the effort has been devoted so far to
enhancement of regular textures, stochastic textures that are
encountered in most natural images, still pose an outstanding
problem. The purpose of enhancement of stochastic textures
is to recover details, which were lost during the acquisition of
the image. In this paper, a texture model, based on fractional
Brownian motion (fBm), is proposed. The model is global and
does not entail using image patches. The fBm is a self-similar
stochastic process. Self-similarity is known to characterize a large
class of natural textures. The fBm-based model is evaluated and
a single-image regularized superresolution algorithm is derived.
The proposed algorithm is useful for enhancement of a wide
range of textures. Its performance is compared with single-image
superresolution methods and its advantages are highlighted.

Index Terms— Stochastic texture enhancement, superresolu-
tion, self-similarity, fractional Brownian motion.

I. INTRODUCTION

S INGLE-IMAGE superresolution (SR) has attracted con-
siderable attention in recent years [1]–[10]. This is a chal-

lenging task, since the original image needs to be recovered
using only the degraded and subsampled image. Traditional
image enhancement approaches for denoising and deblur-
ring perform contour emphasis and result in sharper images.
Consequently, these approaches often yield an unnatural
cartoon-like image, compromising on the quality of some
textures. In some cases, textures are even eliminated by these
approaches. This compromise in image fidelity highlights the
observation that textures are an important ingredient of image
structure, that must be considered in the context of image
enhancement tasks.

A. Enhancement Techniques

Image enhancement algorithms, used in deblurring and
denoising methods, generally attempt to solve the following
inverse problem [11]:

X̂ = arg min
X∈X

‖X ∗ h − Y‖2
2 + λg(X), (I.1)
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for a degraded image, Y ∈ X , where X ⊆ R
N×N , X ∈ X

is a possible solution and h ∈ R
n×n is a blurring kernel.

The parameter λ is a Lagrange coefficient and g(X) is a
regularization function. Since h is usually a lowpass-type filter,
and the measurement is noisy, the problem is ill-posed, and a
regularization function is needed.

In Wiener filtering, or other linear methods, the regularizing
function, g(X), is a quadratic function of the image gradient.
In L1-based methods, such as total variation (TV), g(X) is the
L1 norm of the image gradient.

Partial differential equations (PDE)-based approaches gen-
erally use g(X) = G(|∇X |2). A gradient descent minimization
then yields the following scheme [11]:

Xt = −h̃ ∗ (X ∗ h − Y ) + λ∇(G′(|∇X |2)∇X), (I.2)

where h̃(η1, η2) = h(−η1,−η2) and G′(|∇X |2) is the dif-
fusivity or edge detection function. This function is chosen
so that high gradients are preserved and low gradients are
smoothed.

When these methods are applied to images that are com-
prised of stochastic textures, they do not yield the desired
results. This is due to the common assumption that low gradi-
ent areas in an image are originated by noise or optimization
artifacts (such as ringing or aliasing) and not by a valuable
texture. This, in turn, is due to the assumption that images
reside in a bounded variation (BV) space, which often lends
itself to the wrong choice of the regularization function. The
BV assumption has been challenged in recent years [12] and
deblurring schemes, developed under more suitable spaces,
have yielded more successful results [13].

B. Texture Representation and Enhancement

Some of the aforementioned methods can be adopted for
texture preservation. In [14], a potential function has been
incorporated into the diffusion equation which effectively
prevents smoothing of specific texture details in an image.
In sparseness-based approaches (not discussed in this work; for
a review see [15]), a separate dictionary is used for handling
textures.

Textures, in general, can be divided into two main types:
Regular, or structured, and stochastic [16], [17]. One can
define the former as spatially-replicated instances of a single
or several repetitive patterns. An example of a regular texture
is a brick wall. To compare with, stochastic textures do not
contain a specific pattern. Instead, they are considered to be
realizations of random processes. This type of textures cannot
be modelled in a similar manner to regular textures. It is
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important to note that this division is by no means a dichotomy,
as natural textures depict the entire range between regular and
stochastic. The texture spectrum, as defined in [16], contains
textures in varying complexity and regularity.

As the two types of textures are visually and conceptually
different, different techniques are used in order to enhance
them. Most of the effort in texture enhancement has been
devoted, even inadvertently, to the regular textures. Regular
textures contain replicated versions of a single or a few basic
patterns, in varying amounts of distortion. One can, therefore,
use enhancement methods based on a search for similar
shapes, in higher resolution, within the same image [9] and/or
in other images bearing some similarity to the target image [1].

Numerous methods, that are applied primarily to images
containing cartoon-type skeletons but also on textures, are
based on a machine learning approach. These methods attempt
to build up and exploit a database of natural images and/or
textures. This database is then used for training with sets of
low and high resolution image patches, and the final image is
then obtained by predicting the high resolution patch according
to the training database [18]. It is important to note that regular
textures still obey, in general, the model of bounded variation,
and can therefore be enhanced using known approaches.

C. Stochastic Textures

Unlike regular textures, stochastic textures are not character-
ized by repetitive patterns. They are, instead, defined by their
statistical properties. This type of textures exhibits statistical
properties such as non-local [19], long-range dependencies
and self-similarity, as their pixel distribution remains the
same across scales, up to a scaling parameter [20]–[23].
Enhancement of such textures can hardly be achieved by using
example-based methods that have been demonstrated to be
successful on regular textures, as the stochastic textures do not
contain basic patterns but are rather governed by the statistical
properties of a latent random process.

Sparseness-based or Gaussian mixture model-based
approaches perform enhancements locally (on patches) [24].
In the former, the resulting dictionary usually appears to be
similar to Fourier, discrete cosine transform or overcomplete
Wavelet bases, with discontinuities that match edges in
images as well. These models assume that an image can
be modelled locally, whereas in stochastic textures, there is
an advantage to a long-range dependence or global model,
exploiting correlations between as many pixels as possible.

Extensive work has been done deriving a model for natural
images [25], [26]. These studies have substantiated the notion
that the distribution of natural images is highly kurtotic and
non-Gaussian. This can be seen in the Wavelet domain by
observing the first- and second-order empirical distributions
of their coefficients. However, for stochastic textures, the
Gaussian assumption is indeed relevant, a behaviour that had
been overlooked by considering an ensemble of a numerous
natural images, where the least of which are distinctly sto-
chastic textures.

While regular textures can be enhanced by using methods of
edge enhancement (considering, for example, the enhancement

of the edges of a brick in a brick wall texture), in the
stochastic case such edges do not exist. Attempting to apply
edge enhancement to such a texture, may, in some cases, create
a staircasing effect, while smoothing out the fine details in the
neighborhood of the newly-created edge.

A different approach for regular and stochastic texture
enhancement is the texture synthesis, in which a sample-
patch is used in order to create a newly formed image of
larger size and the same visual appearance as the original
[16], [17], [27]. While such methods show successful results
in visual resemblance to the original, they are less effective
in deconvolution problems such as superresolution, in which
a high resolution estimate has to represent the input low
resolution image. Further, such synthesis, based on local
dependencies, may fail to capture the global statistical struc-
ture of the texture, in case of stochastic textures.

There also exist methods which combine example-based
techniques with texture synthesis. In [9], the example database
is built from the degraded image itself, and similar patches in
a search window are used for texture synthesis. While the
former reconstructs edges and corners, the latter reconstructs
textural details.

We present a model for stochastic textures. This model
is based on fractional Brownian motion (fBm); a Gaussian
random process which exhibits properties that characterize
stochastic textures [21]. This process is used to regenerate the
lost high frequency content based on the structure of a given
degraded image. Realizations of the model are displayed, and
an optimization scheme is derived and applied to single-image
superresolution.

The basic model is suitable for isotropic textures. In order to
be suitable for a broader class of textures, tensorial PDE-based
regularization [28] is incorporated into Eq. (I.2) to yield:

Xt = −h̃ ∗ (X ∗ h − Y ) + λ∇(D(∇X)∇X), (I.3)

where D(∇X) denotes the tensor diffusivity.
We have previously reported [29] of an algorithm which

performs fBm-based deblurring. In this work we substantiate
the results and use the principles of the fBm to yield an image
model and a true superresolution algorithm.

II. PROBLEM STATEMENT

The following form of the superresolution problem is
considered: A high-resolution (HR) image is degraded by
a blurring filter, representing, for example, the PSF of an
optical sensor. It is subsequently subsampled. Noise is then
additively mixed with the blurred and subsampled image to
create the available low-resolution (LR) image. Let X (η1, η2)
and Y (η1, η2) denote the original (HR) image and observed
(LR) noisy image, respectively. The imaging model can be
represented as follows:

Y (η1, η2) = D ((X ∗ b)(η1, η2)) + N(η1, η2), (II.1)

where D is the subsampling operator, b(η1, η2) is a nonin-
vertible blur kernel and N(η1, η2) is an independent additive
white Gaussian noise. In the case of SR, we assume that
the noise has low variance, unlike denoising problems where
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Fig. 1. Applying deblurring algorithms on blurred and decimated images: (a) The original image. (b) and (c) Blurred and BM3D-deblurrred image
respectively [33]; (d) and (e) Blurred and subsampled image and BM3D-deblurrred image, respectively.

the noise is substantial. The blur kernel is assumed to have
limited spatial support, and therefore the decimation operator
introduces aliasing.

The superresolution (SR) problem is severely ill-posed due
to the decimation operator. For this reason, the effect of
decimation is often ignored in SR studies. The single-frame
SR problem is a special case of the classical multi-frame
SR problem [30]–[32]. In the latter, several degraded images
are available, each containing unique details of the single
original image, acquired by sub-pixel shifts. A high-resolution
reconstruction is obtained in this case by recovering comple-
mentary information from all the measurements.

In contrast, in single-frame SR, known in the literature also
as upscaling, only a single measurement is available. The
single-frame SR problem can be formally stated as follows:

X̂(η1, η2)=arg min
X∈X

‖Y (η1, η2)−D ((X ∗ b)(η1, η2)) ‖2.

(II.2)

The SR image, X̂(η1, η2), thus obtained is the best one in that
it yields the smallest L2 error relative to the original image
(ground truth). The SR problem appears, at first look, to be
equivalent to a deconvolution problem, in which a SR image,
X̂(η1, η2), is to be recovered from the blurred and noisy image,
Y (η1, η2). It is important to emphasize that this is by no means
the case. In the case of SR, the decimation operator introduces
aliasing artifacts due to the loss of details in the subsampling.

Deblurring algorithms are not effective in the case of SR
of textures. For example (Fig. 1), while BM3D-deblurring
[33] performs deblurring successfully on blurred images, when
decimation is introduced the results deteriorate. This is empha-
sized in the case of textures.

There are studies that first solve the deblurring problem, and
then apply interpolation to “inverse” the effect of the decima-
tion operator. This approach is applicable only when the blur
filter acts as an anti-aliasing filter. Blur filters considered in the
present study, and in SR problems in general, have, however, a
small spatial support, and cannot be considered as anti-aliasing
filters. Therefore, our emphasis is on the model for images,
based on which, the missing data can be reconstructed, to yield
a high fidelity estimate of the original image.

III. FRACTIONAL BROWNIAN MOTION

The fractional Brownian motion (fBm)-a Gaussian random
process-was introduced by Mandelbrot and Van Ness as a
model suitable for natural images [21]. The fBm generalizes

the well-known Brownian motion in that the increments are
stationary but not independent. It is defined, in one dimension,
as a Gaussian process with zero mean and the following
autocorrelation function:

E [BH (t)BH (s)] = σ 2

2

(
|t|2H + |s|2H − |t − s|2H

)
, (III.1)

where

σ 2 = σ 2
W

2

cos(π H )

π H
�(1 − 2H ), (III.2)

σ 2
W is a known variance, and the Hurst parameter, H ∈ (0, 1),

controls the regularity of the process. This is a non-stationary
process with stationary increments - a property to be exploited
later in efficient synthesis. The first sample is usually set to
zero, B(0) = 0, further indicating that it cannot be stationary
(unless it is zero everywhere). For Hurst parameter values
of H ∈ (

0, 1
2

)
, this process exhibits negative correlation

between samples (anti-persistence), and for H ∈ ( 1
2 , 1

)
,

it exhibits positive correlation and long range dependencies.
A special case is H = 1

2 , for which this process becomes
the well-known Brownian motion, or Wiener process. This
process exhibits two important properties, known to charac-
terize natural images, in the context of Mandelbrot’s work on
fractals [21]. The first one is long-range dependencies between
samples, where for H > 0.5 the sum of the correlations of
the increments diverges. The second property of the fBm,
which is exploited in this study, is the statistical self-similarity,
defined as:

BH (at)
d= |a|H BH (t), (III.3)

for a positive number a, where the superscript d stands
for equality in distribution. This equality indicates that the
sample distribution across different scales is varied only by a
constant depending on the scale, a, and the Hurst parameter.
These two properties highlight the relevance of this process to
natural textures, as the latter often exhibit similarities between
adjacent as well as distant pixels [23].

A. Synthesis in Two Dimensions

Since the fBm process is a Gaussian process with known
covariance function, one can explicitly synthesize a realization
in the discrete domain [34]. Recall the following covariance
property for multivariate random variables:

cov(L Z) = L�Z LT, (III.4)
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where Z is a random vector with autocorrelation matrix �Z ,
and L is a matrix. In order to synthesize the fBm in this
manner, one needs to first build the autocorrelation matrix
according to Eq. (III.1). Then, the Cholesky decomposition is
used to obtain a matrix, L, such that M = L LT , where M is
the fBm autocorrelation matrix. This decomposition is possible
since it is positive-definite. Then, upon multiplying the lower-
triangular matrix L by a multivariate random vector Z with a
unity covariance matrix, the covariance of the resulting vector
B = L Z fits fBm.

This simple algorithm can be extended to two dimensions,
by representing (stacking) a 2D image as a vector and con-
structing the autocorrelation matrix with the respective 2D
dependencies. At this stage it is also worth to note that this
process is isotropic in the statistical sense. Let p = (x1, y1)

T

and q = (x2, y2)
T be two points. Then, the autocorrelation of

the fBm in 2D is defined as follows:

E [BH (p)BH (q)]= σ 2

2

(
‖p‖2H +‖q‖2H −‖p−q‖2H

)
.

(III.5)

Let M be a rotation matrix, indicating |M| = 1 and
M−1 = MT . It is straightforward to check that for an
arbitrary point l = (x0, y0)

T , ‖Ml‖ = ‖l‖ and therefore
E[BH (Mp)BH (Mq)] = E[BH (p)BH (q)]. This indicates the
autocorrelation is invariant under rotations and the process is
isotropic.

While the aforementioned method can produce the exact
2D fBm process, it is very inefficient. This is due to the
dimensional requirement of the covariance matrix, which
dictates a size of N2 × N2 for an image size of N × N and
time complexity of O(N6) due to the Cholesky decomposition.
The space and time complexity render this method to become
impractical even in application to moderately-sized images.

It is possible, however, to use more efficient methods
of synthesizing nearly-exact realizations of the 2D fBm.
We adopt the method proposed by Kaplan and Kuo [35], which
implements Fourier synthesis, and yields accurate realizations
with time complexity of O(N2log2(N)) and space complexity
of O(N2).

This method utilizes the stationary increments of the fBm
and builds the realization by first calculating the autocorre-
lations of the increments in the x , y, and (x, y) directions,
synthesizing the increments in the frequency domain, and then
summing them to produce the final result. Two realizations of
the 2D fBm process, for two typical values of H , are displayed
in Fig. 2. A low value of H is better fitted to high-frequency
content relevant to stochastic textures.

B. Synthesis of Non-Stationary Fields With
Stationary Increments

The fBm can be considered as a special case of a family of
non-stationary processes with stationary increments. As such,
it is a simple case, as it is statistically isotropic and is being
governed by a single parameter, H . In [36], the 2D fBm
synthesis algorithm of Kaplan and Kuo is generalized for any
such field. The synthesized fields are derived with reference
to an initial white noise image, W (η1, η2), and a structure

Fig. 2. 2D fBm realization for two values of H : (a) A value of H = 0.1,
depicting negative correlation between adjacent pixels. (b) A value of
H = 0.6, depicting high correlation between adjacent pixels.

function, φ(η1, η2), which defines the autocorrelation of the
fBm, F(η1, η2), by the following equation:

E[F(η1, η2)F(η′
1, η

′
2)] = −E[F(0, 0)2] + 1

2
(φ(η1, η2)

+ φ(η′
1, η

′
2)−φ(η1 − η′

1, η2 − η′
2)),

(III.6)

where F(0, 0) is set to zero for the synthesis process. This
structure function defines the autocorrelation of the increments
of the desired field. For the fBm case, we obtain:

φ(x, y) = C(x2 + y2)H , H ∈ (0, 1), (III.7)

for a suitable normalizing constant, C , and a proper Hurst
parameter, H . In this manner, anisotropic fBm fields can be
synthesized by choosing a different structure function - one
that depends on more than a single Hurst parameter. For the
exact synthesis algorithm, as well as other limitations of the
structure function, see [36]. We take it one step further and
propose an adaptive structure function to be used in image
enhancement of textured images.

C. Remarks

We assume that the details missing in degraded textures
had, originally, dependencies similar to those characteristic
of an fBm. Therefore, using a single realization of a proper
fBm as an initial image, we should be able to restore missing
high-resolution details by fitting such a realization onto a
degraded image. Since we are interested in high frequencies,
the common values for the Hurst parameter should be in the
range

(
0, 1

2

)
.

IV. PHASE OF THE FREQUENCY RESPONSE

The importance of phase, and of “local phase”, in signal
and image processing is well-established [37], [38]. It has
been shown that for natural images, the important information
of the image is, in fact, stored in the phase rather than in
the magnitude of the frequency domain representation of the
image [38], [39]. The magnitude contains information about
the frequencies present in the image, which are common to a
large class of natural images. The phase contains information
about the spatial relationship of these frequencies in a specific
image. Let X (η1, η2) and Y (η1, η2) be two images with
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Fig. 3. Artificial texture, generated by means of the model outlined in section V, with a natural texture image as XL P (η1, η2). (a) Low-pass image,
XL P (η1, η2), generated by blur and subsampling of a real image. (b) 2D fBm image, with Hurst parameter, H = 0.1. (c) X H P (η1, η2), the 2D fBm image
obtained after phase matching for XL P (η1, η2). (d) The artificial texture image, X (η1, η2). (e) The original image used for generating XL P (η1, η2), for
comparison. Note the similar details obtained in this image and the one in which the fBm model has been applied.

respective Fourier transforms X̃(η̃1, η̃2) and Ỹ (η̃1, η̃2). The
Fourier transform, M̃(η̃1, η̃2), of a signal, M(η1, η2), can be
decomposed into magnitude and phase components:

M̃(η̃1, η̃2) = |M̃(η̃1, η̃2)| exp
(

j · � M̃(η̃1, η̃2)
)
. (IV.1)

In this manner, one can define a frequency representation of

an image, ˆ̃Y (η̃1, η̃2), by using the absolute value of Ỹ (η̃1, η̃2)
and the phase of X̃(η̃1, η̃2).

The resulting image, Ŷ (η1, η2), obtained by the inverse

Fourier transform of ˆ̃Y (η̃1, η̃2), will contain the frequency
components present in Y (η1, η2), but the phase, and therefore
the spatial shifts, will be according to X (η1, η2).

This simple property enables us to exploit a synthetic 2D
fBm image for our purposes. The synthetic fBm is inherently
random, as it is generated by an iid Multivariate normal matrix.
However, by using the phase matching technique described
above, one can benefit from the frequency spectrum character-
istic of a 2D fBm image, while fitting the phase relationships
of a specific image. We thereby effectively exploit the fBm
correlations while imposing minor dependence on the initial
white noise.

V. A MODEL FOR SELF-SIMILAR TEXTURES

We now present a model for self-similar textures. This
model is based on the high frequencies of the 2D fBm process
and fits a variety of images corresponding to the fBm statistics.
The model can be used to generate such textures as well as be
used for image enhancement tasks, such as superresolution or
denoising (although denoising is not covered by this study).

The model is defined as follows. Let X L P(η1, η2) be a low
frequency image. This image can be generated using fBm
models, autoregressive-moving-average models, or be based
upon a natural image. Let X H P (η1, η2) be a high-frequency
image, obtained as follows:

X H P (η1, η2) = PH,W (η1,η2) (X L P( η1, η2)), (V.1)

where PH,W (η1,η2) is an operator performing phase matching,
as described earlier, for a 2D-fBm image generated according
to the Hurst parameter, H , from the white noise image,
W (η1, η2). The value of H will typically be low, H ≤ 0.5,
to generate high frequencies. The texture image, X (η1, η2),

is then constructed from the superposition of both images as
follows:

X (η1, η2)= X L P (η1, η2)+(X H P ∗h H P )(η1, η2)+V (η1, η2),

(V.2)

where h H P (η1, η2) is a high-pass filter and V (η1, η2) is
residual noise compensating for model inaccuracies.

We note that an fBm image can be derived as a special case
of this model, since X L P(η1, η2) can be the lowpass version of
the fBm generated by PH,W (η1,η2). Obviously, natural image
textures cannot be represented by this model without error.
It is straightforward to check that given an image, I (η1, η2),
the energy content of the error, V (η1, η2), will reside in the
high-frequency range. Therefore, in order to assess the model
in natural images, we have to consider the error in the high-
frequency range.

While a naïve measure norm, such as L2 norm, may be
suggested for the evaluation of this error, we do not use it.
This is due to the well-known shortcomings associated with
L2-based comparisons [40], which are especially emphasized
in the case of stochastic textures. Instead, and lacking a better
method, the results will be inspected both visually and by
means of image statistics such as the histogram.

An example of the model is depicted in Fig. 3. X L P(η1, η2)
[Fig. 3(a)] is generated by blur and subsampling of a real
image texture. While the resulting image [Fig. 3(d)] is not
identical to the original image [Fig. 3(e)], the high frequencies
are visually similar. This encourages us to use this model in
our texture superresolution algorithm.

Fig. 4 depicts two typical images, one suitable for the
proposed model and the other one is not. In the first row
we have a stochastic texture. Two high-passed versions are
shown; Fig. 4(b) is the high-pass of the original texture
(IH P (η1, η2)), and Fig. 4(d) is the high-pass of the texture
according to the proposed model, X I (η1, η2). These two high-
pass images are then compared by their histograms [Fig. 4(e)].
We observe that the high-pass versions are both visually
similar, and have similar histograms. Additionally, we observe
that the histogram is of a Gaussian shape. We show in [41]
that a necessary condition for an fBm image is to have a
Gaussian-shaped 1D histogram, in the limit, as H → 0 and
N → ∞. Despite this being only a necessary condition,
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Fig. 4. Comparison of two natural textures, one suitable and one unsuitable for the model described in section V. (a) and (f) Original images of natural
textures. (c) and (h) 2D fBm versions of the respective images. (b) and (g) High-pass versions of the original images, respectively. (d) and (i) High-pass
versions of the 2D fBm images, respectively. (e) and (j) Histograms of the two high passed versions respectively. The high-pass version histogram of the
original images is highlighted in red-dashed, and the histogram of the high pass versions of the 2D fBm is highlighted in blue.

we are encouraged to seek further indications of the relevance
of this model to textured images. We further substantiate in
the next subsection in the form of 2D histogram.

In contrast with the texture of Fig. 4(a), Fig. 4(f) depicts
a regular (structured) texture, and its high-pass versions is
shown in Fig. 4(g). In this case, the two histograms [Fig. 4(j)]
are distinctly different. We conclude that the model can not
faithfully represent regular textures. This is due to the fact that
the fBm cannot represent such images.

A. 2D Histograms

The 1D histogram provides an empirical estimate for image
first order distribution. Consequently, it constitutes many-to-
one mapping that is not sufficient for a suitable assessment
of the model. We therefore present a second indicator, in the
form of 2D histograms of adjacent pixels in an image, in the
x , y and diagonal orientations. The latter provides an estimate
of the image second order distribution. The 2D histogram of
an image X (η1, η2) with 2D bins

{
Sl1,l2

}
l1,l2

is defined as
follows:

H (i, j) = 1

N

∑
(p1,p2)∈Q

1(X (p1),X (p2))∈Si, j , (V.3)

where the set Q contains the locations of all adjacent pixels
in X (η1, η2), pi = (ηi

1, η
i
2) is a pixel location, and N = |Q|.

This is a discrete surface with two coordinates, representing
the two gray levels of adjacent pixels, denoted by l1 and l2.

For smooth images, it is expected that |l1 − l2| < ε for a
small ε. Most of the energy of the histogram resides close to
the line l1 = l2. This is the case in the presence of edges as
well, due to the relatively low number of edge pixel pairs with
respect to smooth pixel pairs in natural images.

In the case of stochastic textures, suitable for the fBm
model, adjacent pixels exhibit negative correlation. It is there-
fore expected that |l1−l2| will be large. For isotropic stochastic

textures, the histogram shape is expected to approximate a
2D normal distribution, whereas for anisotropic stochastic
textures, negative correlation is still exhibited, but the
histogram shape deviates from the normal distribution.

Fig. 5 depicts three examples of characteristic images
concerned with the proposed model, along with their 2D
histograms and cross-cuts along the main and secondary
diagonals. The first image [Fig. 5(a)] is clearly a non-stochastic
texture. In this and other structured natural images, there is
significant correlation between adjacent pixels as they are
mostly smooth. Therefore, the energy of the 2D histogram
is concentrated near the diagonal, l1 = l2. The cross-cut graph
shows a non-Gaussian behaviour.

The second image [Fig. 5(b)] is of a stochastic texture, well
fitting the proposed fBm model. In this case, we distinctly
see a 2D normal distribution. The third image [Fig. 5(c)] is
of a stochastic texture, which does not fit the model in its
current form. For this type of anisotropic textures we propose
a regularization that takes care of the anisotropy in the context
of SR.

Anisotropic stochastic textures, while being similar to
isotropic in large scales, are composed of small oriented
shapes, which are anisotropic and do not exhibit self-similarity
in arbitrarily small scales. The characteristic 2D histogram of
such textures deviates from a 2D multivariate normal, but it
is still sufficiently close enough to the Gaussian.

In Wavelet-based analysis of coefficients in adjacent scales
or orientations, similar to what was done in [25], the same
properties can be observed, indicating that stochastic textures
indeed obey a Gaussian distribution.

VI. SUPERRESOLUTION ALGORITHM

A. Anisotropic Diffusion

A brief review of the anisotropic diffusion that will
suffice for our application is provided. For a comprehensive
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Fig. 5. 2D histograms of three characteristic textures: Original images (first row), 2D histograms (second row) and cross-cuts of the main and secondary
diagonals of the histograms (third row), depicted in blue and black-dashed, respectively. (a) Non-stochastic texture: The 2D histogram data are clustered
co-linearly along the line l1 = l2 , due to the high correlation between adjacent pixels, and the cross-cuts show non-Gaussian behaviour. (b) Stochastic texture,
suitable for the fBm model: The 2D histogram depicts a shape of a normal distribution, also apparent in the cross-cuts. (c) Anisotropic stochastic texture,
which does not fit the current model: In this case, one obtains a non-Gaussian distribution. In both the histogram and the cross-cuts it is apparent that the
shape is close to a Gaussian.

exposition see, for example, [28], [42]. Using PDE-based
methods allows for adaptive filtering of an image, with low
computational complexity. The following PDE equation suit-
able for image processing was introduced in this context by
Perona and Malik [43]:

It = ∇ · (g(∇ I )∇ I ), (VI.1)

with the initial condition I |t=0 = I0, the diffusivity g(s) being
a decreasing function with the following properties: g(0) = 1,
g(s) ≥ 0 and g(s) → 0 as s → ∞. The diffusivity function
is, in general, designed for the adaptive processing of images
to allow high diffusion in low gradient areas, assumed to be
noisy, and low diffusion in high gradient areas, indicating the
presence of edges that should not be compromised.

Many choices have been suggested for this function. Perona
and Malik (PM) proposed g(s) = e−(s/K )2

and g(s) =
1

1+( s
K )2 , which are commonly used with a suitable constant, K .

Also useful is the TV-based diffusivity, using the L1 norm:
g(s) = 1

|s| , or the regularized version, g(s) = 1√
ε2+s2

.

Gilboa et al. have even extended it to the negative regime [42].
This diffusion, although commonly referred to anisotropic,

is in fact non-linear but isotropic. This has been noted by
Weickert, who introduced a truly anisotropic diffusion process,

commonly referred to as tensor diffusion:

It = ∇ · (D(∇ I )∇ I ), (VI.2)

where D ∈ R
2×2 is a tensor that is represented, using an

eigenvalue decomposition, as follows:

D = (ω1, ω2)

(
λ1 0
0 λ2

) (
ω1
ω2

)
, (VI.3)

where ω1 and ω2 are eigenvectors which satisfy:

ω1 ‖ ∇ I, ω2 ⊥ ∇ I, (VI.4)

and λ1 and λ2 are the corresponding eigenvalues. This formu-
lation allows for different types of diffusion to be performed
in different orientations within the image. In edge enhancing
diffusion, for instance, only the diffusion coefficient perpen-
dicular to the edge orientation will assume a significant value.
This method further emphasizes edges while smoothing noisy
image areas. Instead of a single diffusivity function, g(x), two
functions are used - one for each eigenvalue.

B. Texture-Based Tensor Diffusion

The tensor, D, is a function of the gradient of the image, ∇ I .
Due to the fact that textures contain small oriented elements,
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the tensor diffusion is a natural choice for their enhancement.
However, commonly used tensor diffusion schemes do not
yield a successful enhancement of textures; while the edges
are emphasized, the high frequency components of textural
details are lost. This is due to their spectral resemblance of
noise. Further, when attempting to enhance a blurred image,
much of the high frequency details are in effect non-existing
to begin with.

This has encouraged us to consider a different function,
instead of ∇ I , for the calculation of the tensor. This function
is required to represent the desired properties of the texture,
while still resembling the shape of the texture itself.

One cannot expect to represent a natural texture using
a single parameter, H . As discussed in section III-B, it is
possible to consider a structure function, φ(η1, η2), to create a
non-stationary field which better represents the desired image.
Instead of using a general function, we use a structure function
generated from the degraded image itself. This yields an image
which contains the details of the degraded image, along with
correlations introduced according to the specific structure of
the non-stationary field. We refer to the structure function
derived from the degraded image as the empirical structure
function (ESF).

The method to recover the ESF from a given, degraded,
image is based on an inverse procedure to the method of
obtaining the image from the structure function, devised
in [36]. Let Y (η1, η2) be a degraded image. The increments
in the x = η1 and y = η2 orientations are defined as:

Y�η1(η1, η2) = Y (η1, η2) − Y (η1 − �η1, η2),

Y�η2(η1, η2) = Y (η1, η2) − Y (η1, η2 − �η2), (VI.5)

respectively, where �η1 and �η2 are small increments set to
1 in discrete schemes. The increments in the (x, y) = (η1, η2)
coordinates are defined as:

Y�η1,�η2(η1, η2)=Y (η1, η2)−Y (η1−�η1, η2)

− Y (η1, η2−�η1)+Y (η1−�η1, η2−�η2). (VI.6)

Let Rη1(η1, η2), Rη2(η1, η2) and Rη1,η2(η1, η2) be the
autocorrelation functions of the increments Y�η1 , Y�η2 and
Y�η1,�η2 , respectively. The autocorrelation functions for the
1D increments, Rη1(η1, η2) and Rη2(η1, η2), are derived from
the structure function, φ(η1, η2), as follows:

Rη1(η1, η2) = 1

2
(φ(η1 + �η1, η2) + φ(η1 − �η1, η2)

− 2φ(η1, η2)),

Rη2(η1, η2) = 1

2
(φ(η1, η2 + �η2) + φ(η1, η2 − �η2)

− 2φ(η1, η2)), (VI.7)

and the autocorrelation for the 2D increments, Rη1,η2(η1, η2),
is accordingly derived as:

Rη1,η2(η1, η2) = 2Rη1(η1, η2) + 2Rη2(η1, η2) (VI.8)

− 1

2
(φ(η1 + �η1, η2 + �η2)

+ φ(η1 − �η1, η2 + �η2) + φ(η1 + �η1, η2 − �η2)

+ φ(η1 − �η1, η2 − �η2)). (VI.9)

To obtain the empirical structure function, it is there-
fore required to invert the equations, and produce φ(η1, η2),
given the increment autocorrelation functions of Y (η1, η2).
Substituting �η1 = �η2 = 1 in Eq. (VI.7), it follows that
the 1D autocorrelation functions can be represented using
convolution equations with derivative filters:

Rη1(η1, η2) = (φ ∗ fd )(η1, η2),
Rη2(η1, η2) = (φ ∗ f T

d )(η1, η2), (VI.10)

where fd = 1
2 (1,−2, 1). The 2D autocorrelation can be

represented in a similar manner, using the following equation:

Rη1,η2(η1, η2) = (φ ∗ fd2)(η1, η2), (VI.11)

where

fd2 = 1

2

⎛
⎝

−1 2 −1
2 −4 2

−1 2 −1

⎞
⎠. (VI.12)

Obtaining the ESF from the degraded image, is there-
fore reduced to solving Eqs. (VI.10) and (VI.11). This can
be formulated as the following least-squares (LS) problem
(Appendix A):

φ = arg min
x

‖D f x − r‖2
2, (VI.13)

where φ is the column-stack representation of the ESF,
φ(η1, η2), D f in a suitable matrix representation of fd

and fd2, and r is a suitable column-stack representation of
Rx(η1, η2), Ry(η1, η2) and Rx,y(η1, η2). This is an ill-posed
problem, due to rank deficiency of the derivative matrix, D f .
It is similar to problems encountered in gradient domain
processing. This poses a challenge to a least-squares procedure
and we currently do not employ regularization techniques,
although these may be relevant in further studies. Additionally,
unlike problems in which the vector, φ, needs to be recovered
exactly, in this case only the derivatives (in the manner of
the derivative filters, fd and fd2) of the ESF are required. The
derivation of these matrices and vectors is addressed in further
details in Appendix A.

An example is presented in Fig. 6, where two sets of images
are shown. The first [Fig. 6(a) and (b)] contains a 2D fBm
image, with H = 0.1, and the restored image. The latter is
derived by extracting the ESF from the 2D fBm image by
the process described earlier, and then reconstructing the field
by the algorithm presented in [36]. Due to the ill-posedness of
the LS problem, the two images do not look alike. The second
set [Fig. 6(c) and (d)] depicts the respective images obtained
from the first set, after a high-pass filtering was performed
by subtracting the result from a Gaussian lowpass filter with
σ = 15. Since only the high frequency range is lost by
degradation, this range is of more importance. Indeed, the high
pass versions of Fig. 6(a) and (b), depicted in Fig. 6(c) and (d)
appear to be visually similar.

Using the ESF, it is possible to obtain an image, Yφ(η1, η2),
from the degraded image, Y (η1, η2), by calculating the auto-
correlation of the first- and second-order increments, solving
the LS problem in Eq. (VI.13) to obtain a structure function
φ(η1, η2), and using the synthesis algorithm in [36]. The
resulting image is referred to as the empirical image.
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Fig. 6. Comparison of 2D fBm using the empirical structure function
(ESF). (a): Original 2D fBm image. (b) Restored 2D fBm image, using ESF
derived from (a). High pass versions of (a) and (b) are shown in (c) and (d),
respectively.

C. Tensor Diffusion

We now consider the modifications required to enable the
tensor diffusion to perform superresolution on natural textures.
The tensor, D(∇ I ), introduced earlier, is set instead to be
D(∇(It + αYφ(η1, η2))), where Yφ(η1, η2) is the empirical
image, and α is a weight parameter. This allows for the
introduction of missing texture details, while still emphasizing
the edges of a degraded texture image.

The superresolution algorithm is presented by considering
the following energy functional, in column-stacked image
representation:

E(X,∇X) =
∫



(B X − Y )2 + (X̂ H P − HH P X)2

+ β�(|∇X + α∇Yφ |2)dxdy, (VI.14)

where X is the SR image, Y is the degraded image, and B
is a matrix performing blur and decimation. The second term
penalizes deviations of the solution, X , from the fBm model
of the image (discussed in section V), given by X̂ . This is
derived as follows:

‖X − X̂‖2 = ‖X L P + X H P − X̂ L P − X̂ H P‖2

∼= ‖X H P − X̂ H P‖2

= ‖HH P X − X̂ H P‖2, (VI.15)

where HH P is a Gaussian high-pass filter described ear-
lier, and X̂ H P is the high-frequency component, given by
X̂ H P = PH,W (X̂ L P). X L P and X̂ L P are assumed to be
sufficiently close so that their difference is approximately zero.
This is a valid assumption, as the imaging model does not
degrade the low frequencies.

The solution for this equation satisfies the following
Euler-Lagrange equation:

BT (B X − Y ) − β∇ · (� ′(|∇(X + αYφ)|2)∇X)

−2αβ∇ · (� ′(|∇(X + αYφ)|2)∇Yφ) = 0. (VI.16)

This derivation is further addressed in Appendix B. A gradient
descent scheme for the minimization of the energy functional,

and the introduction of the tensor diffusion, D(∇(X + Yφ)),
instead of the scalar diffusivity, �(|∇(X + Yφ)|2), yield the
following diffusion-reaction process:

Xt = −2BT (B X − Y ) + 2H T
H P(X̂ H P − HH P X)

+β∇ · (D(∇(X + αYφ))∇X)

+2αβ∇ · (D(∇(X + αYφ))∇Yφ). (VI.17)

This equation differs from the usual deblurring tensor diffusion
with regard to the following.

1) As previously discussed, the tensor, D, is a function of
two images. Based on this formulation, an extra facet
emerges in the optimization.

2) The estimated high-frequency image, X H P , is added, in
order to recover the missing details.

These two arguments work in tandem; details are recovered
by the texture model, and are diffused according to the
correlations emerging from the empirical image in order to
fit the current image. We show in [41] that both terms are
required for adequate texture restoration.

The eigenvalue parallel to the gradient, λ1, was set to a
regularized L1 scalar diffusivity function:

λ1(s) = 1√
ε2 + s2

, (VI.18)

and the perpendicular eigenvalue, λ2, was set to 0.01.

D. Remarks

1) The empirical image, Yφ(η1, η2), is initially derived
from the degraded image, Y (η1, η2). However, as the
diffusion advances and the image is refined, it is ben-
eficial to update Yφ(η1, η2) as well. Due to the time
consuming LS it entails, this is performed periodically
after several iterations of the diffusion process.

2) The parameters of this algorithm are H , α, β and the
number of diffusion iterations or stopping condition.
H is estimated based on the degraded image itself
(for more details see [41]). The other parameters have
fixed values for all images. The diffusion process is
completed when H (i), estimated in the i th iteration, is
equal to H .

3) The algorithm was implemented in MATLAB, using
an explicit scheme for the tensor diffusion [28]. The
empirical image was updated every 20 iterations. This
process entails solving a sparse LS problem, which is
more efficient than general LS. The average number
of iterations required for obtaining the images (to be
presented in Sec. VII, Fig. 7; the images size were
256 × 256 for the first two images and 128 × 128 for
the last two) was 245 and the average processing time
was 28.75 seconds. The same experiments, performed
for image size of 512 × 512 pixels, took on the aver-
age 98.7 seconds. Processing time can be reduced by
optimization of this code and by using more efficient
diffusion schemes than the explicit one.

4) Given a statistical model, one can use MAP or MMSE
estimation, with the fBm as a prior. However, neither
MAP nor MMSE produce good results in the case
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Fig. 7. Superresolution of textured images. The degraded images are obtained by 2 ↓ 1 subsampling in both axes after a Gaussian blur with σ = 1.5.
(a) Original (ground-truth) images. (b) Bicubic interpolation with overlay of the input LR image. (c) Sparseness-based SR result [5]. (d) Example-based SR
result [2]. (e) Proposed algorithm SR result.

of SR, due to the severe loss of details. This is a further
indication that an L2-based error criteria is not suitable
for textured images. In the case of denoising, however,
substantial improvement was noted, which renders this
type of optimization useful.

VII. RESULTS

The proposed algorithm is implemented and used on
stochastic textures. The decimation operator in Eq. (II.1)
performs ↓ 2 decimation in both dimensions, the blur kernel is
a Gaussian with σ = 1.5 and effective support of 5×5 pixels.
A small noise is added so that the BSNR is 40d B . The contrast
in all the examples is normalized after blurring. We present
several types of textures from the texture “spectrum” (Fig. 7):
isotropic stochastic (first row), near-regular (second row) and
anisotropic stochastic (third and fourth rows). We find the
latter the most challenging. The degraded versions of these
images suffer from loss of high-frequency textural details,

rather than edge and contour degradation. The results are
compared with bicubic interpolation, example-based SR [2]
and sparseness-based SR [5]. In all examples, the visual
structure of the image, enhanced by the proposed algorithm,
appears to resemble that of the original (ground-truth). While
the high frequency spectrum is not identical to the original,
the visually-appearing texture structure is restored.

A comparison of the performance of the proposed algo-
rithm with that of a state-of-the-art method, based on self-
similarity [1], is shown in Fig. 8. Similarly to the superior
performance of the proposed algorithm demonstrated in the
comparisons with other methods (Fig. 7), in this comparison
too the proposed algorithm yields better results.1

We do not rely on PSNR or on other L2-based comparisons
for the assessment of the algorithm’s performance. A high
PSNR value, in the range of 25d B and above, indicates

1Additional examples can be found at http://vision.technion.ac.il/demos/
texture-sr/pde-based
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Fig. 8. The proposed algorithm and an alternate method. (a) and (e): LR
image. (b) and (f): Self-similarity-based SR [1]. (c) and (g): fBm-PDE-based
SR (proposed algorithm). (d) and (h) the original image (ground truth).

it is also a valid comparison method. This is the case in
general images, containing sharp edges, but limited texture
data. In the case of fully-textured images, the PSNR values
are, however, significantly lower after degradation, and are
confined to the range of 5–20d B . While other comparison
methods, such as the structural similarity index (SSIM) [44],
have been suggested, there do not exist widely-accepted cri-
teria for performance evaluation, other than visual assessment
(geometrically-based natural metrics, potentially-suitable for
performance evaluation are under investigation) [40].

It is also important to note that in textured images, such as
the ones considered here, one needs to look for the highest
fidelity in comparison with the original image. This may be
in contradiction to desired properties in other images. Sharp
edges, for example, are desired in many applications, but
in this case, a sharp edge in the SR image may in fact be
undesired if the original image edges are not sharp.

The example-based SR results shown here depict the char-
acteristic behaviour of the example-based SR methods; while
emphasizing edges, improving on the result of the bicubic
interpolation, it does not successfully restore missing fine
details. This is apparent in all types of textures presented.

VIII. DISCUSSION

The theoretical framework and algorithms presented in this
study are concerned with superresolution of fully textured
images, wherein the texture incorporates both stochastic and
structured elements. The superresolution paradigm considered
here is the so-called single-image superresolution, where only
one image is available as an input. Considering first the
more challenging aspect of the granularity and non-stationarity
of structures often encountered in natural textures, a sto-
chastic texture model has been developed, based on fBm.
PDE-based regularization has been introduced in order to cap-
ture anisotropic texture details, and a diffusion-based single-
image superresolution scheme was derived.

As is the case in similar underdetermined problems, the
emphasis is on side information, inherent in the underlying
image model. The results obtained in our study, encourage
the use of global fBm-based model (rather than patch-based)

for natural textured images, as a method for reconstruction of
degraded textures.

The proposed model and concomitant algorithm are based
on the empirical observation that stochastic textures are char-
acterized by the property of self-similarity. An appropriate
random process is estimated with reference to the existing low-
resolution image. The initial restoration of missing details is
based on an arbitrary realization of an fBm image. One may,
therefore, expect different results for different evaluations.
However, due to the phase matching and optimization, results
for different random seeds yield almost identical results. In our
current study, we attempt to remove the formal dependency on
an initial arbitrary image, and obtain a model which depends
on the fBm statistics.

A comparison with state-of-the-art example-based, single-
image, superresolution algorithms highlights the main advan-
tage inherent in the proposed algorithm: It reconstructs
high frequency details that are otherwise missing, while the
example-based algorithms emphasize edges but do not restore
other, textural, missing details. On the other hand, as edges
exist in some more complex textured images, possibly con-
taining several types of textures, methods combining stochastic
texture enhancement with edge enhancement are under study
as well. This is performed by exploiting the Fourier phase of
an image [45], [46].

Whereas the fBm has been widely used as a model of
image structure, it is in fact most suitable for modelling natural
textures, as this study indicates, but it is not congruous with
image skeletal structures comprised of edges and contours.
Further research is nonetheless called for in an attempt to
expand the model to better model anisotropic textures as well,
and to minimize thereby the need for regularization. Such a
model may yield other enhancement algorithms suitable for a
broader class of stochastic textures.

Despite of the above goal, yet to be accomplished, the pro-
posed PDE-based regularization is interesting and important
on its own merits. As such, it has to be further investigated.
The empirical structure function is obtained via an ill-posed
scheme, and better solutions for this problem may result
in better understanding of textures and yield thereby better
enhancement results.

The proposed model has been exploited for solving the SR
problem. It can also be used for other image enhancement
problems, such as denoising or in-painting. This is a challenge
in the case of textures, due to the overlap in the frequency
range with that of the noise, and due to the lack of local,
small-scale, smoothness. It should be emphasized that existing
denoising algorithms usually succeed in restoring edges and
smooth segments, but not in the recovery of fine details.
Preliminary results show that the fBm, used as a prior in MAP
estimation, can effectively act as a regularizer which performs
denoising on fBm-based images.

APPENDIX A

THE ESF LS PROBLEM

The LS problem, Eq. (VI.13), can be considered as follows.
Let the filters fd and fd2, and the autocorrelation functions
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Rη1(η1, η2), Rη2(η1, η2) and Rη1,η2(η1, η2) be as presented in
subsection VI-B. The matrix, D f , in Eq. (VI.13) is derived by
three vertically-stacked matrices, as follows:

D f =
⎛
⎝

D f,η1

D f,η2

D f 2

⎞
⎠, (A.1)

where D f,η1 and D f,η2 are the matrix representation of the
filters fd and f T

d respectively, and D f 2 is the matrix repre-
sentation of the filter fd2. The matrices perform convolution
with symmetric boundaries.

In a respective manner, the vector r in Eq. (VI.13) is formed
as follows:

r =
⎛
⎝

rη1

rη2

rη1,η2

⎞
⎠, (A.2)

where rη1 , rη2 and rη1,η2 are the column-stacked versions
of the autocorrelation matrices Rη1(η1, η2), Rη2(η1, η2) and
Rη1,η2(η1, η2). The solution of the LS problem yields φ, a
column-stacked vector, which is then converted back to matrix
form in the size of the image.

APPENDIX B

DERIVATION OF THE DIFFUSION EQUATION

Let E(X,∇X) be defined as the energy functional presented
in Eq. (VI.14). The Euler-Lagrange equation for this functional
is given by

∂ E(X,∇X)

∂ X
−

2∑
i=1

∂

∂ηi

∂ E(X,∇X)

∂ Xηi

= 0. (B.1)

Let Er (X) denote the reaction, and Ed(∇X) denote the
diffusion term in E(X,∇X), defined as follows:

E(X,∇X) =
∫



Er (X) + Ed(∇X)dxdy,

Er (X) = (B X − Y )2 + (X̂ H P − HH P X)2,

Ed(∇X) = β�(|∇X + α∇Yφ |2). (B.2)

∂Er (X)
∂ X is derived as follows:

∂ Er (X)

∂ X
= 2BT (B X − Y ) − 2H T

H P(X̂ H P − HH P X)

= 2BT (B X − Y ) − 2H T
H P X̂ H P + 2H T

H P HH P X.

Since a Gaussian filter is used, H T
H P = HH P .

The inner derivative for the diffusion term of index i in the
second term of Eq. (B.1) is calculated as follows:

∂ Ed (∇X)

∂ Xηi

= β� ′ (∣∣∇X + α∇Yφ

∣∣2
) ∂

∂Xηi

(∣∣∇X + α∇Yφ

∣∣2
)

= 2β� ′ (∣∣∇X + α∇Yφ

∣∣2
) (∇X + α∇Yφ

)
.

Plugging this in the second term of Eq. (B.1) we thus obtain:

2∑
i=1

∂

∂ηi

∂ Ed (∇X)

∂ Xηi

= β∇ · (� ′(|∇X + α∇Yφ |2)∇X)

+ 2αβ∇ · (� ′(|∇X + α∇Yφ |2)∇Yφ).

The rest of the derivatives are zero. Finally, substituting the
derivatives of Er (X) and Ed(∇X) we obtain the diffusion-
reaction equation in Eq. (VI.16).

ACKNOWLEDGMENT

The comparison images in Fig. 8 were kindly provided by
Dr. D. Glasner [1].

REFERENCES

[1] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a sin-
gle image,” in Proc. IEEE 12th Int. Conf. Comput. Vis., Sep. 2009,
pp. 349–356.

[2] K. Kim and Y. Kwon, “Example-based learning for single-image
super-resolution,” in Proc. Pattern Recognition. Berlin, Germany:
Springer-Verlag, 2008, pp. 456–465.

[3] L. C. Pickup, S. J. Roberts, and A. Zisserman, “A sampled texture prior
for image super-resolution,” in Proc. Adv. Neural Inf. Process. Syst.,
2003, pp. 1587–1594.

[4] D. Datsenko and M. Elad, “Example-based single document image
super-resolution: A global map approach with outlier rejection,” Multi-
dimensional Syst. Signal Process., vol. 18, no. 2–3, pp. 103–121, 2007.

[5] J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution via
sparse representation,” IEEE Trans. Image Process., vol. 19, no. 11,
pp. 2861–2873, May 2010.

[6] K. I. Kim, and Y. Kwon, “Single-image super-resolution using sparse
regression and natural image prior,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 32, no. 6, pp. 1127–1133, Jun. 2010.

[7] B. Goldluecke and D. Cremers, “Superresolution texture maps for
multiview reconstruction,” in Proc. IEEE 12th Int. Conf. Comput. Vis.,
Sep. 2009, pp. 1677–1684.

[8] Y.-W. Tai, S. Liu, M. S. Brown, and S. Lin, “Super resolution using
edge prior and single image detail synthesis,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 2400–2407.

[9] C. Damkat, “Single image super-resolution using self-examples and
texture synthesis,” Signal, Image Video Process., vol. 5, no. 3,
pp. 343–352, Jan. 2011.

[10] J. Yang, J. Wright, Y. Ma, and T. Huang, “Image super-resolution
as sparse representation of raw image patches,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2008, pp. 1–8.

[11] M. Welk, D. Theis, T. Brox, and J. Weickert, “PDE-based deconvolution
with forward-backward diffusivities and diffusion tensors,” Scale Space
PDE Methods Comput. Vis., pp. 585–597, 2005.

[12] Y. Gousseau and J.-M. Morel, “Are natural images of bounded varia-
tion?” SIAM J. Math. Anal., vol. 33, no. 3, pp. 634–648, Jan. 2001.

[13] A. S. Carasso, “Singular integrals, image smoothness, and the recovery
of texture in image deblurring,” SIAM J. Appl. Math., vol. 64, no. 5,
pp. 1749–1774, 2004.

[14] O. Honigman and Y. Y. Zeevi, “Enhancement of textured images using
complex diffusion incorporating Schrodinger’s Potential,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., May 2006, pp. 633–636.

[15] M. Elad and M. A. T. Figueiredo, “On the role of sparse and redundant
representations in image processing,” Proc. IEEE, vol. 98, no. 6,
pp. 972–982, Jun. 2010.

[16] W.-C. Lin, J. Hays, C. Wu, V. Kwatra, and Y. Liu, “A comparison
study of four texture synthesis algorithms on regular and near-regular
textures,” Dept. Biol. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Tech. Rep. CMU-RI-TR-04-01, 2004.

[17] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in Proc. 7th IEEE Int. Conf. Comput. Vis., vol. 2. Sep. 1999,
pp. 1033–1038.

[18] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based super-
resolution,” IEEE Comput. Graph. Appl., vol. 22, no. 2, pp. 56–65,
Mar./Apr. 2002.

[19] G. Gilboa and S. Osher, “Nonlocal operators with applications to image
processing,” Multiscale Model. Simul., vol. 7, no. 3, pp. 1005–1028,
2008.

[20] H.-O. Peitgen, D. Saupe, M. F. Barnsley, Y. Fisher, and M. McGuire,
The Science of Fractal Images. New York, NY, USA: Springer-Verlag,
1988.

[21] B. B. Mandelbrot and J. W. Van Ness, “Fractional brownian motions,
fractional noises and applications,” SIAM Rev., vol. 10, no. 4,
pp. 422–437, 1968.



2108 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 5, MAY 2014

[22] B. Pesquet-Popescu and J. L. Vehel, “Stochastic fractal models for image
processing,” IEEE Signal Process. Mag., vol. 19, no. 5, pp. 48–62,
Sep. 2002.

[23] J. Keller, S. Chen, and R. Crownover, “Texture description and segmen-
tation through fractal geometry,” Comput. Vis., Graph., Image Process.,
vol. 45, no. 2, pp. 150–166, 1989.

[24] D. Zoran and Y. Weiss, “From learning models of natural image patches
to whole image restoration,” in Proc. Int. Conf. Comput. Vis., Nov. 2011,
pp. 479–486.

[25] M. J. Wainwright and E. P. Simoncelli, “Scale mixtures of Gaussians
and the statistics of natural images,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 12. Cambridge, MA, USA, May 1999, pp. 855–861.

[26] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image
denoising using scale mixtures of Gaussians in the wavelet domain,”
IEEE Trans. Image Process., vol. 12, no. 11, pp. 1338–1351, Jan. 2003.

[27] D. J. Heeger and J. R. Bergen, “Pyramid-based texture analy-
sis/synthesis,” in Proc. 22nd Annu. Conf. Comput. Graph. Interact. Tech.,
vol. 3. New York, NY, USA, ACM, Aug. 1995, pp. 229–238.

[28] J. Weickert, Anisotropic Diffusion in Image Processing. Stuttgart,
Germany: Teubner Stuttgart, 1998.

[29] I. Zachevsky and Y. Y. Zeevi, “Single-image superresolution of self-
similar textures,” in Proc. IEEE Int. Conf. Image Process., Sep. 2013,
pp. 952–956.

[30] M. Irani and S. Peleg, “Super resolution from image sequences,” in Proc.
10th Int. Conf. Pattern Recognit., vol. 2. Jun. 1990, pp. 115–120.

[31] M. Elad and A. Feuer, “Restoration of a single superresolution image
from several blurred, noisy, and undersampled measured images,” IEEE
Trans. Image Process., vol. 6, no. 12, pp. 1646–1658, Jan. 1997.

[32] J. Yang and T. Huang, “Image super-resolution: Historical overview and
future challenges,” in Super-Resolution Imaging. Boca Raton, FL, USA:
CRC, 2010.

[33] A. Danielyan, V. Katkovnik, and K. Egiazarian, “BM3D frames and
variational image deblurring,” IEEE Trans. Image Process., vol. 21,
no. 4, pp. 1715–1728, Apr. 2012.

[34] S. Hoefer, H. Hannachi, M. Pandit, and R. Kumaresan, “Isotropic two-
dimensional fractional Brownian motion and its application in ultrasonic
analysis,” in Proc. 14th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
Nov. 1992, pp. 1267–1269.

[35] L. M. Kaplan and C.-C. Kuo, “An improved method for 2D self-
similar image synthesis,” IEEE Trans. Image Process., vol. 5, no. 5,
pp. 754–761, Jan. 1996.

[36] B. Pesquet-Popescu and P. Larzabal, “Synthesis of nonstationary fields
with stationary increments,” in Proc. Image Process. Appl. Sixth Int.
Conf., vol. 1. Jul. 1997, pp. 303–307.

[37] A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,”
Proc. IEEE, vol. 69, no. 5, pp. 529–541, May 1981.

[38] J. Behar, M. Porat, and Y. Y. Zeevi, “Image reconstruction from localized
phase,” IEEE Trans. Signal Process., vol. 40, no. 4, pp. 736–743,
Apr. 1992.

[39] N. Skarbnik, C. Sagiv, and Y. Y. Zeevi, “Edge detection and
skeletonization using quantized localized phase,” in Proc. Eur. Signal
Process. Conf., Aug. 2009, pp. 1542–1546.

[40] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it?
A new look at Signal Fidelity Measures,” IEEE Signal Process. Mag.,
vol. 26, no. 1, pp. 98–117, Jan. 2009.

[41] I. Zachevsky and Y. Y. Zeevi, “Superresolution of self-similar textures,”
CCIT, Technion-Israel Inst. Technol., Tech. Rep. 838, 2013.

[42] G. Gilboa, N. Sochen, and Y. Y. Zeevi, “Forward-and-backward diffusion
processes for adaptive image enhancement and denoising,” IEEE Trans.
Image Process., vol. 11, no. 7, pp. 689–703, Jan. 2002.

[43] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12,
no. 7, pp. 629–639, Jul. 1990.

[44] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[45] I. Zachevsky and Y. Y. Zeevi, “Combining long-range dependencies with
phase information in natural stochastic texture enhancement,” in Proc.
IEEE Int. Conf. Image Process., Paris, France, Sep. 2014.

[46] I. Zachevsky and Y. Y. Zeevi, “On the statistics of natural stochastic
textures,” CCIT, Technion-Israel Inst. Technol., Tech. Rep., 2014.

Ido Zachevsky is currently pursuing the Doctoral
degree with the Department of Electrical Engi-
neering, Technion - Israel Institute of Technology,
where he was awarded the Ollendorff Fellowship.
He served in the communication corps of the Israel
Defense Forces and then received the Degree from
the Technion. He was recently admitted to the
departmental special program of direct track toward
the Ph.D. degree.

Yehoshua Y. (Josh) Zeevi is a Professor of Elec-
trical Engineering with the Technion - Israel Insti-
tute of Technology, where he was the Barbara and
Norman Seiden Professor of Computer Sciences
from 1988 to 2008, the Dean of the Faculty of
Electrical Engineering from 1994 to 1999, and a
member of the Board of Governors and the Technion
Council at various times. He is currently the Head
of the Ollendorff Minerva Center for Vision and
Image Sciences. He is the co-inventor of over 30
patents and patent applications in vision and image

technologies, and a co-author of over 300 publications in scientific journals
and conference proceedings, and a co-editor of three books.

Dr. Zeevi received the Ph.D. degree from University of California, Berkeley.
He was then a Vinton Hayes Fellow at Harvard University, where he continued
to be a regular visitor for many years after joining the Technion. He was also
a Visiting Professor with the Massachusetts Institute of Technology (on a joint
appointment with Harvard University), Rutgers, Columbia University. He is
the co-founder and Editor-in-Chief of the Journal of Visual Communication
and Image representation.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


